• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simple Metrics for Representing East Asian Winter Monsoon Variability: Urals Blocking and Western Pacific Teleconnection Patterns

    2016-11-14 05:55:59HoffmanCHEUNGandWenZHOU
    Advances in Atmospheric Sciences 2016年6期

    Hoffman H.N.CHEUNGand Wen ZHOU*

    1Guy Carpenter Asia-Pacific Climate Impact Centre,School of Energy and Environment, City University of Hong Kong,Hong Kong SAR

    2City University of Hong Kong Shenzhen Research Institute,Shenzhen 518057

    Simple Metrics for Representing East Asian Winter Monsoon Variability: Urals Blocking and Western Pacific Teleconnection Patterns

    Hoffman H.N.CHEUNG1,2and Wen ZHOU*1,2

    1Guy Carpenter Asia-Pacific Climate Impact Centre,School of Energy and Environment, City University of Hong Kong,Hong Kong SAR

    2City University of Hong Kong Shenzhen Research Institute,Shenzhen 518057

    Instead of conventional East Asian winter monsoon indices(EAWMIs),we simply use two large-scale teleconnection patterns to represent long-term variations in the EAWM.First,the Urals blocking pattern index(UBI)is closely related to cold air advection from the high latitudes towards western Siberia,such that it shows an implicit linkage with the Siberian high intensity and the surface air temperature(SAT)variations north of 40°N in the EAWM region.Second,the well-known western Pacific teleconnection index(WPI)is connected with the meridional displacement of the East Asian jet stream and

    the East Asian trough.This is strongly related to the SAT variations in the coastal area south of 40°N in the EAWM region. The temperature variation in the EAWM region is also represented by the two dominant temperature modes,which are called the northern temperature mode(NTM)and the southern temperature mode(STM).Compared to 19 existing EAWMIs and other well-known teleconnection patterns,the UBI shows the strongest correlation with the NTM,while the WPI shows an equally strong correlation with the STM as four EAWMIs.The UBI–NTM and WPI–STM relationships are robust when the correlation analysis is repeated by(1)the 31-year running correlation and(2)the 8-year high-pass and low-pass filter.Hence, these results are useful for analyzing the large-scale teleconnections of the EAWM and for evaluating this issue in climate models.In particular,more studies should focus on the teleconnection patterns over extratropical Eurasia.

    East Asian winter monsoon,Urals blocking high,western Pacific teleconnection pattern,teleconnection

    1.Introduction

    The intensity of the East Asian winter monsoon(EAWM) is closely related to severe conditions in densely populated regions in East Asia,including China,Japan,and Korea.A simple and predictable EAWM index(EAWMI)is important for seasonal forecasting and for studying the long-term variations of the EAWM.Based on large-scale circulation features over the EAWM region(Fig.1),many previous works have constructed different EAWMIs using:(1)the mean SLP (MSLP)gradient between East Asia and the Pacific Ocean; (2)the lower tropospheric wind along the coastal region of East Asia;(3)the East Asian trough;and(4)the upper tropospheric zonal wind shear(Wang and Chen,2010).Yet,the EAWM is a complicated system involving the air–sea interaction between the Asian continent and the Pacific Ocean, and the topographic forcing exerted by the Tibetan Plateau. The interannual variations of surface air temperature(SAT)in the northern and southern parts of the EAWM region are uncorrelated(Wang et al.,2010a).Therefore,it is challenging to construct a unified index that can successfully capture the SAT variations in the entire EAWM region.

    The evolution of the EAWM system is related to middle and upper tropospheric remote signals from both upstream and downstream(e.g.,Chang and Lau,1980;Joung and Hitchman,1982;Lau and Lau,1984;Hsu and Wallace, 1985;Takaya and Nakamura,2005,2013;Song et al.,2014). A typical severe cold-air outbreak in the EAWM region is characterized by an inverted-omega geopotential height pattern.This is composedoftwoblockingridgesovertheUrals–Siberia region and the North Pacific(Yeh et al.,1962;Ding, 1994).A recent study by Cheung et al.(2015)showed that the long-term variation in the number of cold days(not the year-to-year SAT variability)in Hong Kong,a coastal city in Southeast China,is closely related to the frequency of the Urals blocking pattern index(UBI)and the western Pacific teleconnection pattern index(WPI).In this paper,we will further show how both the UBI and WPI constitute one of the most robust signals accounting for the year-to-yearSAT variability in the EAWM region.Unlike most previous works,which tendedto focuson the relationshipbetween blocking/teleconnectionsandEAWMvariability(Gonget al., 2001;Lee and Jhun,2006;Liu et al.,2014;Lim and Kim, 2015),our analysis begins with the SAT in the EAWM region.

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    Fig.1.Large-scale circulation features of the EAWM:(a)MSLP(shading;units:hPa)and the 1000-hPa wind(vectors;units:m s-1);and(b)U250(shading;units:m s-1)and Z500(contour interval:60 gpm).In(a),the Tibetan Plateau is colored black,while A,B and C denote the Siberian high,Aleutian low and near-surface northeasterly flow over the East Asian coast,respectively.In(b),D and E denote the East Asian jet stream and East Asian trough,respectively.

    Following the definition of Wang et al.(2010a),the SAT variation in the EAWM region will also be described by the two major temperature modes.The northern temperature mode(NTM)captures the temperature variation north of 40°N well,whereas the southern temperature mode(STM) successfully depicts the temperature variation south of 40°N. Compared to 19 EAWMIs and other well-known teleconnection indices,we will demonstrate that the UBI shows the strongest correlationwith the NTM,which is poorlycaptured by most of the EAWMIs.The WPI shows an equally strong correlation with the STM with four EAWMIs.Because the UBI–NTM and WPI–STM correlations exceed 0.7 in magnitude on both interannual and interdecadal timescales,we suggest that Urals blocking(UB)and western Pacific(WP) teleconnection are crucial for EAWM studies.Based on the findings of this study and other recent studies,we will also discuss the key to defining a representative EAWMI.

    The present study investigates 66 winters,from 1948/49 to 2013/14,using the NCEP–NCAR reanalysis datasets. These include the daily field of geopotential height(Z),the monthly field of SAT,MSLP,and the zonal and meridional components of wind(U and V).Following this introduction,the teleconnectionindices(UBI and WPI)are defined in section 2.Section 3 presents the relationship between these teleconnection indices and the temperature variations in the EAWMregion.Section4highlightsthestrengthoftheseteleconnection indices to represent the EAWM variability.The results are summarized and discussed in section 5.

    2.Definition of teleconnection indices

    The prominent large-scale circulation features related to theSAT intheEAWMregionaredepictedbyperformingcorrelation analysis for the area-averagedSAT in the EAWM region(20°–50°N and 100°–140°E;green box in Fig.2a)with the 500-hPa geopotential height(Z500;shading in Fig.2a). We use the following three steps to highlight the key regions responsible for the year-to-year variability of the SAT in the EAWM region(white contours in Fig.2a):

    ·First,we repeat the correlation analysis for each of the grids in the EAWM region(221 grids in total).The output in the analysis is r1(λ,φ,i),whereλ∈[0,357.5]°E, φ∈[0,90.0]°N and i∈[1,221],and r1is the linear correlation coefficient between Z500and the SAT grid in the EAWM region.

    Fig.2.Correlation between the area-averaged SAT in the EAWM region(green box)and(a)the Z500grids(shading),(b)the blocking frequency in the NH in the December–January–February period,where the percentage of SATgrids inside the box showing a linear correlation coefficient larger than 0.574 in magnitude with each of the Z500grids is denoted by the white contours in (a),and that with blocking frequency is shown in(c).(see text for description)

    ·Second,to identify the regions accounting for a significant fraction of the SAT variability in the EAWM region, we set a threshold of 0.574 for r1(in magnitude;corresponding to 33.3%or one-third of the total variance).The thresh-old(0.574)is much greater than commonly used confidence levels(95%or 99%)with 65 degrees of freedom(where the length of study period is 66 years).The output in the analysis is N1(λ,φ,i)(1 if exceeding the threshold and 0 otherwise).

    ·Third,at each Z500grid point(λ,φ)we count the percentage of SAT grids in the EAWM region with r1exceeding the threshold,where N1(λ,φ)=(λ,φ,i)]/(221× 100)(%;white contours in Fig.2a).

    As shown in Fig.2a,the year-to-year variability of the SAT over the EAWM region is teleconnected with both upstream and downstream signals over the extratropical region. Upstream of the East Asian continent is a tripole pattern, where a low region is centered over the European continent and the Mediterranean Sea(~15°E),while a high region is centered near the Ural Mountains(~60°E)and another low region can be found over western Siberia(~90°–100°E). This is analogous to the dominant UB pattern(Wang et al., 2010b;Cheung et al.,2012).A significant negative correlation is also found over the Arabian Sea(~20°N,60°E),but further analysis reveals that this signal is significantly correlated with UB(figure not shown).On the other hand,downstream of the East Asian continent is a dipole pattern overthe western North Pacific.This resembles the WP teleconnection pattern(Wallace and Gutzler,1981).The above results suggest that UB and WP account for a significant fraction of the SAT variability in the EAWM region.

    The Z500anomaly pattern resembles an inverted omega pattern(Yeh et al.,1962;Ding,1994),suggesting that lower SAT in the EAWM region is related to the more frequent occurrence of blocking.The area-averaged SAT of the EAWM region is significantly correlated with the blocking frequency over 45°–90°E(the Urals sector)and 105°–130°E(the WPsector;Fig.2b).Note that the blocking frequency is defined in the same way as the algorithm listed in Cheung et al.(2015),which identifies the regions showing a reversal of Z500gradient over the midlatitudes for at least four consecutive days.

    To identify the key blocking region accounting for a significant fraction of the SAT variability in the EAWM region, we follow the three steps that constructed the white contours in Fig.2a.First,we correlate the blocking frequency at each longitude with each of the 221 SAT grids inside the EAWM region.The output of this correlation analysis is r2(λ,i),whereλ∈[0,357.5]°E and i∈[1,221].Second, we use N2(λ,i)to record whether the correlation exceeds the threshold(0.574 in magnitude),where N2(λ,i)=1 if exceeding this threshold and N2(λ,i)=0 otherwise.Third, for each longitude,we count the percentage of SAT grids in the EAWM region with r2exceeding the threshold,where

    As shown in Fig.2c,more than 30%of the SAT grids are found to show a linear correlation coefficient larger than 0.574 in magnitude with the UB sector,but much less than 10%of the SAT grids have such a strong correlation with the WP blocking.Therefore,the Urals sector is the major blocking sector strongly linked to SAT variability in the EAWM region.

    Accordingly,we deduce that a blocking pattern centered near the Urals and a north–south-oriented dipole over the western NorthPacific are two large-scaleatmosphericsignals related to SAT variability in the EAWM region:

    ·Signal(1)can be represented by the UBI.This is defined as the first leading EOF pattern obtained from the covariance matrix of Z500enclosing the region(30°–80°N, 0°–120°E)(Fig.3a).Each grid of the covariance matrix is weighed by cosφ.The definition is similar to that in Cheung et al.(2012),but a larger domain is chosen here in order to capture the tripole pattern in Fig.2a.Unlike in Cheung et al. (2015),the area-averaged blocking frequency is not adopted here because the EOF pattern can be easily reproduced,and this EOF pattern is closely related to the UB frequency.

    ·Signal(2)is captured well by the western Pacific index(WPI).This is defined as the first leading EOF obtained from the correlation matrix of the Z500anomalies enclosing the regionof(20°–80°N,90°E–120°W),whichresemblesthe WP pattern(Wallace and Gutzler,1981;Cheunget al.,2015). Because the positive sign of the WPI represents a lower Z500over the high-latitude region of the North Pacific,its sign is reversed in Fig.3b.

    3.Distinct relationships with EAWM temperatures

    Fig.3.Eigenvector of the(a)UB and(b)WP teleconnection pattern.Linear correlation coefficients between SAT and the principal component of(c)UB and(d)WP.In(c,d),only the regions significant at the 95%confidence level are shaded,and the values larger than 0.574 in magnitude(equivalent to one-third of the explained variance)are enclosed by thick contours.

    After defining the two teleconnection patterns in Figs.3a and b,their standardized principal component is correlated with the SAT field in order to illustrate their relationship with the EAWM temperatures.As shown in Figs.3c and d,thetwo patterns are associated with two distinct temperaturepatterns in Asia.The UBI is significantly negatively correlated with the SAT over the midlatitude region in Asia(including Siberia,central and northern parts of China,Korea,and Japan),with the strongest negative correlation southeast of Lake Baikal(Fig.3c).The WPI,on the other hand,is accompanied by a temperature dipole anomaly pattern over the Asia–Pacific region.In particular,the negative phase of the WPI is significantly negatively correlated with the SAT over the coastal region in East Asia and Southeast Asia,including southeastern China,South Korea,southern Japan,and Vietnam(Fig.3d).In short,the UBI forms a very strong linkage with the SAT north of 40°N,whereas the WPI is strongly linked to the SAT south of 40°N in the EAWM region.

    During the observational period,the interannual and interdecadal variations of the SAT in the EAWM region can be described mainly by two dominant modes(Wang et al., 2010a).Applying an EOF analysis to the covariance matrix of SAT in the EAWM region(0°–60°N,100°–140°E),Wang et al.(2010a)called the first two EOFs the NTM and STM. The spatial patterns of the two temperature modes are given in Figs.4a and b.Following their definitions,the two temperature modes were obtained using the ERA-40 datasets. Then,the principal component of the two SAT modes was obtained by projecting the two eigenvectors onto the NCEP data,where the climatological mean difference between theNCEP and ERA-40 data was subtracted before the projection.The two modes account for 72%of the total variance, where the NTM(STM)explains well the SAT variability north(south)of 40°N.The region explained by the UBI (WPI)seems to coincide with that of the NTM(STM).

    Fig.4.(a,b)Spatial patterns of the first two leading EOF modes(EOF1 and EOF2)of SAT over the EAWM region(0°–60°N,100°–140°E)using the ERA-40 dataset for the period 1957/58–2000/01:(a)NTM;(b)STM (units:°C)[redrawn from Wang et al.(2010a,Figs.3a and c)].(c,d)Standardized principal component of the NTM/STM(black line)and the time series of the UBI(blue line)/-WPI(red line).The linear correlation coefficient between the two time series is shown in the top-right.

    The UBI–NTM and WPI–STM relationshipsare revealed in Figs.4c and d,where their year-to-year correlations are larger than 0.7 in magnitude and the explained variances are greater than 50%.Because the intensity of the EAWM has been found to have undergone a strong decadal variation in the late 1980s(e.g.,Jhun and Lee,2004;Wang et al.,2009b; Wang et al.,2010a),one might wonder if these relationships are still strong on interannual timescales.In other words, the relationship in Figs.4c and d might be mainly due to the decadal variation.In this regard,we applied an 8-year highpass(low-pass)Lanczos filter with 21 weights to extract the interannual(interdecadal)component of each time series in Figs.4c and d(Fig.5).

    As can be seen in Figs.5a and b,both the UBI–NTM and WPI–STM relationships still have a linear correlation coefficient of larger than 0.7 in magnitude on interannual timescales.On the other hand,NTM and STM undergo a decadal variation around 1986/87,where they change from a predominantly positive to negative phase(Fig.5c–d).Correspondingly,the SAT in the EAWM region tends to be below normal before this period and above normal afterward(Lee et al.,2013).In the late 2000s,the two temperature modes become less negative due to some severe winters,which is consistent with the strengthening tendency of the EAWM after 2004/05(Wang and Chen,2014a).In comparison,both the UBI andWPI can capturethe decadalchangein the1980s (dashed colored lines in Figs.4c and d).The correlation between the interdecadal time series of the UBI and NTM is 0.887,and that between the WPI and STM is 0.883.Apparently,the UB and WP are two large-scale teleconnection patterns that can account for a significant fraction of SAT variability in different parts of the EAWM region on interannual and interdecadal timescales.

    4.Representativeness of the UBI and WPI

    Fig.5.As in Figs.4c and d but for(a,b)the interannual component(<8 years)and(c,d)the interdecadal component(>8 years)of the time series.

    To measure how well the UBI and WPI can capture SAT variability in the EAWM region compared to other EAWMIsand teleconnection patterns[Arctic Oscillation(AO),ENSO Ni?o3 index;Eurasian pattern(EU),Scandinavian pattern (SCAN)],all indices are correlated with the NTM and STM in Figs.6a–d.The definition of all EAWMIs is given in Table 1,whereas the definitions of the teleconnection patterns are the same as those of the CPC/NOAA(http://www.cpc. ncep.noaa.gov/data/teledoc/telecontents.shtml).Because all climate indices on the CPC/NOAA website are available for 1950 onwards,the correlation analysis is confined to the period 1950/51–2013/14.

    Among the 19 EAWMIs listed in Table 1,only five show a correlation of 0.50 or above in magnitude with the NTM in the entire study period(Fig.6a).Two of them(WC14 and H15)are new indices,following the review of Wang and Chen(2010).They consider the meridional MSLP or Z500gradient over East Asia instead of solely the zonal gradient. The remaining three EAWMIs describe either the intensity of the Siberian high(G01)or the East Asian trough(S97 and CS99b).In contrast,only three EAWMIs have a correlation smaller than 0.50 in magnitude with the STM(Fig.6b).These results are consistent with those of previous studies(e.g.,Wang et al.,2010a;Wang and Chen,2014a),where most of the EAWMIswere foundto showa strongcorrelation with the STM but not the NTM.

    Fig.6.Correlation between EAWMIs and the(a)NTM and(b)STM,where the first column of each plot shows the correlation throughout the entire study period,and the second column shows the 31-year running correlation.(c,d)As in(a,b)but for the correlation with teleconnection indices.

    Table 1.List of EAWMIs.The EAWMIs considered in Wang and Chen’s(2010)study are classified into four groups(EAWMI1 to EAWMI4)based on the parameter defining the index.The two remaining EAWMIs(WC14 and H15)have been defined recently.

    As mentionedin Wanget al.(2010a),a coldNTMis characterized by a northwestward shift in the East Asian trough toward Lake Baikal(~50°N,110°E)and a northwestward shift in the Siberian high[which is located at(40°–65°N, 80°–120°E)in the climatology].A cold STM,on the other hand,is related to a deepening of the East Asian trough and a stronger surface MSLP gradient between the Siberian high and the subtropical western North Pacific.Most of the EAWMIs listed in Table 1 belongto groups1 and 2(13 outof 19),wheregroup1 is definedbythe zonalMSLP gradientbetween the Asian continentand the Pacific Ocean,and group2 is defined by the lower troposphericV over the coastal region in East Asia.These EAWMIs describe mainly the large-scale circulation features south of 40°N.Accordingly,they tend to show a strong correlation with the STM that represents the SAT variability south of 40°N(Fig.4b).

    ComparedtotheEAWMIsandotherwell-knownteleconnectionindices,the UBI has thestrongestcorrelationwiththe NTM,whereas the WPI has a correlation equally as strong (~0.7)as that of four of the EAWMIs with the STM.Such strong year-to-year relationships are stable throughout the study period,as evidenced by slight changes in the 31-year running correlation.The above conclusion is still valid if we repeat the correlation analysis for the interannual and interdecadal component of the indices(same as Fig.5),except that more EAWMIs show a correlation with the STM greaterthan0.7ontheinterannualtimescales,andH15shows a stronger correlation with the NTM(0.913)than the UBI (0.888)on the interdecadal timescales(figures not shown). Therefore,both the UBI and WPI are representative for measuring EAWM temperatures.Because many EAWMIs can represent the STM well,the remaining part of this section focuses on the NTM.

    The UBI–NTM relationship is related to the linkage be-tween UB and both the Siberian high and the East Asian trough.As can be inferred from Fig.3a,the positive phase of the UBI corresponds to stronger northerly geostrophic wind from the polar region towards western Siberia.This enhances the cold air intensity(i.e.,negative SAT anomaly) over the climatological Siberian high region.Moreover,the strongermeridional-typecirculationduringthepositivephase of the UBI tends to intensify the cyclonic flow over the East Asian continent,which can be deduced by the negative Z500anomalyoverEastAsia(Fig.3a).ThisnegativeZ500anomaly pattern is analogous to the northwestward shift of the East Asian trough from the south of Japan towards the East Asian continent.

    Compared to the UBI,SCAN shows a weaker correlation with the NTM throughout the study period.However,the 31-year moving correlation suggests that the SCAN–NTM relationship has become stronger in recent decades,which is comparable to the UBI–NTM relationship.Previous studies have also identified its impact on the EAWM(Bueh and Nakamura,2007;Bueh et al.,2011;Sohn et al.,2011;Liu et al.,2014).The difference between SCAN and the UBI arises from their centers of action over Eurasia;those of SCAN are locatedat a higherlatitude.The aboveresults suggest that the large-scale circulations associated with the NTM are characterizedbya quasi-stationaryRossby wave-trainpatternrecurring over Eurasia.This is also related to the location of UB. In future work,we will look to further explain the dynamic mechanisms responsible for the recurring position of blocking and the quasi-stationary Rossby wave train over Eurasia.

    5.Summary and discussion

    Based on recent advances in EAWM studies(e.g.,Lee and Jhun,2006;Wang et al.,2010a;Takaya and Nakamura, 2013;Kim et al.,2014;Liu et al.,2014;Hu et al.,2015;Leung and Zhou,2015)and the results of this study,an EAWMI should be able to represent the following anomalous largescale circulation features in order to capture the SAT variability in the majority of the EAWM region:

    ·ThestrengthoftheSiberianhigh,whichis thecold-core system related to cold air activity over the EAWM region;

    ·The meridional-type circulation(or zonal index)over East Asia,which is related to the meridional displacement of the East Asian troughand the cold-air pathwayin the EAWM region.

    The former feature is captured well by any index enclosing the climatological Siberian high region(e.g.,Hu et al., 2015).This is closely related to the teleconnection pattern centered near the Ural Mountains,which can be described by the UBI[Urals blocking pattern(Cheung et al.,2012)].The latter feature is closely related to the deepening of the East Asian trough(Wang et al.,2009a;Leung and Zhou,2015). This resembles the large-scale circulation features associated with the WPI(Lim and Kim,2013;Takaya and Nakamura, 2013;Wang and Chen,2014b).Therefore,variability in the EAWM can be explained well by the large-scale circulation features upstream and downstream of the EAWM region.

    However,the SAT variability north and south of 40°N in the EAWM region(NTM and STM)is quite different on interannual timescales.As a result,very few EAWMIs show an equally strong correlation with both the NTM and STM. Among the EAWMIs considered in this study,only CS99b(a trough index)shows a correlation above 0.60 with both the NTM and STM.We have also tried to use a linear combination of the UBI and WPI to represent the NTM and STM,and the optimization is 3×UBI-2×WPI.The correlation between this linear combination and the NTM(STM)is 0.614 (0.626),which is close to that of CS99b.In other words,a unified and representative EAWMI(say,with an explained variance larger than 50%in the entire EAWM region)is not easy to establish.One possible way is to consider the latitude and longitude dependence of SAT on the two important EAWM circulation features mentioned above(i.e.,EAWMI is a function of latitude and longitude).

    To improve the seasonal forecasting of temperature anomalies in the EAWM and to project future changes in the EAWM,more in-depth analyses should be carried out to explore the underlying dynamics regarding the large-scale teleconnections related to the EAWM,such as the UB and WP. The WP is related to ENSO,which has been discussed extensively in previous studies(e.g.,Li,1990;Wang et al.,2000; Zhou et al.,2007;Wang et al.,2008;Takaya and Nakamura, 2013;Chen et al.,2014).On the other hand,UB has been studied less extensively.

    On synoptic timescales,UB is an important dynamic precursor of severe cold-air outbreaks in the EAWM.The occurrence of UB strengthens cold-air advection from the polar region to western Siberia.This enhances the Siberian high and subsequent cold-air outbreaks in the EAWM(Tao,1957; Takaya and Nakamura,2005;Lu and Chang,2009;Zhou et al.,2009;Cheunget al.,2013).On seasonaltimescales,when UB occurs frequentlyin a particular winter,the Siberian high intensity tends to be higherthan normal.Because of the close linkage between the Siberian high intensity and the NTM, the temperature tends to be lower in the northern part of the EAWM(Wang et al.,2010b;Chang and Lu,2012;Cheung et al.,2012).Moreover,the occurrence of UB is also characterized by a stronger meridional-type flow over East Asia. The more frequent occurrence of UB partly enhances the southward intrusion of cold air into the southern part of the EAWM.This potentially causes more frequent cold extremes in theEAWM,as in HongKong(Cheunget al.,2015).Therefore,the dynamics of UB should be investigated in depth in order to improve the understanding of the EAWM on different timescales.In addition to the major dynamic factors that lead to the occurrence of UB,we should understand the factors related to the recurring location of UB.

    Acknowledgements.The authors greatly appreciate the valuable comments provided by the two anonymous reviewers,which helped improve the clarity of the manuscript.The work described in this paper was supported by Shenzhen Research Project(Grant No.GJHS20120820144245169),and the French/Hong Kong Joint Research Project(No.F-HK002/12T).

    REFERENCES

    Bueh,C.,and H.Nakamura,2007:Scandinavian pattern and its climatic impact.Quart.J.Roy.Meteor.Soc.,133,2117–2131, doi:10.1002/qj.173.

    Bueh,C.,N.Shi,and Z.W.Xie,2011:Large-scale circulation anomalies associated with persistent low temperature over southern China in January 2008.Atmos.Sci.Lett.,12,273–280,doi:10.1002/asl.333.

    Chan,J.C.L.,and C.Y.Li,2004:The EastAsian winter monsoon. East Asian Monsoon,C.-P.Chang,Ed.,World Scientific Publishing Co.Pet.Ltd.,54–106.

    Chang,C.-P.,and K.M.W.Lau,1980:Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December 1974.Part II:Planetary-scale aspects. Mon.Wea.Rev.,108,298–312.

    Chang,C.-P.,and M.-M.Lu,2012:Intraseasonal predictability of Siberian high and East Asian winter monsoon and its interdecadal variability.J.Climate,25,1773–1778,doi:10.1175/ JCLI-D-11-00500.1.

    Chen,J.,and S.Q.Sun,1999:Eastern Asian winter monsoon anomaly and variation of global circulation Part I:A comparison study on strong and weak winter monsoon.Chinese J.Atmos.Sci.,23,101–111.(in Chinese).

    Chen,W.,H.-F.Graf,and R.H.Huang,2000:The interannual variability of East Asian winter monsoon and its relation to the summer monsoon.Adv.Atmos.Sci.,17,48–60,doi: 10.1007/s00376-000-0042-5.

    Chen,Z.,R.G.Wu,and W.Chen,2014:Distinguishing interannual variations of the northern and southern modes of the east Asian winter monsoon.J.Climate,27,835–851,doi: 10.1175/JCLI-D-13-00314.1.

    Cheung,H.H.N.,and W.Zhou,2015:Implications of Ural blocking for East Asian winter climate in CMIP5 GCMs.Part I: Biases in the historical scenario.J.Climate,28,2203–2216, doi:10.1175/JCLI-D-14-00308.1.

    Cheung,H.N.,W.Zhou,H.Y.Mok,and M.C.Wu,2012:Relationship between Ural–Siberian blocking and the East Asian winter monsoon in relation to the Arctic oscillation and the El Ni?o–southern oscillation.J.Climate,25,4242–4257,doi: 10.1175/JCLI-D-11-00225.1.

    Cheung,H.N.,W.Zhou,Y.P.Shao,W.Chen,H.Y.Mok,and M.C.Wu,2013:Observational climatology and characteristics of wintertime atmospheric blocking over Ural–Siberia. Climate Dyn.,41,63–79.

    Cheung,H.H.N.,W.Zhou,S.M.Lee,and H.W.Tong,2015:Interannual and interdecadal variability of the number of cold days in Hong Kong and their relationship with large-scale circulation.Mon.Wea.Rev.,143,1438–1454,doi:10.1175/ MWR-D-14-00335.1.

    Cui,X.P.,and Z.B.Sun,1999:East Asian winter monsoon index and its variation analysis.Journal of Nanjing Institute of Meteorology,22,321–325.(in Chinese).

    Ding,Y.H.,1994:Monsoon over China.Kluwer Academic Publishers,420 pp.

    Gong,D.Y.,S.W.Wang,and J.H.Zhu,2001:East Asian winter monsoon and Arctic oscillation.Geophys.Res.Lett.,28, 2073–2076.

    Guo,Q.W.,1994:Relationship between the variations of East Asian winter monsoon and temperature anomalies in China. Quarterly Journal of Applied Meteorology,5,218–225.(in Chinese).

    Hsu,H.-H.,and J.M.Wallace,1985:Vertical structure of wintertime teleconnection patterns.J.Atmos.Sci.,42,1693–1710.

    Hu,C.D.,S.Yang,and Q.G.Wu,2015:An optimal index formeasuring the effect of East Asian winter monsoon on China winter temperature.Climate Dyn.,45,2751–2589,doi:10.1007/ s00382-015-2493-5.

    Hu,Z.-Z.,L.Bengtsson,and K.Arpe,2000:Impact of global warming on the Asian winter monsoon in a coupled GCM. J.Geophys.Res.,105,4607–4624,doi:10.1029/1999JD 901031.

    Jhun,J.G.,and E.J.Lee,2004:A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J.Climate,17,711–726,doi:10.1175/1520-0442(2004)017<0711:ANEAWM>2.0.CO;2.

    Ji,L.R.,S.Q.Sun,K.Arpe,and L.Bengtsson,1997:Model study on the interannual variability of Asian winter monsoon and its influence.Adv.Atmos.Sci.,14,1–22,doi:10.1007/s00376-997-0039-4.

    Joung,C.H.,and M.H.Hitchman,1982:On the role of successive downstream development in East Asian polar air outbreaks. Mon.Wea.Rev.,110,1224–1237.

    Kim,Y.,K.Y.Kim,and S.Park,2014:Seasonal scale variability of the East Asian winter monsoon and the development of a two-dimensional monsoon index.Climate Dyn.,42,2159–2172,doi:10.1007/s00382-013-1724-x.

    Lau,N.-C.,and K.-M.Lau,1984:The structure and energetics of midlatitude disturbances accompanying cold-air outbreaks over East Asia.Mon.Wea.Rev.,112,1309–1327,doi: 10.1175/1520-0493(1984)112<1309:TSAEOM>2.0.CO;2.

    Lee,H.S.,and J.G.Jhun,2006:Two types of the Asian continental blocking and their relation to the east Asian monsoon during the boreal winter.Geophys.Res.Lett.,33,L22707,doi: 10.1029/2006GL027948.

    Lee,S.-S.,S.-H.Kim,J.-G.Jhun,K.-J.Ha,and Y.-W.Seo,2013: Robust warming over East Asia during the boreal winter monsoon and its possible causes.Environ.Res.Lett.,8,034001, doi:10.1088/1748-9326/8/3/034001.

    Leung,M.Y.-T.,and W.Zhou,2015:Variation of circulation and East Asian climate associated with anomalous strength and displacement of the East Asian trough.Climate Dyn.,45, 2731–2732,doi:10.1007/s00382-015-2504-6.

    Li,C.Y.,1990:Interaction between anomalous winter monsoon in East Asia and El Ni?o events.Adv.Atmos.Sci.,7,36–46,doi: 10.1007/BF02919166.

    Li,Y.Q.,and S.Yang,2010:A dynamical index for the East Asian winter monsoon.J.Climate,23,4255–4262,doi:10.1175/ 2010JCLI3375.1.

    Lim,Y.K.,and H.D.Kim,2013:Impact of the dominant largescale teleconnections on winter temperature variability over East Asia.J.Geophys.Res.,118,7835–7848,doi:10.1002/ jgrd.50462.

    Lim,Y.-K.,and H.-D.Kim,2015:Comparison of the impact of the Arctic Oscillation and Eurasian teleconnection on interannual variation in East Asian winter temperatures and monsoon.Theor.Appl.Climatol.,1–13,doi:10.1007/s00704-015-1418-x.

    Liu,Y.Y.,L.Wang,W.Zhou,and W.Chen,2014:Three Eurasian teleconnection patterns:Spatial structures,temporal variability,and associated winter climate anomalies.Climate Dyn., 42,2817–2839,doi:10.1007/s00382-014-2163-z.

    Lu,E.,and J.C.L.Chan,1999:A unified monsoon index for South China.J.Climate,12,2375–2385,doi:10.1175/1520-0442(1999)012<2375:AUMIFS>2.0.CO;2.

    Lu,M.M.,and C.-P.Chang,2009:Unusual late-season cold surges during the 2005 Asian winter monsoon:Roles of Atlantic blocking and the central Asian anticyclone.J.Climate, 22,5205–5217,doi:10.1175/2009JCLI2935.1.

    Shi,N.,1996:Features of the East Asian winter monsoon intensity on multiple time scale in recent 40 years and their relation to climate.Journal of Applied Meteorological Science,7,175–182.(in Chinese).

    Sohn,S.-J.,C.-Y.Tam,and C.-K.Park,2011:Leading modes of East Asian winter climate variability and their predictability: An assessment of the APCC multi-model ensemble.J.Meteor.Soc.Japan,89,455–474,doi:10.2151/jmsj.2011-504.

    Song,J.,C.Y.Li,and W.Zhou,2014:High and low latitude types of the downstream influences of the North Atlantic Oscillation.Climate Dyn.,42,1097–1111,doi:10.1007/s00382-013-1844-3.

    Sun,B.-M.,and C.-Y.Li,1997:Relationship between the disturbances of East Asian trough and tropical convective activity in boreal winter.Chinese Science Bulletin,42,500–504.(in Chinese).

    Takaya,K.,and H.Nakamura,2005:Mechanisms of intraseasonal amplification of the cold Siberian high.J.Atmos.Sci.,62, 4423–4440,doi:10.1175/JAS3629.1.

    Takaya,K.,and H.Nakamura,2013:Interannual variability of the East Asian winter monsoon and related modulations of the planetary waves.J.Climate,26,9445–9461,doi:10.1175/ JCLI-D-12-00842.1.

    Tao,S.Y.,1957:A study of activities of cold airs in East Asian winter.Handbook of Short-Term Forecast,China Meteorological Administration,Ed.,Meteorology Press,60–92.

    Wallace,J.M.,and D.S.Gutzler,1981:Teleconnections in the geopotential height field during the northern hemisphere winter.Mon.Wea.Rev.,109,784–812.

    Wang,B.,R.G.Wu,and X.H.Fu,2000:Pacific–East Asian teleconnection:how does ENSO affect East Asian climate?J. Climate,13,1517–1536,doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    Wang,B.,Z.W.Wu,C.-P.Chang,J.Liu,J.P.Li,and T.J.Zhou, 2010a:Another look at interannual-to-interdecadal variations of the east Asian winter monsoon:The northern and southern temperature modes.J.Climate,23,1495–1512,doi: 10.1175/2009JCLI3243.1.

    Wang,L.,and W.Chen,2010:How well do existing indices measure the strength of the East Asian winter monsoon?Adv. Atmos.Sci.,27,855–870,doi:10.1007/s00376-009-9094-3.

    Wang,L.,and W.Chen,2014a:The East Asian winter monsoon: re-amplification in the mid-2000s.Chinese Science Bulletin, 59,430–436,doi:10.1007/s11434-013-0029-0.

    Wang,L.,and W.Chen,2014b:An intensity index for the East Asian winter monsoon.J.Climate,27,2361–2374,doi: 10.1175/JCLI-D-13-00086.1.

    Wang,L.,W.Chen,and R.H.Huang,2008:Interdecadal modulation of PDO on the impact of ENSO on the east Asian winter monsoon.Geophys.Res.Lett.,35,doi:10.1029/2008GL 035287.

    Wang,L.,W.Chen,W.Zhou,and R.H.Huang,2009a:Interannual variations of East Asian trough axis at 500 hPa and its association with the East Asian winter monsoon pathway.J. Climate,22,600–614,doi:10.1175/2008JCLI2295.1.

    Wang,L.,R.H.Huang,L.Gu,W.Chen,and L.H.Kang,2009b: Interdecadal variations of the East Asian winter monsoon and their association with quasi-stationary planetary wave activity.J.Climate,22,4860–4872,doi:10.1175/2009JCLI 2973.1.

    Wang,L.,W.Chen,W.Zhou,J.C.L.Chan,D.Barriopedro,and R.H.Huang,2010b:Effect of the climate shift around mid 1970s on the relationship between wintertime Ural blocking circulation and East Asian climate.Int.J.Climatol.,30,153–158,doi:10.1002/joc.1876.

    Wu,B.Y.,and J.Wang,2002:Winter Arctic oscillation,Siberian high and East Asian winter monsoon.Geophys.Res.Lett.,29, 1897,doi:10.1029/2002GL015373.

    Xu,S.Y.,and J.J.Ji,1965:The climate and weather features during the outbreak period of China’s winter monsoon.Geographical Symposium,9,85–101.(in Chinese).

    Yang,S.,K.-M.Lau,and K.-M.Kim,2002:Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies.J.Climate,15,306–325,doi:10.1175/1520-0442 (2002)015<0306:VOTEAJ>2.0.CO;2.

    Yeh,T.-C.,S.Y.Tao,and B.Z.Zhu,1962:Studies on the Blocking Situation in the Northern Hemisphere in Winter.Science Press,130 pp.(in Chinese).

    Zhou,W.,X.Wang,T.J.Zhou,C.Li,and J.C.L.Chan,2007: Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO.Meteor.Atmos.Phys.,98, 283–293,doi:10.1007/s00703-007-0263-6.

    Zhou,W.,J.C.L.Chan,W.Chen,J.Ling,J.G.Pinto,and Y.P. Shao,2009:Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Mon.Wea.Rev.,137,3978–3991,doi:10.1175/2009MWR 2952.1.

    Cheung,H.H.N.,and W.Zhou,2016:Simple metrics for representing East Asian winter monsoon variability: Urals blocking and western Pacific teleconnection patterns.Adv.Atmos.Sci.,33(6),695–705,

    10.1007/s00376-015-5204-6.

    18 September 2015;revised 11 November 2015;accepted 30 November 2015)

    Wen ZHOU

    Email:wenzhou@cityu.edu.hk

    国产伦理片在线播放av一区| 啦啦啦视频在线资源免费观看| 成人黄色视频免费在线看| 精品国产乱码久久久久久男人| 一区二区日韩欧美中文字幕| 精品人妻一区二区三区麻豆| 九色亚洲精品在线播放| 日日爽夜夜爽网站| 久久国产精品人妻蜜桃| 成年女人毛片免费观看观看9 | 两个人免费观看高清视频| 日韩制服丝袜自拍偷拍| 婷婷色av中文字幕| 手机成人av网站| 女人爽到高潮嗷嗷叫在线视频| 99国产精品99久久久久| 精品少妇久久久久久888优播| 一级片'在线观看视频| 国产男人的电影天堂91| 一级毛片 在线播放| 精品国产一区二区久久| 日本午夜av视频| 天天躁夜夜躁狠狠久久av| 色网站视频免费| 午夜福利,免费看| 久久精品aⅴ一区二区三区四区| 日韩 欧美 亚洲 中文字幕| 亚洲第一av免费看| 丁香六月天网| av线在线观看网站| 免费在线观看影片大全网站 | av天堂在线播放| 自线自在国产av| 欧美 日韩 精品 国产| 黄网站色视频无遮挡免费观看| 欧美日韩精品网址| netflix在线观看网站| 欧美在线一区亚洲| 欧美大码av| 一区二区三区乱码不卡18| 婷婷色综合www| 国产91精品成人一区二区三区 | 美女主播在线视频| 青草久久国产| 男女下面插进去视频免费观看| 亚洲人成77777在线视频| 午夜免费男女啪啪视频观看| 精品一区二区三卡| 天天躁狠狠躁夜夜躁狠狠躁| 午夜激情av网站| 啦啦啦视频在线资源免费观看| 久久久久久久久免费视频了| 成人影院久久| 成人18禁高潮啪啪吃奶动态图| 午夜激情久久久久久久| 国产成人欧美在线观看 | 日韩伦理黄色片| 亚洲色图 男人天堂 中文字幕| 这个男人来自地球电影免费观看| 亚洲人成77777在线视频| 大香蕉久久网| 欧美黄色片欧美黄色片| 国产精品国产av在线观看| 免费少妇av软件| 国产在线观看jvid| 精品人妻一区二区三区麻豆| 亚洲图色成人| 在线亚洲精品国产二区图片欧美| 另类精品久久| 激情视频va一区二区三区| 国产黄色视频一区二区在线观看| 老司机深夜福利视频在线观看 | 久久久久精品国产欧美久久久 | 日本一区二区免费在线视频| 777米奇影视久久| 国产精品一区二区免费欧美 | 9热在线视频观看99| 亚洲精品国产区一区二| 午夜免费成人在线视频| av欧美777| 国产一区二区激情短视频 | 中国美女看黄片| 99热网站在线观看| 欧美日韩精品网址| 精品人妻熟女毛片av久久网站| 成人黄色视频免费在线看| 高清不卡的av网站| 嫩草影视91久久| 久久精品人人爽人人爽视色| 啦啦啦在线观看免费高清www| 久久久久网色| 欧美黄色片欧美黄色片| 少妇人妻久久综合中文| 一级毛片我不卡| 亚洲中文日韩欧美视频| 亚洲专区中文字幕在线| 国产免费福利视频在线观看| 国产精品三级大全| 亚洲欧美日韩另类电影网站| 久久久国产精品麻豆| 亚洲伊人久久精品综合| 亚洲精品日本国产第一区| 国产主播在线观看一区二区 | 每晚都被弄得嗷嗷叫到高潮| 女性生殖器流出的白浆| 国产男人的电影天堂91| 妹子高潮喷水视频| av有码第一页| 亚洲国产欧美在线一区| 亚洲欧美精品综合一区二区三区| 亚洲,欧美精品.| 亚洲天堂av无毛| 亚洲成人手机| 日韩精品免费视频一区二区三区| 麻豆国产av国片精品| 久久 成人 亚洲| av在线app专区| 国产福利在线免费观看视频| 亚洲av电影在线观看一区二区三区| 另类精品久久| 狠狠婷婷综合久久久久久88av| av又黄又爽大尺度在线免费看| a 毛片基地| 亚洲男人天堂网一区| 精品熟女少妇八av免费久了| 在线 av 中文字幕| 精品少妇黑人巨大在线播放| 成人国产av品久久久| www.精华液| 99热全是精品| 久久鲁丝午夜福利片| 久久久精品国产亚洲av高清涩受| 2021少妇久久久久久久久久久| 成人午夜精彩视频在线观看| 久久九九热精品免费| 男男h啪啪无遮挡| 日本91视频免费播放| 亚洲黑人精品在线| 亚洲色图综合在线观看| 国产在线观看jvid| 免费高清在线观看视频在线观看| 午夜日韩欧美国产| 久久毛片免费看一区二区三区| 中文欧美无线码| 中文字幕高清在线视频| 一区二区日韩欧美中文字幕| 午夜老司机福利片| 一级a爱视频在线免费观看| 亚洲,欧美,日韩| 久久这里只有精品19| 欧美精品啪啪一区二区三区 | 亚洲成色77777| 亚洲综合色网址| 激情视频va一区二区三区| 国产欧美日韩精品亚洲av| 欧美日韩一级在线毛片| 777久久人妻少妇嫩草av网站| 人妻一区二区av| 国产精品秋霞免费鲁丝片| 老司机深夜福利视频在线观看 | 亚洲人成电影观看| 久久国产亚洲av麻豆专区| 丝袜喷水一区| 男人操女人黄网站| 一边摸一边抽搐一进一出视频| 免费在线观看完整版高清| 少妇人妻 视频| 免费日韩欧美在线观看| 亚洲国产日韩一区二区| 婷婷丁香在线五月| 中文字幕制服av| 免费观看av网站的网址| 脱女人内裤的视频| 人妻 亚洲 视频| 69精品国产乱码久久久| 午夜激情av网站| 成年人免费黄色播放视频| 亚洲免费av在线视频| 侵犯人妻中文字幕一二三四区| 欧美日本中文国产一区发布| 十分钟在线观看高清视频www| 久久国产精品影院| 中文字幕另类日韩欧美亚洲嫩草| 国产成人av激情在线播放| 人人妻,人人澡人人爽秒播 | 亚洲欧美精品综合一区二区三区| 黑丝袜美女国产一区| 欧美另类一区| 日本91视频免费播放| 国产精品国产三级专区第一集| 热re99久久国产66热| 久久狼人影院| 99热网站在线观看| 亚洲中文字幕日韩| cao死你这个sao货| 咕卡用的链子| 欧美日本中文国产一区发布| 国产片内射在线| 亚洲图色成人| 日本色播在线视频| 欧美国产精品va在线观看不卡| 久久亚洲国产成人精品v| 亚洲国产av影院在线观看| 亚洲欧美一区二区三区国产| 国产有黄有色有爽视频| 欧美精品av麻豆av| 午夜影院在线不卡| 亚洲欧洲国产日韩| 亚洲精品成人av观看孕妇| 人人妻人人澡人人爽人人夜夜| 国产成人啪精品午夜网站| 每晚都被弄得嗷嗷叫到高潮| 婷婷色麻豆天堂久久| 好男人视频免费观看在线| 一区二区日韩欧美中文字幕| 免费观看a级毛片全部| 亚洲欧美清纯卡通| 五月开心婷婷网| 日韩av免费高清视频| 国产欧美日韩一区二区三区在线| 亚洲av国产av综合av卡| 欧美乱码精品一区二区三区| 国产在线免费精品| 伦理电影免费视频| 亚洲av在线观看美女高潮| 1024视频免费在线观看| 2021少妇久久久久久久久久久| 精品少妇黑人巨大在线播放| 亚洲综合色网址| 中文字幕制服av| 国产精品 国内视频| 王馨瑶露胸无遮挡在线观看| 99国产精品免费福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 超碰97精品在线观看| 久久精品国产亚洲av高清一级| 一级毛片女人18水好多 | 久久久久久久精品精品| 久久毛片免费看一区二区三区| 色婷婷av一区二区三区视频| 欧美 日韩 精品 国产| 伊人亚洲综合成人网| 国产成人精品久久二区二区免费| 老汉色av国产亚洲站长工具| 成人18禁高潮啪啪吃奶动态图| 午夜福利视频在线观看免费| 亚洲欧美成人综合另类久久久| 一级a爱视频在线免费观看| 欧美日韩综合久久久久久| 搡老乐熟女国产| 无遮挡黄片免费观看| 亚洲熟女精品中文字幕| 麻豆乱淫一区二区| 国产精品久久久久久人妻精品电影 | 一区福利在线观看| 亚洲精品乱久久久久久| 亚洲精品一区蜜桃| 欧美人与性动交α欧美精品济南到| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产精品国产精品| 国产又爽黄色视频| 一级毛片电影观看| 国产成人免费无遮挡视频| 韩国精品一区二区三区| 最近中文字幕2019免费版| 丝袜美腿诱惑在线| 看免费成人av毛片| 这个男人来自地球电影免费观看| 国产片内射在线| 亚洲专区国产一区二区| 亚洲av日韩在线播放| 啦啦啦视频在线资源免费观看| 国产欧美日韩一区二区三 | 欧美人与性动交α欧美精品济南到| 国产精品一区二区精品视频观看| 久久中文字幕一级| 在线观看免费高清a一片| 18禁国产床啪视频网站| 男女高潮啪啪啪动态图| 精品一品国产午夜福利视频| 国产男人的电影天堂91| 在线观看一区二区三区激情| 最新在线观看一区二区三区 | 欧美日韩成人在线一区二区| 亚洲精品第二区| 国产免费福利视频在线观看| 高清欧美精品videossex| 久久精品人人爽人人爽视色| 久久国产亚洲av麻豆专区| 尾随美女入室| 国产精品一区二区在线不卡| 少妇被粗大的猛进出69影院| 免费久久久久久久精品成人欧美视频| 午夜免费成人在线视频| 国产一区二区在线观看av| 999精品在线视频| 久久精品成人免费网站| 亚洲欧美精品综合一区二区三区| 男的添女的下面高潮视频| 国语对白做爰xxxⅹ性视频网站| 看免费成人av毛片| 国产99久久九九免费精品| 91麻豆精品激情在线观看国产 | 亚洲精品第二区| 高清黄色对白视频在线免费看| netflix在线观看网站| 美女高潮到喷水免费观看| 国产在线精品亚洲第一网站| 国产私拍福利视频在线观看| 91大片在线观看| 久久精品国产亚洲av香蕉五月| 99久久综合精品五月天人人| 欧美在线黄色| 成人三级做爰电影| 在线观看一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品一区av在线观看| 亚洲成人久久爱视频| 999精品在线视频| 18禁裸乳无遮挡免费网站照片 | 午夜亚洲福利在线播放| 欧美日本视频| 91成年电影在线观看| 日日夜夜操网爽| 88av欧美| 中文字幕久久专区| 啦啦啦 在线观看视频| 两个人看的免费小视频| 在线免费观看的www视频| 国内久久婷婷六月综合欲色啪| www日本黄色视频网| 久久久国产成人精品二区| 午夜福利在线在线| 欧美色欧美亚洲另类二区| 久久精品人妻少妇| 黄色片一级片一级黄色片| 免费在线观看影片大全网站| 后天国语完整版免费观看| 亚洲人成网站在线播放欧美日韩| 18美女黄网站色大片免费观看| 亚洲色图av天堂| 99国产精品一区二区蜜桃av| 手机成人av网站| 欧美zozozo另类| 天天一区二区日本电影三级| 久久久久久久精品吃奶| 老司机在亚洲福利影院| 免费看十八禁软件| 黄网站色视频无遮挡免费观看| 丝袜人妻中文字幕| 久久精品91蜜桃| 在线观看免费日韩欧美大片| 亚洲 欧美 日韩 在线 免费| 两性夫妻黄色片| 妹子高潮喷水视频| 欧美日韩福利视频一区二区| 国产精品久久久久久亚洲av鲁大| 最新在线观看一区二区三区| 久久国产精品男人的天堂亚洲| 久久草成人影院| 日韩成人在线观看一区二区三区| 久久久久国产一级毛片高清牌| 国产精品久久久av美女十八| 熟女少妇亚洲综合色aaa.| 美女免费视频网站| 国产亚洲欧美精品永久| 婷婷六月久久综合丁香| 亚洲第一电影网av| 美女高潮喷水抽搐中文字幕| 欧美最黄视频在线播放免费| 欧美激情极品国产一区二区三区| 日本精品一区二区三区蜜桃| 国产又黄又爽又无遮挡在线| 欧美黑人欧美精品刺激| 高潮久久久久久久久久久不卡| 亚洲成av片中文字幕在线观看| 精品第一国产精品| АⅤ资源中文在线天堂| 人人妻人人看人人澡| 淫秽高清视频在线观看| 一本大道久久a久久精品| 国内毛片毛片毛片毛片毛片| 不卡av一区二区三区| av视频在线观看入口| 手机成人av网站| a级毛片在线看网站| 亚洲精品一卡2卡三卡4卡5卡| 老鸭窝网址在线观看| 黄色成人免费大全| 欧美成狂野欧美在线观看| 国产一区二区三区视频了| 麻豆国产av国片精品| 欧美一区二区精品小视频在线| 日本一区二区免费在线视频| 午夜影院日韩av| 成年女人毛片免费观看观看9| 啦啦啦免费观看视频1| 亚洲av电影不卡..在线观看| 国产一卡二卡三卡精品| 国产99久久九九免费精品| 国产亚洲欧美在线一区二区| 91九色精品人成在线观看| 黄频高清免费视频| 国产精品免费视频内射| 大香蕉久久成人网| 色哟哟哟哟哟哟| 在线观看日韩欧美| 国产亚洲精品第一综合不卡| 成熟少妇高潮喷水视频| 国产精品,欧美在线| 亚洲在线自拍视频| 成人亚洲精品一区在线观看| 搞女人的毛片| 欧美成人一区二区免费高清观看 | 白带黄色成豆腐渣| 亚洲五月婷婷丁香| 伊人久久大香线蕉亚洲五| 亚洲成a人片在线一区二区| 亚洲美女黄片视频| svipshipincom国产片| 黄片小视频在线播放| 欧美最黄视频在线播放免费| 99国产综合亚洲精品| 国产亚洲精品一区二区www| 两个人视频免费观看高清| 国产精品一区二区精品视频观看| 香蕉国产在线看| 18禁观看日本| 久久草成人影院| 一区二区日韩欧美中文字幕| 亚洲欧美日韩高清在线视频| 精品久久久久久久毛片微露脸| 亚洲自偷自拍图片 自拍| 一个人观看的视频www高清免费观看 | 在线观看日韩欧美| 无遮挡黄片免费观看| 欧美另类亚洲清纯唯美| 久久精品国产清高在天天线| 成年女人毛片免费观看观看9| 精品人妻1区二区| 韩国av一区二区三区四区| 久久 成人 亚洲| 美女高潮喷水抽搐中文字幕| 在线播放国产精品三级| 国产一区在线观看成人免费| 国产成人欧美在线观看| 人人妻,人人澡人人爽秒播| 免费在线观看黄色视频的| 神马国产精品三级电影在线观看 | 啦啦啦观看免费观看视频高清| videosex国产| 亚洲一区中文字幕在线| 久久午夜亚洲精品久久| 男女午夜视频在线观看| 国内久久婷婷六月综合欲色啪| 国产精品一区二区三区四区久久 | АⅤ资源中文在线天堂| 国产亚洲精品av在线| 国产成人精品无人区| 亚洲三区欧美一区| 三级毛片av免费| 18禁黄网站禁片免费观看直播| 精品久久久久久久久久久久久 | 一本精品99久久精品77| 色综合站精品国产| 激情在线观看视频在线高清| tocl精华| 久久久久久人人人人人| 久久久久国产一级毛片高清牌| 国产欧美日韩一区二区三| 成人一区二区视频在线观看| 黄频高清免费视频| 一区二区三区激情视频| 老司机午夜十八禁免费视频| 一a级毛片在线观看| 亚洲人成网站高清观看| 久久中文字幕人妻熟女| 精品少妇一区二区三区视频日本电影| bbb黄色大片| 中文字幕人成人乱码亚洲影| 午夜免费鲁丝| 国产伦人伦偷精品视频| 日本黄色视频三级网站网址| 99热6这里只有精品| 在线观看一区二区三区| 啦啦啦韩国在线观看视频| 制服丝袜大香蕉在线| 亚洲专区国产一区二区| 国产国语露脸激情在线看| 久久国产精品男人的天堂亚洲| xxx96com| 精品国产乱码久久久久久男人| 在线观看66精品国产| 国产精品美女特级片免费视频播放器 | 搡老熟女国产l中国老女人| 一级片免费观看大全| 国产高清视频在线播放一区| 欧美成人免费av一区二区三区| 88av欧美| 搞女人的毛片| 久久九九热精品免费| 最好的美女福利视频网| 中文在线观看免费www的网站 | 十分钟在线观看高清视频www| 国产av一区二区精品久久| 可以在线观看毛片的网站| 亚洲七黄色美女视频| 动漫黄色视频在线观看| 女人被狂操c到高潮| 国产一卡二卡三卡精品| 韩国av一区二区三区四区| 麻豆av在线久日| 欧美+亚洲+日韩+国产| 成熟少妇高潮喷水视频| 在线天堂中文资源库| 国产精品乱码一区二三区的特点| 国产av又大| 色在线成人网| 人人澡人人妻人| 免费观看人在逋| 动漫黄色视频在线观看| 狂野欧美激情性xxxx| 88av欧美| 天天一区二区日本电影三级| 最近在线观看免费完整版| 国产又爽黄色视频| 欧美最黄视频在线播放免费| 大型av网站在线播放| 少妇粗大呻吟视频| 亚洲男人的天堂狠狠| 国产一区二区在线av高清观看| 日韩精品中文字幕看吧| 欧美日韩福利视频一区二区| 国内揄拍国产精品人妻在线 | 国产成年人精品一区二区| 久久精品亚洲精品国产色婷小说| 91国产中文字幕| 欧美av亚洲av综合av国产av| 人妻丰满熟妇av一区二区三区| а√天堂www在线а√下载| 久久婷婷成人综合色麻豆| 欧美成人免费av一区二区三区| 老汉色av国产亚洲站长工具| 美女国产高潮福利片在线看| bbb黄色大片| 黄色女人牲交| 9191精品国产免费久久| 高清毛片免费观看视频网站| 精品久久久久久,| 午夜免费鲁丝| 久久久久久久精品吃奶| 天天躁夜夜躁狠狠躁躁| 欧美国产日韩亚洲一区| 极品教师在线免费播放| 精品一区二区三区视频在线观看免费| 国产v大片淫在线免费观看| 老汉色av国产亚洲站长工具| 亚洲色图av天堂| x7x7x7水蜜桃| 日韩欧美三级三区| 在线十欧美十亚洲十日本专区| 国产av又大| 男人舔女人下体高潮全视频| 成人精品一区二区免费| 十八禁人妻一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧美日韩在线播放| 人妻久久中文字幕网| 久久香蕉国产精品| 日本成人三级电影网站| 国产成人欧美在线观看| 国产黄a三级三级三级人| 在线十欧美十亚洲十日本专区| 亚洲人成电影免费在线| 国产精品久久久久久精品电影 | 又大又爽又粗| 亚洲国产精品999在线| 国产精品电影一区二区三区| 一级片免费观看大全| 亚洲真实伦在线观看| 50天的宝宝边吃奶边哭怎么回事| 久久人妻福利社区极品人妻图片| 国产午夜福利久久久久久| 午夜福利成人在线免费观看| 免费高清视频大片| 国产精品98久久久久久宅男小说| 夜夜夜夜夜久久久久| 天堂√8在线中文| 黄色成人免费大全| 在线av久久热| 日韩三级视频一区二区三区| 黄色成人免费大全| 性欧美人与动物交配| 欧美激情极品国产一区二区三区| 日本成人三级电影网站| 免费看日本二区| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲精品久久久久久毛片| 亚洲欧美精品综合久久99| 成人亚洲精品一区在线观看| 亚洲精品在线美女| 99热这里只有精品一区 | 天天躁狠狠躁夜夜躁狠狠躁| 日日爽夜夜爽网站| 亚洲精品久久国产高清桃花| 一级a爱片免费观看的视频| 一级毛片高清免费大全| 嫁个100分男人电影在线观看| 18禁黄网站禁片免费观看直播| 久久久久久久久中文| 久久午夜亚洲精品久久| 男女做爰动态图高潮gif福利片| 成人永久免费在线观看视频| 亚洲成人久久爱视频| 99热只有精品国产|