• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Contact force and mechanical loss of multistage cable under tension and bending

    2016-11-04 08:53:41YanyunRuHuadongYongYouheZhou
    Acta Mechanica Sinica 2016年5期

    Yanyun Ru·Huadong Yong·Youhe Zhou

    ?

    RESEARCH PAPER

    Contact force and mechanical loss of multistage cable under tension and bending

    Yanyun Ru1·Huadong Yong1·Youhe Zhou1

    A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper.We solve the problem for the first-and second-stage cable with tensile or bending strain.The contactand friction forces between the strands are presented by two-dimensional contact model.Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain,including contact force,contact stresses,and mechanical loss.It is found that loadings will affect the friction force and the mechanical loss of the triplet.The results show that the contact force and mechanical loss are dependent on the twist pitch.A shorter twist pitch can lead to higher contact force,while the trend of mechanical loss with twist pitch is complicated.The mechanical loss may be reduced by adjusting the twist pitch reasonably.The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.

    Contact force·Friction force·Tension· Bending·Mechanical loss

    ? Huadong Yong yonghd@lzu.edu.cn

    ? Youhe Zhou zhouyh@lzu.edu.cn

    1Key Laboratory of Mechanics on Disaster and Environment in Western China,Ministry of Education of China,Department of Mechanics and Engineering Sciences,College of Civil Engineering and Mechanics,Lanzhou University,Lanzhou 730000,China

    1 Introduction

    Cable-in-conduit conductor(CICCs)are made up of more than 1000 superconducting strands.The composite conductor,which has a void fraction of 30%for optimal helium cooling after multistage winding,is a very important structure in the International Thermonuclear Experimental Reactor(ITER)project[1-6].The ITER magnet system consists of four superconducting coils:toroidal field(TF),poloidalfield(PF),centralsolenoid(CS),and correction coils(CC),which are mainly composed of Nb3Sn(TF and CS)or NbTi(PF and CC)[5].It is well known that CICC can carry high current(50 kA)in the environment of low temperature and a high magnetic field(locally more than 12 T)[7].Different thermal shrinkage between the conduit and the strand leads to axial strain during cooling.On the other hand,the degradation of critical current density for large strain is evident because the properties of superconductors are sensitive to deformation[7-10].In addition,Nb3Sn filament is brittle material,and the fracture of the filaments may take place due to the contactstressbetween the strands[11].This means that the strain and contact force play a significant role in the stable operation of CICC[12].Therefore,it is necessary to study the mechanical behavior of strands.In addition,the energy dissipation generated by the cyclic electromagnetic and mechanical loadings can lead to the rising of temperature which affects the stability of CICC.

    Because of CICCs with hierarchical cabling,these structuresare usually subjected to large mechanicalforces,and the strand exhibitsextremely complicated stressand strain states. A study by Hruska[13-15]proposed a discrete approach,and bending and torsion stiffness ofthe wires were neglected in the analyses.Many theoretical models have already been proposed to predict the mechanical response of wire ropesunder tension or torsion loads[16-19].The thin rod model based on the nonlinear equilibrium of a curved rod(Love’s thin rod theory[16])was proposed,which considers the tension and bending stiffness of the wires.Meanwhile,research[20-24]also studied the complex structure based on the thin rod theory of wire rope by ignoring the contact deformation and friction.Then,several modified models are given,which consider the contact deformation and friction effects,respectively[19,25,26].In addition,the response of a cable underbending wasalso studied in Refs.[27,28].The effectof the frictionalforce was taken into consideration by Papailiou[29]undersimultaneoustension and bending loads.The work by Inagaki et al.[30]established a new model to calculate the stress in multi-order helical structures taking frictional effect into account.There are also some theoretical models that account for the mechanical behavior of CICC structure. A numerical mechanical model was established by Qin et al.[31]to describe the stress-strain distribution of a single superconducting strand,and the deformation and contact force between the strands were analyzed.

    Up to now,much progress has been achieved on the mechanical response of CICCs,while there are a few works on the mechanical loss of conductors.The mechanical loss in CICC is caused by friction,which can lead to energy dissipation.Thus,we use the mechanical loss to represent the friction loss.In this paper,a theoretical model is proposed to obtain the mechanical response and mechanical losses of the strand under tension and bending.Taking the configuration of the helical strand into account,we employ the classical linear elasticity theory and the slender generalized theory to calculate the contact force,stress,and friction force.Finally,the mechanical energy dissipation of a multilevel cable is obtained.The results demonstrate that the mechanical loss of the overall strand depends not only on the mechanical loadings,but also the configuration of each strand.

    Fig.1 Cross-sectional configuration of the CICC conductor

    Table 1 List of symbols

    2 Basic equations

    2.1Geometry description and the coordinate systems

    The basic structure of the CICC is shown in Fig.1[32,33],which is composed of 1152 superconducting strands with multilevel helical structure.Tables 1 and 2 present the used symbols and the parameters,respectively.The initial strain in the cooling process is ignored and the geometry described in Fig.1 is idealistic.

    For the first sub-cable(triplet),three strands are twisted and form the specific helix structure.A Cartesian frame is established in the first sub-cable,as shown in Fig.2[34].In orderto discuss the mechanicalbehaviorsofa single strand,a Frenetcoordinate system is attached to the centerofthe spiral curve with unit principal normal,binormal,and tangentialvectors.The Frenet coordinates o′-τn b can be established by the following procedure:the global Cartesian coordinates rotate o-x yz around the z-axis at an angle α and then rotate about the n axis at an angle θf.Then,θfis the twist angle of the strand,and α,which lies in the x-y plane,is the angle ofrotation(see Fig.2).The transformation relationshipbetween the globalCartesian coordinatesand the localFrenet coordinates are given as follows[34]

    Table 2 The parameters for CICC[8]

    Fig.2 Frenet c oordinate systems o′-τn b

    where the transformation matrix is defined as C.

    2.2Equilibrium and constitutive equations

    In the following analysis,each strand is considered a long and curved rod,and we make the assumption that the strand remains helical after deformation.Consider a force-loaded thin rod,as shown in Fig.3.Applying the thin rod theory to each helical strand results in the following equilibrium equations[35,36]

    Fig.3 Loads acted on a thin rod

    where FT,F(xiàn)N,and FBare the resultant forces acted on the strand in the tangential,normal and binormal directions,respectively.MT,MN,and MBare the moments acted on the strand in the tangential,normal and binormal directions,respectively.T,N,and B are the line loads in the tangential,normal,and binormal directions,respectively. HT,HN,and HBare external twist moments per unit length in the tangential,normal,and binormal directions,respectively.κN,κB,andτ are the components ofthe curvature and torsionalcurvature perunitlength in the loaded state,respectively.s represents the arc length.The constitutive relations of a helical rod are

    where ετis the tangential strain in a single strand.?κN,?κB,and?τ representthe componentsofthe curvature and torsional curvature perunitlength in the unloaded state,respectively.E is the Young’s modulus ofthe strand,A is the cross-sectional area of the strand.G Ipdenote the torsional rigidity and I is the cross-sectional moment of inertia.Thus,we have established the geometricalrelationship,the constitutive laws,and the equilibriumequations in the globaland localcoordinates,respectively.In the following sections,the analytical method is applied to calculate the strain and stress states ofthe single strand.

    3 Contact force under different loads

    3.1The contact force of the triplet cable under tensile strain

    Consider a strand loaded with force distributed along the axial direction uniformly.For this case,we can make an assumption that the mechanical behavior in each strand is the same,and the tension,torsion,bending,and curvatures are uniform along the length of the wire.When the triplet is loaded with the axial strain εz,according to the relationship between the strain tensors[34],the strain ε′in the local coordinates are

    where ε represents the strain tensor in the global coordinates.The tangential strain in a single strand can be derived as[33,37]

    The relationship between theετandεzwas verified in Qin et al.[31].Furthermore,the twist angle,twist pitch,and the twistradius ofthe helicalrod should satisfy the compatibility condition

    The twist angle of the strand after deformation can be obtained from Eqs.(5)and(6).By neglecting the influence due to the change of θfand contact deformation,the twist radius is expressed as a function of the tangential strain[38]

    The relationship between the twist angle and twist radius for unloaded and loaded states under different tensile strains is shown in Fig.4.It can be concluded that change of twist angle and radius are negligible before and after the deformation.

    Then,the components of the curvature and torsional curvature perunitlength in unloaded and loaded states are given as follows

    The axial force and the moments of single strand can be obtained from Eq.(3)

    When a strand hasa large twistangle,itcutsperpendicular to the triplet axis and will have an irregular shape[39].Here,the strand cut is simplified into a circular shape due to the small twist angle in Table 2.Figure 5a shows that a helical strand is subjected to the distributed line contactforces g and u,and friction forces p,q,υ,and w.In addition,the othertwo strands in the tripletwillalso be in contact with contact force h.Based on the local equilibriums of force and moment,the external forces and moments along the tangential,normal,and binormal directions are given by

    Fig.4 a The twist angle and b twist radius at unloaded and loaded states

    Fig.5 a Distributed load on a single strand.b Contact point for triplet

    Because all the internal forces and moments in the strand do not vary with the arc length s for the tensile strain,the relationship can be written as follows

    When the friction between the helical strands during the tension of the triplet is considered,friction forces acting on the surface are

    We can obtain the contact and friction forces from Eqs.(10)-(12)and(2).It is found that the contact forces of triplet are equal,u=g=h.Note that the symmetric condition is equivalent to the free-friction in normal plane.However,the irregular structure may lead to the sliding friction.Now the contact force and contact stress for the tensile strain can be determined.The expression of contact stress is given by

    where the width of contact region a is[40]

    The results based on previous models[26,35]are compared with the presentmodelincluding internalforce,contact force,and contactstress,as shown in Figs.6 and 7.There are some differences between the two models.This is because the strand cut is simplified into circular in the present model,while in the previous model[26],the projection of a circular cross-section on the strand cut is elliptical.Figure 6 shows the relationship between the internal forces and moments with the tensile strain.Figure 7 illustrates contact forces and stresses with the tensile strain.It is expected that the contact forces and moments will increase with the tensile strain.In addition,a large pitch length can lead to a smaller contact force and stress.Because the short twist pitch leads to entangling the strand tightly,this provides large contact forces,and tight compaction is likely to provide better strand support[41].Comparing the present model and the other model verify the results of our calculation.

    Fig.6 a Internal forces under tension.b Moments under tension

    3.2The contact force of the triplet under bending

    For a triplet with a curvature κ in the central axis when subjected to bending,the strain in each strand can also be calculated.In Fig.8,if the axis of triplet is along the z-axis in the initial state,the strain is[42]

    Forthe tangentialstrain in each strand,we apply the transformation relation of Eq.(4)

    The deformed components of the curvature and torsional curvature perunitlength willbe obtained by Costello’smodel[35]

    Fig.7 a Contactforcesand b contactstressasa function ofstrain with different twist pitches

    Fig.8 Geometrical relationship and loads acted on a single strand under bending.a The bending in global coordinate.b Geometrical relationships.c Loads acted on a single strand

    Now,we assume thatthe twistangle and the twistradius of the helix remain unchanged afterthe deformation in Sect3.1. The changes of curvatures are

    Since the deformation of a triplet under bending is complex,we will adopt a general assumption.Generally,the tangential strain ετof a single strand has two different assumptions:(1)the relative slipping between the adjacent strands and friction force are small enough(friction coefficient is small)[43].Thus,the bending load does not affect the axial strain.(2)the friction force between the strands is large enough,so there is no slipping anywhere.Then,the tangential strain of single strand is ετfor this case.

    Because the true friction force isbetween the valuesoftwo assumptions,we assume that the strain on the strand in the global coordinate system retains sinusoidal distribution with the sliding friction.Although the slipping will change the strain of the strand,the distribution of strain is still periodic. Thus,the slipping only affects the magnitude of strain,while the distribution remains unchanged.The rate of change of the internal force and moment with arc length is obtained by Eqs.(3)and(17)

    For a single strand,the strand balance requires the resultantforcesand momentsto be equalto zero.Now there are six equilibrium equations and four unknown parameters.Thus,itis difficultto find the results thatcan satisfy the six equilibrium equations.For simplicity,we adopt the similar method given by Gnanavel et al.[26],and use the first,fourth,fifth,and sixth equations of Eq.(2).The above distributed forces and moments along the tangential,normal,and binormal directions from Fig.8 are as follows

    The friction force between strands is also given by Eq.(12).

    Fig.9 a Internal forces and b moments as a function of α under bending(the peak bending strain is 0.1%)

    Figure 9 shows the internal force and moment with rotational angle.For the tensile loading,the magnitudes of internal force and moment are constants along the axis of the strand,while the distributions of the internal force and momentforbending are different.Itcan be found thatinternal force and momentare periodic functions ofthe bending rotational angle.This is because the strain in the cross-section of the triplet is not uniform and changes with the location of strand.Then,the strain,curvature,and torsional curvature are distributed periodically along the arc-length due to periodic helical structure.In addition,the internal force and moment are odd or even functions of rotational angle.By rearranging Eqs.(19),(20),and(2),the contact and friction forces u and g are presented in Figs.10 and 11.With u and g,the contact force h can be obtained directly.We can see that both the contact forces and contact stresses change with the rotationalangle periodically.The contactforces g,u,and h are very close,and the directions of friction forces are different.Moreover,the contactforce orstress are symmetric in one period,and decrease with the twistpitch.This is because a smaller twist pitch means more intensive strand winding,which leads to a large contact force under the same strain.

    Fig.10 a Contact force and b contact stresses as a function of α under bending(the peak bending strain is 0.1%)

    3.3The contact of the strand for the second-stage cable with bending

    Next,we willpay attention to the second-stage cabling under bending.For the case of a second-stage cable,the triplet is assumed to be a uniform cylinder.When the second-stage cable is loaded with a bending moment,the curvature is κ,as shown in Fig.12.The overall strains of the triplet with Eq.(4)are written as follows

    where the superscript p represents the triplet.

    Fig.11 a Contact force g and b contact stresses as a function of α for different twist pitches

    In addition,as the second-stage cable is under bending,and the triplet is also subjected to bending and torsion[44]

    The global and local coordinates systems will be established in the triplet and single stand.Then,the tangential strain of single strand is obtained using the transformation Eq.(4).

    where f represents the strand of triplet.

    Fig.12 a The Frenet frame and b geometry relationship of single strand when the second-stage cable subjected bending strain

    Thus,the changes of the curvature components and the torsional curvature per unit length of strand due to bending are

    The internal force and moment can be obtained from Eq.(3),and the rotationalangle ofstrand and tripletis a function of the arc length.It can be written as follows(Fig.12)

    The change rates ofinternalforce and momentwith the arc lengthcan be obtained with Eqs.(3),(24),and(25).The initial curvatures and torsional curvature per unit length of a single strand in the second-stage cable is derived by[45]

    The finalcurvaturesand tensionalcurvature perunitlength are formulated as

    In addition,the friction force between stands can also be given by Eq.(12).

    Based on the previous discussions and equations,the contact force can be determined.The variation of contact forces with rotational angle are plotted in Fig.13.Since the distributions of internal force and moment are complicated,it is found thatthe contactforce and stressare notsymmetric with respect to the rotational angle as the second-stage cable is under bending.This trend is different from that for the triplet under bending.However,the contact forces and stresses still remain periodic,and the period changes with the twist pitch ofthe second-stage cable.In addition,the forces and stresses ofdifferentcontactpoints in cross-section are also very close to each other.The contact force will reach the maximum at 4.06 or 9.86 radians in the two cycles.It is well known that contact force can affect the superconducting properties.The local position where the contact force reaches the maximum will degrade the overall properties.For the different twist pitches of a second-stage cable,there is a phase difference between the contact forces.The large twist pitch can lead to the decreasing of the contact force,which is similar to that of the triplet.

    3.4Friction loss in the triplet

    In order to obtain the friction loss between two strands,the two-dimensional model is adopted to take into account the localcontactcharacteristic.The contactarea is a long strip of width 2a.As shown in Fig.14,the contact area can be classified as a stick region and slip region[40].As the tangential force is less than the limiting friction force(q0<q′),there is a small relative motion in the slip region.The remainder part of the contact surface deforms without relative motion in the stick region-c≤x≤c.All points on the surface of the stick region have the same tangential displacements.

    Fig.13 Contactforcesand contactstressasa function ofαf.a Contact forces.b Contact stresses under the same twist pitch 45 mm.c The contact force g for different twist pitches(the peak bending strain of second-stage cable is 0.1%)

    Cattaneo[46]proposed the condition for the local sliding contact problem of the sphere,and the relative tangential displacement is also presented.Then,the frictional energy loss of the contact between two spheres is obtained in Ref.[47]on the basis of Ref.[46].Now,we use the same procedure to calculate the energy loss oftwo-dimensionalcylindercontact.The cylinderis considered a halfplane when the contact width is assumed to be much smaller than the cylinder radius.In order to consider the slip region,the contact force P is fixed and the tangential force Q is increased gradually. Then,the distributions of tangential traction on the contact surface are[40]

    Fig.14 Contact of cylinders with parallel axes

    and the displacement of the stick region δxis

    In addition,the tangential displacement δxof the stick region can be written as a function of P and Q

    When the tangential force is increased to Q?and begins to decrease,the tangential displacement δdduring unloading is

    Fig.15 The displacement as the function of Q

    Using the same method,the displacement δican be obtained under the reverse loading

    Thus,the relation between the tangential force and displacementfora cyclic loading in the stick region is presented. It is to be noted that the dissipated energy in the slip region during a cycle can be determined by the area of the loop,as shown in Fig.15,which agrees with Ref.[47].

    The dissipated energy can be obtained with integration,and the expression for the energy dissipated per cycle is given by

    As the tangential force is equal to μP and all points will have relative slip,the energy dissipation is

    4 Friction loss for different strains

    Based on Eq.(34),for the triplet under tensile or bending strain,the periodic friction loss in the normal plane for one cycle is

    In addition to the friction loss of normal plane,slip in the osculating plane also exists.Since the τ direction of the helicalstrand is different,there is an angleβ fortwo adjacent strandsin the triplet.The strainsforthe strandsare differentin the axialdirection ofsingle strand,and the relative slip exists between strands.For the tension case,the periodic friction loss in the osculating plane is

    where q(s)is the uniform friction force between two strands,and

    For the triplet under bending strain,the friction loss of normalplane is consistentwith thatofthe tensile strain,while the friction loss in the osculating plane is

    Fig.16 Friction losses as a function of strain or twist pitch under tension.a The friction losses vary with tensile strain.b The friction losses vary with twist pitches

    Then,the total friction loss is

    Friction loss presented by Eqs.(35)and(36)shows that it consists of two parts under tensile strain:one is proportional to the load,and the other is related to the square of the load. The form of loss is the same as Ref.[48].

    Fig.17 Friction losses as a function ofstrain ortwistpitch underbending.a The friction losseschange with peak bending strain.b Thefriction loss change with twist pitches

    The total friction losses are plotted in Figs.16-18.Figure 16 shows the friction loss as the tripletisunderthe tensile strain.The value of mechanical loss has the same order as experimental results of CICCs under electromagnetic forces[49].It is expected that the friction loss increases with the tensile strain and decreases slowly with the twist pitch.This phenomenon is because the contact force decreases with the twist pitch.In Fig.17,the triplet is under the bending strain. Itis found thatfriction loss also increases with bending strain for a given twist pitch.However,the friction loss is not monotonic with the twist pitch,where lfrepresents the twist pitch of single strand.The friction loss will decrease firstly and subsequently increase with the twistpitch.The minimum value offriction loss is obtained atthe twistpitch ofabout35 mm.This result shows that a shorter twist pitch can reduce mechanical losses in a certain range.Figure 18 demonstrates the friction loss for the second-stage cable subjected to the bending strain.The friction loss for the second-stage cable under bending is smaller than that for the triplet under bending.When the peak bending strain of the second-stage cable and the twist pitch of triplet are constant,the relationship between the friction loss of the triplet and twist pitch of the second-stage cable are more complicated.As the twist pitch is very large orsmall,the friction losswilldecrease monotonically.It is interesting that as the twist pitch is between 60 mm and 80 mm,there is one local minimal loss and a local

    Fig.18 Friction losses as a function of strain or twist pitches for second-stage cable under bending.a The friction losses change with peak bending strain.b The friction loss change with twist pitches

    maximal loss.The loss of triplet takes the local minimum at a pitch of 65 mm.This also presents the advantage of short pitch in the local region.In summary,there is the optimal twist pitch for multi-stage structure from the point of the mechanical loss.It has been pointed out that the short twist pitch,where the strands are tightly entangled,prevents the electromagnetic force from deforming the strand[41],and offers a better strand against the Lorentz force and avoids filament fracture[4].

    5 Conclusions

    In this paper,a theoretical model is proposed to analyze the strain and stress states and mechanical loss of strand structures.A global and local analysis method is established,which can be applied to multistage strand structures.Firstly,the global analysis is employed to obtain the overall strain and stress of the triplet under tension or bending.Then themechanical response of each strand in the triplet can be worked out.Using the geometrical relations,the curvature and torsional curvature for unloaded and loaded states are obtained.Then,the contact force and friction force between the strands are obtained with the constitutive equations and the equilibriumequations.The axialand circumferentialfriction losses are presented using the strain relationship and the two-dimensional contact model.The results show that the short pitch length can lead to large contact stress,and the mechanical loss will decrease with the twist pitch.The contact force and mechanical loss are validated with other models.The variation of mechanical loss is associated with the geometry structure of CICC conductor.The mechanical loss increases with the bending strain.However,the relation between the mechanicallossand twistpitch is notmonotonic. The value of twist pitch is about 35 mm or 65 mm where the mechanical loss reaches the local minimum when the triplet or second-stage cable subjected to bending.

    Acknowledgments The project was supported by National Natural Science Foundation of China(Grants 11202087,11472120,11421062),the NationalKey ProjectofScientific Instrumentand Equipment Development(Grant 11327802),the National Key Project of Magneto-Constrained Fusion Energy Development Program(Grant 2013GB110002),and New Century Excellent Talents in University of Ministry of Education of China(Grant NCET-13-0266).

    1.Ciazynski,D.:Review of Nb3Sn conductors for ITER.Fusion Eng. Des.82,488-497(2007)

    2.Shikov,A.,Nikulin,A.,Silaev,A.,et al.:Development of the superconductors for ITER magnet system.J.Nucl.Mater.258-263,1929-1934(1998)

    3.Mitchell,N.,Bessette,D.,Gallix,R.,et al.:The ITER magnet system.IEEE Trans.Appl.Supercond.18,435-440(2008)

    4.Devred,A.,Backbier,I.,Bessette,D.,et al.:Challenges and status of ITER conductor production.Supercond.Sci.Technol.27,044001(2014)

    5.Mitchell,N.,Devred,A.,Libeyre,P.,et al.:The ITER magnets: design and construction status.IEEE Trans.Appl.Supercond.22,4200809(2012)

    6.Devred,A.,Backbier,I.,Bessette,D.,et al.:Status of ITER conductordevelopmentand production.IEEETrans.Appl.Supercond. 22,4804909(2012)

    7.Nijhuis,A.,Ilyin,Y.,Wessel,W.A.J.:Spatialperiodic contactstress and criticalcurrentofa Nb3Sn strand measured in TARSIS.Supercond.Sci.Technol.19,1089-1096(2006)

    8.Nijhuis,A.,Ilyin,Y.:Transverse load optimization in Nb3Sn CICC design;influence of cabling,void fraction and strand stiffness. Supercond.Sci.Technol.19,945-962(2006)

    9.Nijhuis,A.,Ilyin,Y.:Transverse cable stiffness and mechanical lossesassociated with load cyclesin ITERNb3Sn and NbTiCICCs. Supercond.Sci.Technol.22,055007(2009)

    10.Zhu,J.Y.,Luo,W.,Zhou,Y.H.,et al.:Contact mechanical characteristics of Nb3Sn strands under transverse electromagnetic loads in the CICC cross-section.Supercond.Sci.Technol.25,403-406(2012)

    11.Mitchell,N.:Assessmentofconductordegradation in the ITERCS insert coil and implications for the ITER conductors.Supercond. Sci.Technol.20,25-34(2006)

    12.Jia,S.,Wang,D.,Zheng,X.:Multi-contactbehaviorsamong Nb3Sn strands associated with load cycles in a CS1 cable cross section. Phys.C Supercond.508,56-61(2015)

    13.Hruska,F(xiàn).H.:Calculation ofstressesin wire ropes.Wire Wire Prod. 26,766-767(1951)

    14.Hruska,F(xiàn).H.:Radial forces in wire ropes.Wire Wire Prod.27,459-463(1952)

    15.Hruska,F(xiàn).H.:Tangential forces in wire ropes.Wire Wire Prod.28,455-460(1953)

    16.Love,A.E.H.:ATreatise on the MathematicalTheory ofElasticity. Dover Publications,New York(1944)

    17.Costello,G.A.,Phillips,J.W.:Effective modulus of twisted wire cables.ASCE J.Eng.Mech.Div.102,171-181(1976)

    18.Phillips,J.W.,Costello,G.A.:Analysisofwire ropeswith internalwire-rope cores.J.Appl.Mech.52,510-516(1985)

    19.Utting,W.S.,Jones,N.:The response of wire rope strands to axial tensile loads-Part I.Experimental results and theoretical predictions.Int.J.Mech.Sci.29,605-619(1987)

    20.Costello,G.A.,Phillips,J.W.:Static response ofstranded wire helical springs.Int.J.Mech.Sci.21,171-178(1979)

    21.Phillips,J.W.,Costello,G.A.:General axial response of stranded wire helical springs.Int.J.Non Linear Mech.14,247-257(1979)

    22.Velinsky,S.A.:General nonlinear theory for complex wire rope. Int.J.Mech.Sci.27,497-507(1985)

    23.Raoof,M.,Hobbs,R.E.:Analysis of multilayered structural strands.ASCE J.Eng.Mech.Div.114,1166-1182(1988)

    24.Lee,W.K.:An insightinto wire rope geometry.Int.J.Solids.Struct. 28,471-490(1991)

    25.Elata,D.,Eshkenazy,R.,Weiss,M.P.:The mechanical behavior of a wire rope with an independent wire rope core.Int.J.Solids. Struct.41,1157-1172(2004)

    26.Gnanavel,B.K.,Gopinath,D.,Parthasarathy,N.S.:Effect of friction on coupled contact in a twisted wire cable.J.Appl.Mech.77,293-298(2010)

    27.Knapp,R.H.:Helicalwire stressesin bentcables.J.Offshore Mech. Arct.Eng.Trans.ASME 110,55-61(1988)

    28.Raoof,M.:Methods for analysing large spiral strands.J.Strain Anal.Eng.Des.26,165-174(1991)

    29.Papailiou,K.O.:On the bending stiffness of transmission line conductors.IEEE Trans.Power Deliv.12,1576-1588(1997)

    30.Inagaki,K.,Ekh,J.,Zahrai,S.:Mechanical analysis of second order helical structure in electrical cable.Int.J.Solids.Struct.44,1657-1679(2007)

    31.Qin,J.,Wu,Y.,Warnet,L.L.,et al.:A novel numerical mechanical model for the stress-strain distribution in superconducting cablein-conduit conductors.Supercond.Sci.Technol.24,1360-1363(2011)

    32.Mitchell,N.:Operating strain effects in Nb3Sn cable-in-conduit conductors.Supercond.Sci.Technol.18,S396(2005)

    33.Dong,S.,Jing,Z.,Yong,H.D.,et al.:A theoretical model for characterizing the internal contact of the CICC strands under axial strain.Acta Mech.Solida Sin.(in press)

    34.Jing,Z.,Yong,H.,Zhou,Y.:Theoretical modeling for the effect of twisting on the properties of multifilamentary superconducting strand.IEEE Trans.Appl.Supercond.23,6000307(2013)

    35.Costello,G.A.:Theory of Wire Rope.Springer,Berlin(2001)

    36.Li,Y.,Yang,T.,Zhou,Y.,et al.:Spring model for mechanicalelectrical properties of CICC in cryogenic-electromagnetic environments.Cryogenics 62,14-30(2014)

    37.Yong,H.,Yang,P.,Xue,C.,et al.:Fracture behavior of filament in Nb3Sn strands with crack-bridging model.Fusion Eng.Des.102,66-73(2016)

    38.Zhao,Z.L.,Zhao,H.P.,Wang,J.S.,et al.:Mechanical properties of carbon nanotube ropes with hierarchical helical structures.J. Mech.Phys.Solids 71,64-83(2014)

    39.Zhao,Z.-L.,Li,B.,F(xiàn)eng,X.-Q.:Handedness-dependenthyperelasticity of biological soft fibers with multilayered helical structures. Int.J.Non Linear Mech.81,19-29(2016)

    40.Johnson,K.L.:Contact Mechanics.Cambridge University Press,Cambridge(1985)

    41.Nabara,Y.,Hemmi,T.,Kajitani,H.,et al.:Impact of cable twist pitch on-degradation and AC loss in conductors for ITER central solenoids.IEEE Trans.Appl.Supercond.24,1-5(2014)

    42.Timoshenko,S.:Strength of Materials.D.Van Nostrand Company Inc,New York(1930)

    43.Lanteigne,J.:Theoretical estimation of the response of helically armored cablesto tension,torsion,and bending.J.Appl.Mech.52,423-432(1985)

    44.Li,Y.X.,Wang,X.,Gao,Y.W.,et al.:Modeling for mechanical response of CICC by hierarchical approach and ABAQUS simulation.Fusion Eng.Des.88,2907-2917(2013)

    45.Yen,J.Y.,Chen,C.H.:Theoreticalapproach to the solutions of axially loaded complex ropes.J.Chin.Inst.Eng.29,725-731(2011)

    46.Cattaneo,C.:Sulcontatto didue corpielastici:distribuzione locale degli sforzi.Rend.Accad.Naz.Lincei.27,342-348(1938)

    47.Mindlin,R.D.,Deresiewica,H.:Elastic spheres in contact under varying oblique forces.J.Appl.Mech.20,327-344(1953)

    48.Vinogradov,O.G.,Huang,X.,Huang,X.,et al.:Extension of a cable in the presence of dry friction.Struct.Eng.Mech.4,313-329(1996)

    49.Egorov,S.,Rodin,I.,Lancetov,A.,et al.:AC loss and interstrand resistancemeasurementforNbTicable-in-conduitconductor.IEEE Trans.Appl.Supercond.12,1607-1611(2002)

    15 February 2016/Revised:9 May 2016/Accepted:12 May 2016/Published online:22 July 2016

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

    美女午夜性视频免费| 亚洲国产精品合色在线| 成人欧美大片| 色综合婷婷激情| 美女国产高潮福利片在线看| 女同久久另类99精品国产91| 夜夜看夜夜爽夜夜摸| 日韩欧美国产一区二区入口| 一a级毛片在线观看| 香蕉av资源在线| 日韩欧美三级三区| 久久久水蜜桃国产精品网| 国产精品,欧美在线| АⅤ资源中文在线天堂| 女性生殖器流出的白浆| videosex国产| 亚洲七黄色美女视频| 麻豆av在线久日| 亚洲欧美精品综合久久99| 精品久久久久久久人妻蜜臀av| 欧美三级亚洲精品| 国产精品,欧美在线| 中亚洲国语对白在线视频| 欧美成人免费av一区二区三区| 麻豆一二三区av精品| 中文字幕精品免费在线观看视频| 悠悠久久av| 精品国产美女av久久久久小说| 亚洲aⅴ乱码一区二区在线播放 | 日韩欧美在线二视频| 免费在线观看视频国产中文字幕亚洲| 在线视频色国产色| 女性生殖器流出的白浆| 国产亚洲欧美98| 看黄色毛片网站| 午夜视频精品福利| 91成年电影在线观看| 禁无遮挡网站| 亚洲 欧美一区二区三区| 亚洲电影在线观看av| 在线免费观看的www视频| 在线观看午夜福利视频| 亚洲人成网站高清观看| 老熟妇仑乱视频hdxx| 国产精品免费一区二区三区在线| tocl精华| 亚洲av中文字字幕乱码综合 | 久久久久久亚洲精品国产蜜桃av| √禁漫天堂资源中文www| 亚洲在线自拍视频| 亚洲av成人一区二区三| 日韩免费av在线播放| 十八禁网站免费在线| 两性夫妻黄色片| 一本精品99久久精品77| 麻豆久久精品国产亚洲av| 欧美黑人欧美精品刺激| 18禁黄网站禁片午夜丰满| 黄色毛片三级朝国网站| 99久久久亚洲精品蜜臀av| 美女高潮喷水抽搐中文字幕| 在线观看免费日韩欧美大片| 成人欧美大片| 国产av在哪里看| 露出奶头的视频| 久久久精品国产亚洲av高清涩受| 一本大道久久a久久精品| 2021天堂中文幕一二区在线观 | 欧美日韩精品网址| 久久精品aⅴ一区二区三区四区| 免费人成视频x8x8入口观看| 制服人妻中文乱码| 午夜视频精品福利| 日本免费a在线| 成年女人毛片免费观看观看9| 搞女人的毛片| 两个人免费观看高清视频| 久久亚洲真实| 高清在线国产一区| 亚洲电影在线观看av| 日本精品一区二区三区蜜桃| 久久这里只有精品19| 男男h啪啪无遮挡| 男人舔奶头视频| 19禁男女啪啪无遮挡网站| 亚洲七黄色美女视频| 夜夜爽天天搞| 久久亚洲真实| 一本一本综合久久| 两人在一起打扑克的视频| 中出人妻视频一区二区| 两个人看的免费小视频| 人人澡人人妻人| 免费一级毛片在线播放高清视频| 岛国在线观看网站| 少妇粗大呻吟视频| 欧美在线黄色| 日韩视频一区二区在线观看| 成熟少妇高潮喷水视频| 国语自产精品视频在线第100页| 久久亚洲精品不卡| 中亚洲国语对白在线视频| 国产精品永久免费网站| 精品高清国产在线一区| 亚洲自拍偷在线| 精品免费久久久久久久清纯| 91大片在线观看| 国产午夜福利久久久久久| 亚洲精品美女久久久久99蜜臀| 别揉我奶头~嗯~啊~动态视频| 亚洲av中文字字幕乱码综合 | 午夜福利成人在线免费观看| 又紧又爽又黄一区二区| 午夜福利免费观看在线| 亚洲男人的天堂狠狠| 亚洲五月色婷婷综合| 99精品欧美一区二区三区四区| 别揉我奶头~嗯~啊~动态视频| 看免费av毛片| 欧美精品亚洲一区二区| 一进一出抽搐gif免费好疼| 久久人人精品亚洲av| 亚洲av电影在线进入| 亚洲欧美一区二区三区黑人| 国产精品久久视频播放| 国产麻豆成人av免费视频| 久久伊人香网站| 91九色精品人成在线观看| 日韩欧美 国产精品| 久久久国产精品麻豆| 国产精品美女特级片免费视频播放器 | 一进一出好大好爽视频| 国内精品久久久久久久电影| 国产乱人伦免费视频| 亚洲av美国av| 在线看三级毛片| 亚洲va日本ⅴa欧美va伊人久久| 久久精品夜夜夜夜夜久久蜜豆 | 国产亚洲欧美98| 亚洲午夜精品一区,二区,三区| 18禁国产床啪视频网站| 日韩一卡2卡3卡4卡2021年| 老司机深夜福利视频在线观看| 两个人免费观看高清视频| 久久久久九九精品影院| 99精品在免费线老司机午夜| 色在线成人网| 在线观看免费日韩欧美大片| 搡老熟女国产l中国老女人| 婷婷精品国产亚洲av在线| 精品一区二区三区视频在线观看免费| 亚洲 欧美 日韩 在线 免费| 久久精品国产亚洲av香蕉五月| 黄频高清免费视频| 非洲黑人性xxxx精品又粗又长| 日本一本二区三区精品| 欧美成人午夜精品| 欧美黄色片欧美黄色片| 欧美日韩亚洲综合一区二区三区_| 国产日本99.免费观看| 国产精品亚洲美女久久久| 久久久久亚洲av毛片大全| 国产一区二区在线av高清观看| x7x7x7水蜜桃| 亚洲 欧美一区二区三区| 99久久久亚洲精品蜜臀av| 老汉色av国产亚洲站长工具| 99国产精品一区二区蜜桃av| av片东京热男人的天堂| 日本撒尿小便嘘嘘汇集6| 国产精品电影一区二区三区| 精品少妇一区二区三区视频日本电影| 日韩精品青青久久久久久| 美女午夜性视频免费| 亚洲av熟女| 亚洲成av人片免费观看| 中文字幕最新亚洲高清| 侵犯人妻中文字幕一二三四区| 欧美av亚洲av综合av国产av| 老汉色av国产亚洲站长工具| 欧美成人一区二区免费高清观看 | 国产精品久久久人人做人人爽| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成人久久爱视频| 真人做人爱边吃奶动态| 亚洲专区中文字幕在线| 国产成人精品久久二区二区91| 欧美久久黑人一区二区| 欧美日本亚洲视频在线播放| 好男人在线观看高清免费视频 | 日韩大码丰满熟妇| 好看av亚洲va欧美ⅴa在| 欧美黑人精品巨大| 女警被强在线播放| 麻豆成人av在线观看| 国产精品九九99| 婷婷丁香在线五月| 999久久久国产精品视频| 国产黄色小视频在线观看| 久久国产精品人妻蜜桃| 在线视频色国产色| 1024手机看黄色片| 日韩国内少妇激情av| 男女午夜视频在线观看| 亚洲性夜色夜夜综合| 国产成人av教育| 精品一区二区三区av网在线观看| 欧美成人午夜精品| 欧美在线黄色| 狠狠狠狠99中文字幕| 久久这里只有精品19| 级片在线观看| 女性被躁到高潮视频| 波多野结衣高清无吗| 国产一区二区在线av高清观看| 亚洲国产欧美一区二区综合| 免费看日本二区| 午夜日韩欧美国产| 婷婷精品国产亚洲av在线| 久久久久久大精品| 午夜精品久久久久久毛片777| 国内久久婷婷六月综合欲色啪| 日韩免费av在线播放| 久久亚洲真实| 一区二区三区国产精品乱码| 在线免费观看的www视频| 成人国语在线视频| 成人av一区二区三区在线看| 久久精品91无色码中文字幕| 中文字幕精品免费在线观看视频| 长腿黑丝高跟| 一本精品99久久精品77| 国产精品影院久久| 欧美日韩中文字幕国产精品一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 免费观看精品视频网站| 女人高潮潮喷娇喘18禁视频| 亚洲av第一区精品v没综合| 狂野欧美激情性xxxx| 成人三级黄色视频| 国产精品久久久久久精品电影 | 亚洲国产日韩欧美精品在线观看 | 一边摸一边抽搐一进一小说| 丰满人妻熟妇乱又伦精品不卡| 亚洲va日本ⅴa欧美va伊人久久| 国产av在哪里看| 一级a爱片免费观看的视频| 成在线人永久免费视频| 国产国语露脸激情在线看| 亚洲中文日韩欧美视频| 欧美一区二区精品小视频在线| 亚洲av成人av| 夜夜爽天天搞| 国产激情欧美一区二区| 黄片小视频在线播放| 欧美黄色淫秽网站| 日韩欧美 国产精品| av超薄肉色丝袜交足视频| 好看av亚洲va欧美ⅴa在| 亚洲久久久国产精品| 色综合欧美亚洲国产小说| 91字幕亚洲| 日韩大码丰满熟妇| 美女国产高潮福利片在线看| 中文字幕另类日韩欧美亚洲嫩草| 91在线观看av| 视频区欧美日本亚洲| 最新美女视频免费是黄的| 国产又爽黄色视频| 美女 人体艺术 gogo| 国产精品亚洲一级av第二区| 久久中文字幕人妻熟女| 成人18禁高潮啪啪吃奶动态图| 日韩成人在线观看一区二区三区| 操出白浆在线播放| 亚洲中文字幕一区二区三区有码在线看 | 国产精品野战在线观看| 欧美午夜高清在线| 特大巨黑吊av在线直播 | 99热这里只有精品一区 | 美女大奶头视频| 亚洲五月婷婷丁香| 欧美激情久久久久久爽电影| 亚洲,欧美精品.| 欧美在线一区亚洲| 国产精品爽爽va在线观看网站 | 亚洲精品国产一区二区精华液| 日本成人三级电影网站| 十八禁网站免费在线| 欧美一级毛片孕妇| 久久婷婷成人综合色麻豆| 男女床上黄色一级片免费看| 成年女人毛片免费观看观看9| 亚洲精品中文字幕在线视频| 黑丝袜美女国产一区| 亚洲人成网站高清观看| 欧美+亚洲+日韩+国产| 啪啪无遮挡十八禁网站| 亚洲中文日韩欧美视频| 一进一出抽搐gif免费好疼| 大型av网站在线播放| 丁香六月欧美| 国产高清激情床上av| 国产麻豆成人av免费视频| 亚洲欧美精品综合一区二区三区| 国产精品九九99| 黄色丝袜av网址大全| 日韩精品青青久久久久久| 老鸭窝网址在线观看| 黄色毛片三级朝国网站| 精华霜和精华液先用哪个| 欧美人与性动交α欧美精品济南到| 无限看片的www在线观看| 国产精品久久久av美女十八| 国产精华一区二区三区| 亚洲午夜理论影院| 国产成年人精品一区二区| 国产成人欧美在线观看| 亚洲成人免费电影在线观看| 欧美激情高清一区二区三区| 一本精品99久久精品77| 99久久久亚洲精品蜜臀av| 国产高清有码在线观看视频 | 真人一进一出gif抽搐免费| 91九色精品人成在线观看| 免费在线观看完整版高清| 国产日本99.免费观看| 亚洲色图av天堂| 女生性感内裤真人,穿戴方法视频| 狂野欧美激情性xxxx| 日韩免费av在线播放| av超薄肉色丝袜交足视频| 99久久99久久久精品蜜桃| 国产一卡二卡三卡精品| aaaaa片日本免费| 一边摸一边做爽爽视频免费| 欧美性猛交黑人性爽| 久久久久久亚洲精品国产蜜桃av| 在线观看66精品国产| 亚洲精品国产精品久久久不卡| 亚洲国产中文字幕在线视频| 97碰自拍视频| 亚洲精品久久国产高清桃花| 精品卡一卡二卡四卡免费| 男女下面进入的视频免费午夜 | 亚洲av中文字字幕乱码综合 | 一本一本综合久久| 亚洲午夜精品一区,二区,三区| 国产一区二区在线av高清观看| 国产成人一区二区三区免费视频网站| 久久久久精品国产欧美久久久| 久久久国产欧美日韩av| 亚洲黑人精品在线| 99久久99久久久精品蜜桃| 精华霜和精华液先用哪个| 青草久久国产| 国产精品98久久久久久宅男小说| 国产精品av久久久久免费| 欧美丝袜亚洲另类 | 久久香蕉精品热| 久久久精品欧美日韩精品| 精品一区二区三区av网在线观看| 国产真人三级小视频在线观看| 99riav亚洲国产免费| 香蕉久久夜色| 午夜福利一区二区在线看| 高清毛片免费观看视频网站| 久久国产精品人妻蜜桃| 18禁黄网站禁片免费观看直播| 国产极品粉嫩免费观看在线| 国产视频一区二区在线看| 叶爱在线成人免费视频播放| 在线观看日韩欧美| 国产成+人综合+亚洲专区| 国产精品,欧美在线| 日本撒尿小便嘘嘘汇集6| 久久精品亚洲精品国产色婷小说| 久久中文看片网| 可以免费在线观看a视频的电影网站| 亚洲三区欧美一区| 国产伦人伦偷精品视频| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久精品电影 | 日韩三级视频一区二区三区| 丁香六月欧美| 久久久精品欧美日韩精品| 久久精品国产综合久久久| 视频区欧美日本亚洲| 日日爽夜夜爽网站| 免费高清在线观看日韩| 欧美乱色亚洲激情| 69av精品久久久久久| 欧美日韩精品网址| 色精品久久人妻99蜜桃| 熟女电影av网| 中文字幕人妻熟女乱码| av天堂在线播放| xxxwww97欧美| 欧美av亚洲av综合av国产av| 精品久久久久久成人av| 香蕉av资源在线| 国产精品一区二区免费欧美| 久久中文看片网| 久久国产精品人妻蜜桃| 变态另类丝袜制服| 亚洲av成人一区二区三| 日韩欧美免费精品| 777久久人妻少妇嫩草av网站| 久久天躁狠狠躁夜夜2o2o| 精品少妇一区二区三区视频日本电影| 后天国语完整版免费观看| 激情在线观看视频在线高清| 午夜福利一区二区在线看| 久久精品国产99精品国产亚洲性色| 在线十欧美十亚洲十日本专区| bbb黄色大片| 熟妇人妻久久中文字幕3abv| 国产av一区二区精品久久| 美女 人体艺术 gogo| 亚洲人成网站在线播放欧美日韩| 久久国产精品男人的天堂亚洲| 久久久精品国产亚洲av高清涩受| 丝袜在线中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 校园春色视频在线观看| 午夜视频精品福利| 午夜免费激情av| 国产精品99久久99久久久不卡| 搡老妇女老女人老熟妇| 麻豆一二三区av精品| 亚洲av美国av| 国产v大片淫在线免费观看| 国产黄片美女视频| a级毛片a级免费在线| 午夜久久久久精精品| 波多野结衣高清无吗| 亚洲国产精品成人综合色| 99久久99久久久精品蜜桃| 国产一卡二卡三卡精品| 亚洲一区高清亚洲精品| 亚洲国产高清在线一区二区三 | 国产欧美日韩一区二区精品| 国产精品99久久99久久久不卡| 欧美日韩亚洲综合一区二区三区_| 中文字幕av电影在线播放| 亚洲av美国av| 两个人看的免费小视频| 欧美性猛交黑人性爽| 国产伦一二天堂av在线观看| 亚洲国产精品成人综合色| 国产精品99久久99久久久不卡| 国产亚洲av嫩草精品影院| 久久婷婷成人综合色麻豆| 国产欧美日韩一区二区精品| 亚洲真实伦在线观看| 亚洲第一欧美日韩一区二区三区| 丰满的人妻完整版| 日日夜夜操网爽| 日韩视频一区二区在线观看| 欧美日韩瑟瑟在线播放| 99riav亚洲国产免费| 亚洲国产欧美日韩在线播放| 99热6这里只有精品| 久久久国产欧美日韩av| 久久久久精品国产欧美久久久| 中文字幕人妻丝袜一区二区| 亚洲av成人一区二区三| cao死你这个sao货| 身体一侧抽搐| 国产亚洲欧美98| 国产高清激情床上av| 精品久久久久久久久久免费视频| 天天添夜夜摸| 欧美日韩精品网址| 一级作爱视频免费观看| 国产野战对白在线观看| 午夜久久久在线观看| 美女高潮喷水抽搐中文字幕| 99久久99久久久精品蜜桃| 大型av网站在线播放| 天天一区二区日本电影三级| 久久久久国内视频| 天天躁夜夜躁狠狠躁躁| 成年女人毛片免费观看观看9| 丰满的人妻完整版| 免费一级毛片在线播放高清视频| 两个人视频免费观看高清| 国产亚洲av高清不卡| 少妇裸体淫交视频免费看高清 | 亚洲国产毛片av蜜桃av| 午夜精品在线福利| 超碰成人久久| 成在线人永久免费视频| 国产99久久九九免费精品| 国产高清激情床上av| 精品日产1卡2卡| 国产野战对白在线观看| 久99久视频精品免费| 午夜视频精品福利| 久久久国产成人免费| 少妇 在线观看| 日本 欧美在线| 日本成人三级电影网站| 丝袜人妻中文字幕| 亚洲国产精品合色在线| 视频区欧美日本亚洲| 精品国产乱子伦一区二区三区| 亚洲av美国av| xxx96com| 中文字幕人妻丝袜一区二区| 久久热在线av| 国产欧美日韩一区二区三| 国产高清videossex| 一区二区日韩欧美中文字幕| 欧美成人免费av一区二区三区| 香蕉av资源在线| 人人妻人人看人人澡| 国产成人精品久久二区二区91| 亚洲中文字幕一区二区三区有码在线看 | 男人舔女人下体高潮全视频| 高潮久久久久久久久久久不卡| 免费看美女性在线毛片视频| 亚洲人成网站在线播放欧美日韩| 欧美色欧美亚洲另类二区| 国产高清激情床上av| 免费一级毛片在线播放高清视频| 欧美在线一区亚洲| 日韩免费av在线播放| www国产在线视频色| 久久中文看片网| 欧美日本视频| 日韩高清综合在线| 男人舔奶头视频| √禁漫天堂资源中文www| www.999成人在线观看| 国产伦一二天堂av在线观看| 国产精华一区二区三区| 亚洲欧美日韩无卡精品| 精品国产乱子伦一区二区三区| 免费女性裸体啪啪无遮挡网站| 在线观看www视频免费| 国产亚洲欧美98| 精品乱码久久久久久99久播| 91九色精品人成在线观看| 嫁个100分男人电影在线观看| 韩国精品一区二区三区| 在线播放国产精品三级| 久久久精品欧美日韩精品| 亚洲自偷自拍图片 自拍| 91国产中文字幕| 村上凉子中文字幕在线| 精品一区二区三区av网在线观看| 一个人免费在线观看的高清视频| 婷婷精品国产亚洲av| 99久久国产精品久久久| 久久99热这里只有精品18| 中文字幕高清在线视频| 视频在线观看一区二区三区| av中文乱码字幕在线| 伦理电影免费视频| 欧美日韩亚洲综合一区二区三区_| 欧美三级亚洲精品| 国产成人欧美在线观看| 99在线人妻在线中文字幕| 老司机在亚洲福利影院| 午夜激情福利司机影院| 亚洲国产毛片av蜜桃av| 两个人看的免费小视频| 久久久精品欧美日韩精品| 黄网站色视频无遮挡免费观看| 十分钟在线观看高清视频www| 99精品欧美一区二区三区四区| 国产伦在线观看视频一区| 欧美成狂野欧美在线观看| 午夜福利欧美成人| 国产人伦9x9x在线观看| 日韩三级视频一区二区三区| 香蕉久久夜色| 亚洲一卡2卡3卡4卡5卡精品中文| 宅男免费午夜| 国产精品乱码一区二三区的特点| 久9热在线精品视频| 国产一区在线观看成人免费| 91老司机精品| 99国产精品一区二区蜜桃av| 97碰自拍视频| 欧美久久黑人一区二区| 久久久久久久精品吃奶| 伊人久久大香线蕉亚洲五| 欧美大码av| 最近最新中文字幕大全免费视频| 亚洲 国产 在线| 一本精品99久久精品77| 一夜夜www| ponron亚洲| 丰满人妻熟妇乱又伦精品不卡| 国产精品av久久久久免费| 老司机靠b影院| 日韩欧美在线二视频| 国产精品av久久久久免费| 亚洲成人久久性| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩乱码在线| 18禁观看日本| svipshipincom国产片| 制服丝袜大香蕉在线| 999久久久国产精品视频| 午夜久久久久精精品| 欧美成人性av电影在线观看| 男人舔女人的私密视频| 最新美女视频免费是黄的| 亚洲一码二码三码区别大吗| 神马国产精品三级电影在线观看 | 国产午夜福利久久久久久| 亚洲精品国产一区二区精华液|