• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Disturbed Constitutive Approach to Heat Transfer of Non-Newtonian Nanofluid Flow

    2016-11-04 09:07:57HANShifangWUYueqingXIAOFan
    關(guān)鍵詞:牛頓流體本構(gòu)牛頓

    HAN Shifang, WU Yueqing, XIAO Fan

    (Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu 610041, China)

    ?

    Disturbed Constitutive Approach to Heat Transfer of Non-Newtonian Nanofluid Flow

    HAN Shifang, WU Yueqing, XIAO Fan

    (Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu 610041, China)

    The non-Newtonian fluid flow theory is applied to study nanofluid motion which is considered as a new concept non-Newtonian fluid. Due to gliding motion of nano particles with respect to basic flow and thermal diffusion disturbed flow caused by random motion of nano-particles, the new concept non-Newtonian fluid is considered as a nearly basic flow, which is generalized by a slightly rotation of basic flow of one phase fluid with respect to the 1,2,3 axes of the Cartesian coordinate system. As an important application of the developed disturbed constitutive theory, the two dimensional thermal flow of nanofluid between two infinite planes is studied. The flow between two infinite planes is treaded as a flow with dominating extension. The developed disturbed constitutive theory can be used for the thermal nanofluid flow.

    thermal nanofluid flow; new concept non-Newtonian fluid; disturbed constitutive equation; flow with dominating extension ; computational symbolic manipulation

    INTRODUCTION

    Presented investigation is a new attempt to apply non-Newtonian fluid flow theory to study nanofluid motion which is considered as a new concept non-Newtonian fluid[1-3].In the present paper non-Newtonian thermal nanofluid flow is studied by disturbed constitutive approach. The disturbed constitutive equation theory for non-Newtonian fluid flow stability is generalized to study thermal nanofluid motion.The attempt is presented to extend principles in research on non-Newtonian fluid flow and rheology[4-5]to study nanofluid motion. In research on energy transfer theory of nanofluid two main approaches were reported[1]:one phase fluid approach and perturbation model for nanofluid. As first approximation the nanofluid can be considered as one phase fluid of uniform mixing. The one phase approach has been well used now by few authors for investigation on nanofluid heat transfer[6-9].Under assumptions that there exit no slip motion between the basic fluid and the dispersed fine particles,also thermal equilibrium between nanoparticles and the fluid is not important,the nanofluid can be treaded as one phase fluid. In general case Brownian force, friction force between fluid and particles, Brownian diffusion, sedimentation, dispersion may coexist in the basic flow of nanofluid.A gliding velocity between fluid and particles may not be zero. Due to the gliding motion of nanoparticles with respect to basic fluid and thermal diffusion the disturbances in velocity and temperature are caused by random motion of nanoparticles. Otherwise the suspended solid particles increase the thermal conductivity of the two phase mixture. Perturbation approach for nanofluid is developed on the base of one phase fluid with correction due small disturbance of nano-particles in nanofluid[1,10].

    In non-Newtonian fluid investigation a concept of nearly extensional flow was proposed by Huilgol[11].Han and Becker have extended the concept to study disturbed constitutive theory and stability of the fluid flow[4-5,12-19]. According to disturbed constitutive theory of Han and Becker the disturbed extensional flow can be considered as a nearly extensional flow, or nearly basic flow, which is generalized by a slightly rotation of basic flow with respect to the 1,2,3 axes of the Cartesian coordinate system. The theoretical approach will be now extended to study nanofluid motion. A new concept of nearly basic nanofluid flow is introduced and an original approach - disturbed constitutive approach is developed to study the nanofluid flow. A disturbed flow caused by random motion of nano-particles can be considered as nearly basic flow or nearly one phase fluid flow, which is generalized by a slightly rotation of basic flow of one phase fluid with respect to the 1,2,3 axes of the Cartesian coordinate system. An important application of the developed disturbed constitutive theory two dimensional thermal flow between two infinite planes will be studied. Following the investigation of Zahorski[20-21], the flow between two infinite planes will be considered as a flow with dominating extension, the developed disturbed constitutive theory can be available for the two dimensional nanofluid thermal flow.

    1 Disturbed Constitutive theory For Nanofluid Flow

    In research on suspension theory Betchelor has developed an ensemble average approach to study the stress system in a suspension of force free particles, Based on the theory for the viscosity of dilute suspension of rigid spheres a constitutive equation can be viewed as a single phase

    (1)

    wher φ-volume fraction of solid particles in nanofluid. The improved Einstein model is given as

    where:ηeff-effective viscosity of two phase fluid, ηf-apparent viscosity of fluid. This is the Einstein result for the viscosity of a suspension of dilute rigid spheres.

    Brinkman model is used in research on nanofluid flow[6-9], which is given as

    (2)

    On the basis of above results the non-Newtonian simple fluid in sense of Noll and Coleman is generalized for nanofluid, the constitutive equation of which is given as

    (3)

    where Π- generalized stress tensor for simple nanofluid, S-stress tensor for basic simple fluid, Ψ(φ)-nano-constitutive function.

    A series of experimental results showed[1]that the viscosity and thermal conductivity of nanofluid are mainly functions of volume fraction of solid particles φ in it, meanwhile for the viscosity of a dilute suspension of rigid spheres the Einstein, improved and Brickman functions are used for one phase fluid model on the basis of which a nano-constitutive function ψ(φ) is introduced in constitutive equation (3) to characterize the special property of two phase nature of nanofluid:

    ψ(φ)→1, when φ→0

    The nano-constitutive function ψ(φ) is more complex one which depends not only mainly on volume fraction of solid particles φ, but also on particle's diameter, shape, temperature and so on. The present paper is limited to study influence of the main factor -volume fraction of solid particles φ.

    The equation (3) is generalized simple fluid for nanofluid. For a sufficiently small disturbance , the disturbance stress is a linear functional of the disturbance part of the right Cauchy strain tensor. Hence, the functional in (3) has an integral representation

    (4)

    where k1、k2、k3-kinematic parameters of flow. The concept of short memory is generalized for the magnetic nanofluid too, this means that the kernel functions in above integral expansion are of Maxwell character, the first term of right Cauchy tensor can be expressed by

    (5)

    (6)

    where

    (7)

    The disturbed constitutive equation (6) can be reduced to

    (8)

    where

    The disturbed constitutive equation theory will be developed to study nanofluid motion. Due to gliding motion of nano particles with respect to basic flow and thermal diffusion a disturbed flow caused by random motion of nano-particles is considered as a nearly basic flow, which is generalized by a slightly rotation of basic flow of one phase fluid with respect to the 1,2,3 axes of the Cartesian coordinate system. The rotation matrix is denoted by δQ

    (9)

    where the δα1, δα2, δα3are small rotation angles. The nearly basic flow can be considered a small disturbance of the basic flow.

    For the perturbation nanofluid fluid the disturbed Rivlin Ericksen tensor and extra stress tensor are assumed to be of

    (10)

    The disturbance flow is created by the following two factors:

    (1) Slightly rotation of basic flow of one phase nanofluid with respect to the 1,2,3 axes of the Cartesian coordinate system;

    (2) Variation in kinematic parameters k1, k2, k3of nanofluid flow .

    The disturbance Rivlin Ericksen tensor and extra stress tensor are determined by following equations:

    (11)

    The extensional flow of nanofluid is studied, velocity field of which is given as

    v1=k1x1,v2=k2x3,v3=k3x3

    (12)

    where k1, k2, k3are constant elongation rates in 1,2,3 axes. When the incompressible fluid is considered the relationship of incompressibility is satisfied. But for more general case the condition of incompressibility does not satisfy, the nano-fluid should be compressible one which will be studied

    k1+k2+k3≠0

    For basic flow the first Rivlin-Ericksen tensor and the stress tensor are given by

    (13)

    The disturbance Rivlin Ericksen tensor and extra stress tensor are determined by equation (11). Inserting the obtained expressions into equation (8) and taking account of the fact that the δk1, δk2, δk3, δa1, δk2, δk3, can be varied independently, a sufficient number of linear eqns. are obtained which uniquely determine the 36 coefficients kisin equation (8). The result is given.

    For the simple incompressible nano-fluid the disturbed stress tensor is reduced to

    δk1,δk2,δk3,δα1,δα2,δα3can be varied

    (14)

    As an application of the developed disturbed constitutive equation the motion of a stretching sheet of nanofluid will be considered.

    2 Thermal flow of nanofluid

    An important application of the developed disturbed constitutive theory the Poiseuille thermal flow will be studied. The thermal nanofluid flow is a flow between two infinite planes with distance of 2h. Following the investigation of Zahorski, the flow between two infinite planes will be considered as an evolution of some stretching motion, i.e. as a flow with dominating extension, thereby the above developed disturbed constitutive theory can be available for the two dimensional thermal flow. The velocity field is given. Neglecting inertia in governing equations and taking account of the velocity field the motion equation and energy equation are simplified.

    For the nanofluid the Maxwell fluid can be considered as a carrier liquid, the total velocity of the nanofluid is split into two parts; basic Maxwell fluid and nano-disturbed flow. For upper-convected Maxwell fluid the disturbance stress component is given by the disturbed constitutive theory.The following dimensionless variables are introduced

    (15)

    (16)

    where Tm-average temperature of nanofluid flow, Tw-wall temperature at the boundary. For steady process the energy equation is finally reduced to

    (17)

    The improved Kantorovich variational approach is used to solve equation (17). A series of shape functions is proposed which is given as

    (18)

    The following operator is defined

    (19)

    The approximate solution is assumed to be of

    T(ξ,η)=(1-η4)φ1(ξ)+(1-η4)η2φ2(ξ)…

    (20)

    Using the improved Kantorovich approach[4-5] the following integral relationship is satisfied

    ∫L(Tk)(1-η4)η2(k-1)dηδφkdξ=0

    k=1,2…

    (21)

    The expression of the temperature of 2nd approximation will be following

    (22)

    In general case the average temperature Tmis calculated by a special form which is a constant for definite ξ

    (23)

    When the ξ is enough great the temperature field is fully developed Tm. The average temperature can be considered as a constant with respect to ξ. The Nusselt number can be simplified as following

    (24)

    Figure 1flow between two infinite planes

    Figure 4Change of Nusselt number Nu with dimensionless distance ξ for second approximation of heat transfer theory Br=100,A0=0.4,Pr=1.0,λ1=2.51713091

    Results and Conclusions

    As an important application of the developed disturbed constitutive theory the two dimensional thermal nanofluid flow between two infinite planes is investigated. The flow between two infinite planes is simulated as a flow with dominating extension, the disturbed constitutive theory has been utilized for the thermal nanofluid flow. Using the improved variational Kantorovich method and the computer software Maple 16 artificial analytical solution of the thermal nanofluid flow is obtained.

    Base on the disturbed constitutive theory and using the improved Kantorovich variational approach the results of nanofluid thermal flow between two infinite planes are shown by Figs. Figure 4 shows change of Nusselt number Nu with dimensionless distance ξ for second approximation. The changes of Nusselt number Nu with volume fraction of solid particles for nanofluid flow are shown by Figs. 5 to 6 for nano-constitutive functions: Einstein model, and improved Einstein model respectively. As the experiments showed that the tendency of function Ψ(φ) is in agreement with the one phase fluid functions thereby in calculation one phase fluid models such as the Einstein , improved Einstein functions were used. It can be seen from the Figures , that The changes of Nusselt number Nu increase with the volume fraction of solid particles for nanofluid flow, it means that the suspended fine particles considerably increase the thermal conductivity of the mixture and improve the thermal capability of energy exchange equipment. The New concept non-Newtonian fluid theory, i.e. the disturbed constitutive equation theory has been successfully extended to study thermal nanofluid motion.

    [1] XUAN Yimin,LI Qiang.Energy transfer theory of nano-fluid and application[M].Beijing:Science Press,2010.(in Chinese).

    [2] LEE S P,CHOU S,LI S,et al.Measuring thermal conductivity of fluids containing oxide nanoparticles[J].Journal of Heat Transfer,1999,121(2):280-289.

    [3] XUAN Y,LI Q.Heat transfer enhancement of nanofluids[J]. International Journal of Heat Fluid Flow 2000,21(1):158-164.

    [4] HAN Shifang.Constitutive equation and computational analytical theory of Non-Newtonian Fluids[M].Beijing:Science Press,2000.(in Chinese)

    [5] HAN Shifang.Continuum mechanics of anisotropic non-Newtonian fluids - Rheology of liquid crystalline polymer[M].Beijing:Science Press,2008.(in Chinese)

    [6] XUAN Y,ROETZEL W.Conception for heat transfer correlation of nanofluids[J].International Journal of heat and mass transfer,2000,43(19):3701-3707.

    [7] HAMAD M A A,Fenlows M.Similarity solutions to viscous flow and heat transfer of nanofluid over nonlinearly stretching sheet[J].Applied Mathematics and Mechanics,2012,33(7):868-876.

    [8] AMINOSSADATI S M,CHASEMI B.Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure[J].European Journal of Mechanics-B/fluids,2009,28(5):630-640.

    [9] HAMAD M A A.Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field[J].International communications in heat and mass transfer,2011,38(4):487-492.

    [10] KAVIANY M.Principle of Heat Transfer in Porous Media[M].Berlin:Springer,1995.

    [11] HUILGOL R R.Nearly extensional flows[J].Journal of Non-Newtonian Fluid Mechanics,1979,5:219-231.

    [12] BECKER E.Bemerkugen zur Instabilitaet der Stroemung nicht-newtonscher Fluessigkeiten[J].Zamm Journal of Applied Mathematics & Mechanics Zeitschrift Fur Angewandte Mathematik Und Mechanik,1983,63:43-48.

    [13] HAN S F,BECKER E.Hydrodynamic instability of extensional flow[J].Rheologica Acta,1983,22(22):521-527.

    [14] HAN Shifang.Stability of extensional flow and extending viscoelastic fluid sheets[J].Journal of Non-Newtonian Fluid Mechanics,1984,15(2):181-197.

    [15] HAN Shifang.On the stability of extensional flow[J].Chemical Engineering Communications,1985,32(1):307-329.

    [16] HAN Shifang.Instability of extensional flow of non-Newtonian fluid flow[J].Zeitschrift fur Angewandte Mathematik und Mechanik,1985,65(4):199-202.

    [17] HAN Shifang.2008,Stability of shear-extensional flow in film extrusion of liquid crystalline polymer-anisotropic viscoelastic fluid[C]//Proc.of XVth International Congress on Rheology,California,August 3-8,2008:126-128.

    [18] HAN Shifang.A stability of multiaxial extensional flow of non-Newtonian fluid sheets[C]//Proc.Ot 10th Intern. Congress on Rheology,Sydney,1988:380-382.

    [19] HAN Shifang.Disturbed constitutive equation and instability of extensional flow of viscoelastic fluids[J].Acta Mechanica Sinica,1993,9(2):213-217.(in Chinese)

    [20] ZAHORSKI S.Flows in converging slits and pipes as flows with dominating extensions[J].Engineering Transactions,1988,36(3)563-574.

    [21] ZAHORSKI S.Axially symmetric squeezed films as viscoelastic flows with dominating extensions[J].Engineering Transactions,1986,34(1-2):181-196.

    2016-03-31

    國家自然科學(xué)基金資助項(xiàng)目(10772177;19832050 (重點(diǎn)))

    韓式方(1935-),男,教授,湖南湘潭人,主要從事流體力學(xué)、流變學(xué)等方面的研究,(E-mail)sfh5578@sina.com

    1673-1549(2016)03-0027-06

    TB115

    A

    擾動本構(gòu)方法研究非牛頓納米流體傳熱流動

    韓式方, 伍岳慶, 肖帆

    (中國科學(xué)院成都計算機(jī)應(yīng)用研究所, 成都610041)

    將非牛頓流體力學(xué)理論及其方法推廣應(yīng)用于建立納米流體-新概念非牛頓流體擾動本構(gòu)方程,并研究其傳熱流動。韓式方發(fā)展了有特色的非牛頓流體擾動本構(gòu)理論,并成功地應(yīng)用于研究非牛頓流動穩(wěn)定性,可以應(yīng)用于非牛頓流動研究。將非牛頓流體擾動本構(gòu)理論推廣至建立新的納米流體微擾動模型,對單相流體模型進(jìn)行微擾動修正。納米流體強(qiáng)化熱交換機(jī)制:懸浮粒子增加二相混合體的熱傳導(dǎo)率;極細(xì)粒子隨機(jī)運(yùn)動,熱耗散加速流體中能量轉(zhuǎn)換過程。在新的納米流體擾動本構(gòu)方程基礎(chǔ)上。研究了納米流體傳熱流動,其結(jié)果表明,Nusselt 數(shù)隨納米粒子的體積分?jǐn)?shù)的增加而增加,其趨勢與實(shí)驗(yàn)結(jié)果一致,表明本理論方法是合理的,可以推廣于應(yīng)用一系列納米流體流動問題。

    熱流體流; 新概念非牛頓流體; 擾動本構(gòu)方程; 擴(kuò)展流動; 計算符號處理

    10.11863/j.suse.2016.03.07

    猜你喜歡
    牛頓流體本構(gòu)牛頓
    非牛頓流體
    離心SC柱混凝土本構(gòu)模型比較研究
    牛頓忘食
    什么是非牛頓流體
    少兒科技(2019年3期)2019-09-10 07:22:44
    區(qū)別牛頓流體和非牛頓流體
    鋸齒形結(jié)構(gòu)面剪切流變及非線性本構(gòu)模型分析
    一種新型超固結(jié)土三維本構(gòu)模型
    風(fēng)中的牛頓
    首款XGEL非牛頓流體“高樂高”系列水溶肥問世
    失信的牛頓
    精品一区二区三区人妻视频| 国产av国产精品国产| 少妇猛男粗大的猛烈进出视频 | 欧美成人精品欧美一级黄| 中文字幕久久专区| 美女脱内裤让男人舔精品视频| 日韩欧美精品v在线| 男女边吃奶边做爰视频| 国内精品宾馆在线| 成人综合一区亚洲| 国产高潮美女av| 26uuu在线亚洲综合色| 国产男人的电影天堂91| 大香蕉97超碰在线| 欧美97在线视频| 黄色日韩在线| 我的女老师完整版在线观看| av国产久精品久网站免费入址| 国产精品蜜桃在线观看| 亚洲成色77777| av国产免费在线观看| 舔av片在线| 国产美女午夜福利| 久久精品熟女亚洲av麻豆精品 | 免费观看无遮挡的男女| 成年av动漫网址| 午夜精品一区二区三区免费看| 成人亚洲欧美一区二区av| 3wmmmm亚洲av在线观看| 午夜福利视频精品| 久久久久久久久久久丰满| 大香蕉久久网| 日本午夜av视频| 超碰av人人做人人爽久久| 狂野欧美白嫩少妇大欣赏| 免费人成在线观看视频色| 日本-黄色视频高清免费观看| 九九久久精品国产亚洲av麻豆| 69人妻影院| 成人二区视频| 成人亚洲精品一区在线观看 | 成年版毛片免费区| 少妇丰满av| 日日干狠狠操夜夜爽| 亚洲精品久久久久久婷婷小说| 免费av毛片视频| 91精品伊人久久大香线蕉| 欧美 日韩 精品 国产| 内射极品少妇av片p| 国产黄频视频在线观看| 亚洲欧美日韩卡通动漫| 日日啪夜夜爽| 亚洲av日韩在线播放| 亚洲自偷自拍三级| 国产麻豆成人av免费视频| 中文在线观看免费www的网站| av福利片在线观看| 亚洲av福利一区| 亚洲av免费高清在线观看| 久久久a久久爽久久v久久| 在线a可以看的网站| 久久这里只有精品中国| 99久久精品国产国产毛片| 真实男女啪啪啪动态图| 一区二区三区高清视频在线| 一级毛片电影观看| 久久久久性生活片| 久久久欧美国产精品| av网站免费在线观看视频 | 又爽又黄a免费视频| 久久久久久久久久人人人人人人| av又黄又爽大尺度在线免费看| 午夜福利视频1000在线观看| 亚洲av中文字字幕乱码综合| 22中文网久久字幕| 国产精品女同一区二区软件| 特大巨黑吊av在线直播| 亚洲经典国产精华液单| 五月玫瑰六月丁香| 久久久久性生活片| 国产黄片美女视频| 又粗又硬又长又爽又黄的视频| 在现免费观看毛片| 欧美高清成人免费视频www| 久久久午夜欧美精品| 乱人视频在线观看| 午夜精品国产一区二区电影 | 成人毛片60女人毛片免费| 国产国拍精品亚洲av在线观看| 能在线免费观看的黄片| 亚洲性久久影院| 美女主播在线视频| 毛片一级片免费看久久久久| 亚洲第一av免费看| 亚洲av国产av综合av卡| 两个人看的免费小视频| 国产无遮挡羞羞视频在线观看| 十八禁网站网址无遮挡| 色婷婷av一区二区三区视频| 欧美日韩精品网址| 久久久久精品人妻al黑| 桃花免费在线播放| 最近2019中文字幕mv第一页| 日本黄色日本黄色录像| 菩萨蛮人人尽说江南好唐韦庄| videossex国产| 免费黄频网站在线观看国产| 大话2 男鬼变身卡| 美女xxoo啪啪120秒动态图| 久久人人爽人人片av| 尾随美女入室| 精品久久久久久电影网| 在线 av 中文字幕| 国产精品二区激情视频| 成人国产av品久久久| 亚洲三区欧美一区| 日韩熟女老妇一区二区性免费视频| 国产国语露脸激情在线看| 美国免费a级毛片| 巨乳人妻的诱惑在线观看| 交换朋友夫妻互换小说| 看免费av毛片| 欧美精品高潮呻吟av久久| 亚洲一码二码三码区别大吗| 久久久久久久精品精品| 亚洲欧美色中文字幕在线| 国产成人精品久久二区二区91 | 国产免费视频播放在线视频| 波多野结衣av一区二区av| 亚洲精品aⅴ在线观看| 国产精品 欧美亚洲| 一边摸一边做爽爽视频免费| 色94色欧美一区二区| 亚洲精品乱久久久久久| 一区二区三区激情视频| 成人亚洲欧美一区二区av| 国产男人的电影天堂91| 美女视频免费永久观看网站| 你懂的网址亚洲精品在线观看| 啦啦啦在线观看免费高清www| 黄色视频在线播放观看不卡| 亚洲中文av在线| 色吧在线观看| 麻豆精品久久久久久蜜桃| 不卡视频在线观看欧美| 成年女人毛片免费观看观看9 | 搡老乐熟女国产| 如何舔出高潮| 亚洲成人av在线免费| 在线观看三级黄色| 如何舔出高潮| 丝袜美腿诱惑在线| 成人18禁高潮啪啪吃奶动态图| 婷婷成人精品国产| 亚洲第一区二区三区不卡| 夫妻午夜视频| 韩国精品一区二区三区| 婷婷色麻豆天堂久久| 看免费av毛片| 国产精品香港三级国产av潘金莲 | 电影成人av| 久久热在线av| 久久精品国产亚洲av天美| 日本-黄色视频高清免费观看| 精品一区在线观看国产| 十八禁高潮呻吟视频| 纵有疾风起免费观看全集完整版| 久久热在线av| 亚洲三级黄色毛片| 国产 一区精品| videossex国产| 午夜免费观看性视频| 日本av免费视频播放| 精品人妻熟女毛片av久久网站| 亚洲国产av影院在线观看| 国产精品熟女久久久久浪| h视频一区二区三区| 亚洲精品久久久久久婷婷小说| 亚洲精品av麻豆狂野| 午夜福利视频在线观看免费| freevideosex欧美| 人妻人人澡人人爽人人| 中文字幕人妻丝袜一区二区 | 美国免费a级毛片| 国产精品国产av在线观看| 欧美日韩一级在线毛片| 亚洲av免费高清在线观看| 亚洲视频免费观看视频| 国产麻豆69| av女优亚洲男人天堂| 亚洲欧美成人精品一区二区| 亚洲精品乱久久久久久| 国产一级毛片在线| 91午夜精品亚洲一区二区三区| 国精品久久久久久国模美| 午夜影院在线不卡| 欧美bdsm另类| 免费日韩欧美在线观看| 不卡视频在线观看欧美| 高清av免费在线| 黄色 视频免费看| 永久网站在线| 观看美女的网站| 久久久a久久爽久久v久久| 午夜日本视频在线| 中文字幕精品免费在线观看视频| 免费大片黄手机在线观看| 啦啦啦在线观看免费高清www| 老汉色∧v一级毛片| 免费女性裸体啪啪无遮挡网站| 两个人看的免费小视频| 精品一品国产午夜福利视频| av免费在线看不卡| 在线免费观看不下载黄p国产| av有码第一页| 久久久久久久久免费视频了| 亚洲国产看品久久| 国产一区二区在线观看av| 国产精品99久久99久久久不卡 | 性少妇av在线| 成人二区视频| 亚洲欧美精品自产自拍| 国产成人免费无遮挡视频| 一区二区日韩欧美中文字幕| 女人精品久久久久毛片| 少妇熟女欧美另类| 在线天堂中文资源库| 国产精品 国内视频| av又黄又爽大尺度在线免费看| 99香蕉大伊视频| 黄色毛片三级朝国网站| 亚洲精品在线美女| 黄色配什么色好看| 亚洲国产av新网站| 久久韩国三级中文字幕| videos熟女内射| 永久免费av网站大全| 中国三级夫妇交换| √禁漫天堂资源中文www| 国产在视频线精品| 国产精品麻豆人妻色哟哟久久| 国产av一区二区精品久久| 久久久亚洲精品成人影院| 欧美中文综合在线视频| 日本欧美国产在线视频| 97在线人人人人妻| 亚洲成色77777| 七月丁香在线播放| 91精品国产国语对白视频| 亚洲成人一二三区av| 两个人免费观看高清视频| 色网站视频免费| av福利片在线| 国产精品女同一区二区软件| 91精品国产国语对白视频| 男人舔女人的私密视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 宅男免费午夜| 精品人妻偷拍中文字幕| xxx大片免费视频| 好男人视频免费观看在线| 自线自在国产av| 十分钟在线观看高清视频www| 亚洲av.av天堂| 久久午夜福利片| 午夜精品国产一区二区电影| 亚洲人成网站在线观看播放| 高清黄色对白视频在线免费看| 免费不卡的大黄色大毛片视频在线观看| 99久久综合免费| 纯流量卡能插随身wifi吗| 另类精品久久| 国产精品免费视频内射| 日韩电影二区| 亚洲欧美精品自产自拍| 日韩三级伦理在线观看| 亚洲av免费高清在线观看| 欧美精品高潮呻吟av久久| 一级毛片黄色毛片免费观看视频| 日韩一卡2卡3卡4卡2021年| 亚洲色图综合在线观看| 天天躁夜夜躁狠狠躁躁| 久久久久精品人妻al黑| 2022亚洲国产成人精品| 国产高清国产精品国产三级| 韩国高清视频一区二区三区| 亚洲人成网站在线观看播放| 亚洲激情五月婷婷啪啪| 熟女少妇亚洲综合色aaa.| 亚洲精品日本国产第一区| 免费少妇av软件| 久久免费观看电影| av国产精品久久久久影院| 亚洲精品久久成人aⅴ小说| 欧美激情高清一区二区三区 | 精品人妻偷拍中文字幕| 亚洲精品国产色婷婷电影| 亚洲欧美日韩另类电影网站| 国产伦理片在线播放av一区| 91国产中文字幕| 日本爱情动作片www.在线观看| 欧美 日韩 精品 国产| 国产成人一区二区在线| 极品人妻少妇av视频| 国产片特级美女逼逼视频| 亚洲精品久久成人aⅴ小说| 如日韩欧美国产精品一区二区三区| 大片免费播放器 马上看| 亚洲三级黄色毛片| 这个男人来自地球电影免费观看 | 一本色道久久久久久精品综合| 日本欧美国产在线视频| 精品一品国产午夜福利视频| a级毛片在线看网站| av一本久久久久| 女的被弄到高潮叫床怎么办| av有码第一页| 色吧在线观看| av女优亚洲男人天堂| 一级爰片在线观看| 精品国产乱码久久久久久男人| 午夜激情久久久久久久| 九色亚洲精品在线播放| 国产日韩欧美在线精品| 一级片免费观看大全| 国产亚洲最大av| 亚洲成人一二三区av| 国产精品一区二区在线观看99| 日韩大片免费观看网站| 一本大道久久a久久精品| 国产精品麻豆人妻色哟哟久久| 亚洲激情五月婷婷啪啪| 亚洲 欧美一区二区三区| 亚洲精品一区蜜桃| 免费观看av网站的网址| 久久久久久伊人网av| 春色校园在线视频观看| 一区福利在线观看| 免费高清在线观看视频在线观看| 人人妻人人添人人爽欧美一区卜| 国产一级毛片在线| 黄色一级大片看看| 菩萨蛮人人尽说江南好唐韦庄| 天天躁日日躁夜夜躁夜夜| 国产伦理片在线播放av一区| 十分钟在线观看高清视频www| 在线观看www视频免费| 熟女电影av网| 成人影院久久| 欧美亚洲日本最大视频资源| 午夜免费男女啪啪视频观看| 国产精品一国产av| 久久午夜福利片| 国产成人精品一,二区| 国产成人精品无人区| 97在线视频观看| 蜜桃国产av成人99| 免费观看av网站的网址| 青春草亚洲视频在线观看| 一区二区三区激情视频| 欧美日本中文国产一区发布| 日本vs欧美在线观看视频| 欧美日韩精品网址| 十八禁网站网址无遮挡| 两性夫妻黄色片| 久久午夜福利片| 成人午夜精彩视频在线观看| 亚洲美女视频黄频| 曰老女人黄片| 国产精品二区激情视频| av片东京热男人的天堂| 九色亚洲精品在线播放| 国产成人精品福利久久| 精品国产一区二区久久| av不卡在线播放| 高清视频免费观看一区二区| 最新中文字幕久久久久| 下体分泌物呈黄色| 日本黄色日本黄色录像| 美女国产视频在线观看| 国产精品一二三区在线看| 中文字幕人妻丝袜制服| 黄片播放在线免费| 91成人精品电影| 最新的欧美精品一区二区| 在线观看免费高清a一片| 久久精品熟女亚洲av麻豆精品| 波多野结衣一区麻豆| 午夜日韩欧美国产| 国产精品香港三级国产av潘金莲 | 久久久久久久国产电影| 美女脱内裤让男人舔精品视频| 男女国产视频网站| 纯流量卡能插随身wifi吗| 久久99一区二区三区| 久久精品久久精品一区二区三区| 伊人久久大香线蕉亚洲五| 国产有黄有色有爽视频| 两个人看的免费小视频| 国产在线一区二区三区精| 欧美亚洲 丝袜 人妻 在线| 9191精品国产免费久久| 国产又色又爽无遮挡免| 成人国语在线视频| 不卡av一区二区三区| 中文字幕人妻丝袜一区二区 | 99热网站在线观看| 在线免费观看不下载黄p国产| 欧美老熟妇乱子伦牲交| 一区二区三区精品91| 国语对白做爰xxxⅹ性视频网站| 在线精品无人区一区二区三| 精品久久蜜臀av无| 亚洲综合精品二区| 亚洲三级黄色毛片| 欧美bdsm另类| 嫩草影院入口| 久久精品国产a三级三级三级| 亚洲av国产av综合av卡| 午夜福利视频精品| 欧美老熟妇乱子伦牲交| 美女国产视频在线观看| 麻豆精品久久久久久蜜桃| 亚洲欧美一区二区三区黑人 | 久久精品aⅴ一区二区三区四区 | 咕卡用的链子| 少妇的逼水好多| 亚洲美女视频黄频| 少妇熟女欧美另类| 黑丝袜美女国产一区| 午夜免费鲁丝| 亚洲欧美色中文字幕在线| 亚洲欧美精品综合一区二区三区 | 一区在线观看完整版| 免费在线观看视频国产中文字幕亚洲 | 成人18禁高潮啪啪吃奶动态图| 日日啪夜夜爽| 国产精品成人在线| 国产精品嫩草影院av在线观看| 日韩,欧美,国产一区二区三区| 最新中文字幕久久久久| 日韩一区二区三区影片| 大话2 男鬼变身卡| 久久午夜福利片| 亚洲成av片中文字幕在线观看 | 女性被躁到高潮视频| 女人久久www免费人成看片| 高清av免费在线| 亚洲伊人色综图| 亚洲美女黄色视频免费看| 国产 精品1| 久久女婷五月综合色啪小说| 天美传媒精品一区二区| 考比视频在线观看| 国产精品人妻久久久影院| 国产深夜福利视频在线观看| 欧美人与性动交α欧美精品济南到 | 亚洲精品国产av成人精品| 日产精品乱码卡一卡2卡三| 亚洲欧美一区二区三区久久| 美女午夜性视频免费| 免费播放大片免费观看视频在线观看| 黄网站色视频无遮挡免费观看| av网站免费在线观看视频| av天堂久久9| 国产淫语在线视频| 99久久中文字幕三级久久日本| 中文字幕亚洲精品专区| av在线观看视频网站免费| 97人妻天天添夜夜摸| 欧美最新免费一区二区三区| 日日爽夜夜爽网站| 18+在线观看网站| 高清av免费在线| 国产日韩欧美亚洲二区| 最新中文字幕久久久久| 另类精品久久| 日产精品乱码卡一卡2卡三| 亚洲国产色片| 人体艺术视频欧美日本| 啦啦啦中文免费视频观看日本| 国产成人精品一,二区| 日日撸夜夜添| 久久精品国产亚洲av天美| 99热国产这里只有精品6| 黄网站色视频无遮挡免费观看| 国产精品 国内视频| 亚洲一区中文字幕在线| 99国产综合亚洲精品| 午夜日韩欧美国产| 国产一区二区激情短视频 | 青青草视频在线视频观看| 少妇的逼水好多| 亚洲精品国产一区二区精华液| av在线app专区| 最黄视频免费看| 狂野欧美激情性bbbbbb| 男的添女的下面高潮视频| 老司机亚洲免费影院| 国产高清不卡午夜福利| 久久韩国三级中文字幕| www.av在线官网国产| 亚洲精品久久午夜乱码| 人人妻人人爽人人添夜夜欢视频| 国产视频首页在线观看| 一区二区日韩欧美中文字幕| 国产一区亚洲一区在线观看| 91成人精品电影| 性少妇av在线| 久久精品国产a三级三级三级| 久久久久精品久久久久真实原创| 老汉色∧v一级毛片| 91国产中文字幕| 热re99久久精品国产66热6| 2022亚洲国产成人精品| 777久久人妻少妇嫩草av网站| 永久网站在线| 亚洲欧美清纯卡通| 99国产综合亚洲精品| 亚洲国产欧美网| 久久久国产精品麻豆| 久久影院123| 欧美老熟妇乱子伦牲交| 一级毛片电影观看| 80岁老熟妇乱子伦牲交| 日本猛色少妇xxxxx猛交久久| 巨乳人妻的诱惑在线观看| 成人国语在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品秋霞免费鲁丝片| 老熟女久久久| 极品人妻少妇av视频| av在线app专区| xxx大片免费视频| 日韩电影二区| 亚洲欧美成人综合另类久久久| 久久久国产一区二区| 女人高潮潮喷娇喘18禁视频| 亚洲国产av影院在线观看| 熟妇人妻不卡中文字幕| 最新中文字幕久久久久| 亚洲成人一二三区av| 欧美日韩视频精品一区| 91久久精品国产一区二区三区| 高清欧美精品videossex| 欧美日韩一区二区视频在线观看视频在线| 高清欧美精品videossex| 亚洲第一区二区三区不卡| 亚洲国产精品成人久久小说| 最新的欧美精品一区二区| 黄色 视频免费看| 日本wwww免费看| 欧美av亚洲av综合av国产av | 18禁裸乳无遮挡动漫免费视频| 精品国产一区二区三区四区第35| 日韩三级伦理在线观看| 日韩视频在线欧美| 大片电影免费在线观看免费| 蜜桃在线观看..| xxxhd国产人妻xxx| 美女高潮到喷水免费观看| 午夜日韩欧美国产| 成人亚洲精品一区在线观看| 久久午夜福利片| 国产有黄有色有爽视频| 亚洲四区av| 满18在线观看网站| 欧美日韩av久久| 国产福利在线免费观看视频| 9热在线视频观看99| 亚洲av电影在线进入| 一本久久精品| 日本-黄色视频高清免费观看| 老司机亚洲免费影院| av网站免费在线观看视频| 一级a爱视频在线免费观看| 亚洲一区二区三区欧美精品| 精品少妇一区二区三区视频日本电影 | 日韩免费高清中文字幕av| xxx大片免费视频| 美女午夜性视频免费| 一级毛片电影观看| 国产毛片在线视频| 久久久久久久精品精品| 欧美激情极品国产一区二区三区| av卡一久久| 99精国产麻豆久久婷婷| 亚洲四区av| 久久久亚洲精品成人影院| 三级国产精品片| 日本av免费视频播放| 如何舔出高潮| 精品国产一区二区久久| 男女午夜视频在线观看| 大码成人一级视频| 精品一品国产午夜福利视频| av一本久久久久| 精品人妻熟女毛片av久久网站| 高清不卡的av网站| 精品国产乱码久久久久久男人| 男人爽女人下面视频在线观看| 亚洲精品自拍成人| 999精品在线视频| 日本vs欧美在线观看视频| 欧美av亚洲av综合av国产av | 啦啦啦在线观看免费高清www| 丁香六月天网| 大片电影免费在线观看免费| 1024香蕉在线观看| 亚洲 欧美一区二区三区| 欧美最新免费一区二区三区| 欧美国产精品va在线观看不卡| 欧美精品一区二区大全| 久久久精品区二区三区| 最新中文字幕久久久久|