• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tuning of non-uniform switch toughening in ferroelectric composites by an electric field

    2016-11-04 08:53:37XiaodongXiaZhengZhong
    Acta Mechanica Sinica 2016年5期

    Xiaodong Xia·Zheng Zhong

    ?

    RESEARCH PAPER

    Tuning of non-uniform switch toughening in ferroelectric composites by an electric field

    Xiaodong Xia1·Zheng Zhong1

    This paper deals with a mode III interfacial crack subject to anti-plane stress and in-plane electric fields.The analysis concentrates on the tuning of fracture toughness from non-uniform ferroelectric-ferroelastic domain switching by an electric field.The electric loading changes the size of the asymmetric switching zone.Employing the weight function method,we obtain the electrically-dependentswitch toughening forstationary and quasi-static growing interfacial cracks,respectively.Multi-domain solutions are derived for non-poled and fully-poled ferroelectric composites.Numerical results are presented on the electric field tuning of the critical applied stress intensity factor.The research provides ways to optimize fracture properties offerroelectric composites by altering the electric field.

    Interfacial crack·Electric field tuning·Domain switching·Ferroelectric-ferroelastic·Toughening

    1 Introduction

    The discovery of ferroelectrics has led to a significant development in smart materials[1].Plentiful applications have been made in micro-electro-mechanical devices,such as piezoelectric nanotubes for micro-fluidic system,spintronics,actuators and sensors,etc.[2-4].However,electromechanical coupling effects are too weak in the existing single-phase ferroelectrics.Ferroelectric composites are designed by fabricating dissimilar ferroelectric layers forpractical applications[5].Unfortunately,the strength of the interfaces in ferroelectric composites is much weaker than that of the composite constituents[6].Cracks and flaws inevitably emerge on the interface offerroelectric composites during manufacture and service[7].Therefore,researches on the fracture toughness of ferroelectric interfacial cracks are of great importance.

    ? Zheng Zhong zhongk@#edu.cn

    1School of Aerospace Engineering and Applied Mechanics,Tongji University,Shanghai 200092,China

    In retrospect,there is a substantial body of literature on the interfacial crack of linear piezoelectrics.Comprehensive reviews are provided by Chen and Hasebe[8]and Govorukha et al.[9].The analysis of piezoelectric interfacial cracks was initiated by Suo et al.[10],who gave the crack tip field as a linear combination of the coupling oscillating singular field and the non-oscillating singular field by employing Stroh’s method.Based on this framework,Ru[11]gave the exact solution forfinite discontinuouselectrode layersembedded at the interface of bonded dissimilar piezoelectric half-planes. Similarly,Gao and Wang[12]derived Green’s function for an interfacial crack between two dissimilar piezoelectric media under the permeable electric boundary condition,and obtained an explicitclosed-formsolution forthe electric field inside the crack.In addition,Boem[13]investigated the interfacial crack with electrically permeable boundary conditions between two dissimilar piezoelectric ceramics under electromechanical loading,and confirmed an inverse square rootsingularity and a pairofoscillatory singularities nearthe interfacial crack tip fields.Also,Li and Chen[14]performed a similar research for a permeable interface crack in an elastic dielectric/piezoelectric bimaterial.Moreover,Ou and Wu[15]proved that there is no coexistence of the oscillating and non-oscillating parameters in the interfacialcrack-tip generalized stress field for all transversely isotropic piezoelectric bimaterials.

    Analysis of the electrically-dependent fracture toughness in a mode III piezoelectric interfacial crack drew more attention due to its physical practicality and mathematical simplicity.One powerful method is the integral transformation.So then Narita and Shindo[16]investigated the anti-plane problem of a piezoelectric layer sandwiched by two dissimilar materials with a crack at the interface based on the Fourier integral transformation method,and found that the stress intensity factor is higher for negative electric fields and lower for positive electric fields.Additionally,Soh et al.[17]gave the analysis of bi-piezoelectric ceramic layers subject to anti-plane shear and in-plane electric loading by means of the Fourier integral transformation,and studied the effects of electric loading on the energy release rate.Further research by Li et al.[18]considered a moving interfacial crack between two bonded piezoelectric materials,and discovered that the distribution of a remote stress field is determined by both the remote mechanical and electric loadings.Another powerful method for crack analysis is the complex function analysis.Then Gao and Wang[19]dealt with a mode III interfacial crack subject to piecewise uniform out-of-plane mechanical loading combined with in-plane electric loading under permeable boundary conditions,and showed that the field singularities are independent of the electric loading.In addition,Li and Kardomateas[20]discussed a mode III interfacial crack located at the interface of the dissimilar bimaterial considering the electro-magnetic fields in the crack by means of Stroh’s method,and concluded that the direction of electric loading has an effect on the possible growth of the interface crack.More research by Li et al.[21]solved a mode III crack terminating at and normal to the interface of two bonded dissimilar materials by solving a singular integral equation,and found that the contribution of electric loading vanishes underthe permeable boundary condition.

    However,discrepancies between experimentalresults and theoretical predictions within the linear constitutive models imply that nonlinear phenomena of ferroelectric composites are of great significance[22-24].Furthermore,Park and Sun[25]tested the fracture of ferroelectric specimens under electric loading and found there might exist factors beyond the scope of linear piezoelectricity that would affect fracture behavior near the crack tip.It is to be noted that Fu and Zhang[26]obtained a nonlinear relationship between the fracture toughness and the applied electric field in fracture experiments of poled commercial lead zirconate titanate(PZT).In addition,dos Santos e Lucato et al.[27]observed the electrically driven crack propagation in nonpoled and poled PZT,and attributed the reinforcement of poled specimens to domain switching.From the aspect of theoretical researches,Yang and Zhu[28]investigated the influence of the electric loading on the fracture toughness in homogenous ferroelectrics considering the domain switching process.Also,Landis[29]gave complete asymptotic solutions for a crack embedded in a ferroelectric switching material subject to anti-plane shear the in-plane electric fields.Moreover,Wang and Landis[30]explored the effect of in-plane electric field on the toughening behavior of mode I steady-state crack.In addition,Liu and Hsia[31]suggested the likelihood ofdomain switching nearthe interfacial crack tip when exploring the in-plane electric loading in ferroelectric composites.Beyond this,Liu and Fang[32]investigated the domain switching behavior in ferroelectrics by using nonlinear finite element method.Also,Qiao et al.[33]gave phase-field simulation of domain switching around electrically permeable and impermeable cracks in ferroelectric crystals.More research by Li et al.[34]studied the mode I crack propagation of ferroelectric ceramics in open circuits using nonlinear fracture mechanics.Then Xia et al.[35]dealt with a mode III interfacial crack and gave analytic expressions for the switch toughening effects within the elastic range.To the best of the authors’knowledge,theoreticalstudieson the electrically-dependentswitch toughening for the ferroelectric interfacial cracks have not been addressed.

    The present paper deals with the tuning of switch toughening in ferroelectric composites by an electric field.The tuning effect is characterized by the non-uniform domain switching induced by the electric field.The plans of the rest of this paper are organized as follows.Section 2 gives the switch-induced strain and polarization driven by the crack tip stress and electric fields.Section 3 introduces the realistic switch-induced strain in ferroelectric solids with the electric field tuning.Section 4 gives the variation of the asymmetric switching zone with respect to the electric loading.Then in Sect.5,the electrically-dependent switch toughening effects for stationary and quasi-static growing interfacial cracks are derived analytically by means ofthe weightfunction method. Section 6 presents the corresponding numerical calculation on the critical applied stress intensity factor with respect to the magnitude and direction ofthe electric field.Finally,conclusions are summarized in Sect.7.

    2 Domain switching driven by the crack tip stress and electric fields

    Consider a semi-infinite interfacial crack subject to antiplane mechanical loading combined with in-plane electric loading at infinity,as schematically illustrated in Fig.1. Superscripts of“I”and“II”represent the dissimilar ferroelectric constituents in the upper and lower half-planes,respectively.Let(x1,x2,x3)denote a global Cartesian coordinate system attached to the cracked solid,with the origin centered at the current crack tip.(r,?)are the polar coordi-nates corresponding to the in-plane coordinates x1-x2.In addition,a local Cartesian coordinate systemis attached to the tetragonal ferroelectric mono-crystal,whereis along the initial poling axis andalong other optical axes,as depicted in Fig.2.

    Fig.1 A semi-infinite interfacial crack between dissimilar ferroelectric constituents subject to anti-plane mechanical loading and in-plane electric loading at infinity

    Fig.2 Schematic of 90?and 180?domain switching of tetragonal ferroelectric mono-crystal in the local Cartesian coordinate

    In this work,we assume that the ferroelectric constituents are modelled as elastically and dielectrically isotropic[36]. This assumption is also adopted to establish the domain switching criterion[37,38].The interaction between stress and electric fields is attributed to the domain switching near the crack tip,which is assumed to be weak and negligible outside the switching zone[29,36].Attention here is focused on the case of small scale switching[28,39-41],in the sense that the switching zone size is considerably smaller than the specimen size.The influence of residual stress induced by polarization switching is ignored under this assumption.All switching strains serve to toughen the material,and cannot be accommodated by the globaldeformation.The researches of large scale switching can be referred to the work by Cui and Yang[42],Cui and Zhong[43].

    The crack tip stress field of a mode III interfacial crack is given as[44,45]

    where Kappis the applied stress intensity factor at infinity,and the in-plane components ofstress field are zero underthe smallscale switching assumption.In addition,the permeable electric boundary condition is employed for the interfacial crack surface[46],which overlooks the perturbation on the electric field by the presence of defects[28].The electric displacement is continuous at the interface.Results for other electric boundary conditions[47]can be derived in a similar way.The electric field of ferroelectric composites is given as a uniform field under the in-plane electric loading and the permeable electric boundary condition,

    whereω represents the direction ofelectric field with respect to the x1axis,and E is the magnitude of the electric field. The out-of-plane component of the electric field is zero.

    Because of the orthogonality of tetragonal crystals,each ferroelectric mono-crystal possesses six types of probable orientations,as depicted in Fig.2.The initial poling orientation of ferroelectric mono-crystals is along the x3′axis in the local coordinate.Mode 1 to mode 4 represent four types of 90?domain switching,and mode 5 represents the type of 180?domain switching.Only 90?switching needs to be considered,because 180?switching can be divided into two proceduresof90?switching[48,49].90?switch-induced strain and polarization in the mono-crystal can be described in the local Cartesian coordinates,as follows:

    where εspis the spontaneous strain associated with 90?switching,and Psis the corresponding spontaneous polarization.The switch-induced strain and polarization in the global coordinate are given as,

    Here standard index notation is utilized with summation implied over repeated indices.The superscripts of“α”indicate differentdomain switching modes.Mijis the coordinate transformation tensor between the global coordinate and the local coordinate, et al.[35],we assume that the initial poling orientation is in the x1-x2plane for simplicity by setting θ=π/2 and ψ=π/4.

    Then the work released by domain switching is given for these four 90?switching modes as,

    The actual domain switching process should proceed to release the maximum work[50].One obtains the actual domain switching work in the mono-crystal as,

    Fig.3 Transformation between the local Cartesian coordinate of the mono-crystal and the global Cartesian coordinate of the cracked solid

    where angles(θ,φ)represent the initial orientation of the poling axis with respect to the global Cartesian coordinate,and ψ denotes the rotating angle with respect to the poling axis,with the ranges of 0≤θ≤π,0≤φ≤2π,0≤ψ≤2π,as depicted in Fig.3.Similar to the manipulation of Xia where the symbol|·|denotes the absolute value,△εijand △Piare the actual switch-induced strain and polarization in the mono-crystal.Note that the second and third terms of WDSin Eq.(7)are the actual domain switching work driven by the electric field.In addition,the actual domain switching modes are given in Appendix 1 with respect to the initial poling orientation and the direction of the electric field.

    3 Non-uniform domain switching criterion with electric field tuning

    In the ferroelectric solid,only a part of ferroelectric crystals undergo the domain switching process[51].The realistic switch-induced strain in the ferroelectric solid is written as,

    where V90denotes the volume fraction of the part that experiences 90?domain switching.

    Yang et al.[37]investigated the problem of a ferroelectric grain embedded in a homogeneous matrix to determine the value of V90.Following this framework,Cui and Yang[52],and Cui and Zhong[38]established the energy-based nonuniform domain switching criterion forferroelectrics subjectto combined electromechanical loadings,which has been used successfully to predictthe domain switching in homogeneousferroelectrics[42,53]and bimaterialferroelectrics[35]through a similar procedure,as follows, Note thatσDSisthe unique controlvariable in the ferroelectricferroelastic domain switching,are the threshold values of σDSto trigger and saturate ferroelectric-ferroelastic domain switching[52].Moreover,

    The non-uniform ferroelectric-ferroelastic switching criterion in Eq.(9)is equivalent to

    where W denotes the energy density for a certain value of V90[38].Substituting the uniform electric field in Eq.(2)into Eq.(10),one obtains that

    The electric field influences the domain switching process through perturbing the energy density level.Comparing Eq.(10)with Eq.(11),we modify the energy-based nonuniform domain switching criterion in Eq.(9)as,

    where

    the non-uniform ferroelectric-ferroelastic domain switching criterion in Eq.(12)can degenerate to the ferroelastic formulation[38]when the electric loading vanishes.

    4 Domain switching zone with electric field tuning

    4.1Electrically-dependent domain switching zone

    Based on the non-uniform ferroelectric-ferroelastic domain switching criterion in Eq.(12),domain switching proceeds whenFor a certain initial poling orientation φ, one gets the contour of the electrically-dependent switching zone via setting

    In addition,one obtainsthe maximumheightofthe switching zone Hmax(E,ω)by taking the partial derivative of the height H with respect to ?,

    Fig.4 The contours of the domain switching zone around a stationary crack tip in the homogenous ferroelectric material versus the magnitude of electric field under different electric directions,when Kapp= 1 MPa·m1/2and φ=0,for a ω=0,b ω=π

    4.2Switching zone geometry with electric field tuning

    Combining Eqs.(12)and(14),we can visualize the electric field tuning on the domain switching process by comparison of switching zones under different electric loadings.

    Firstly,we explore the domain switching zone around a stationary crack embedded in the homogeneous ferroelectric material,as shown in Fig.4.In plotting the contour,we set Kapp=1 MPa·m1/2and φ=0.Material constants are selected as“Material I”in Table 1.A symmetric switching geometry is achieved under the ferroelectric-ferroelastic domain switching criterion.Specifically,the size of the domain switching zone decreases with respect to the positive electric field(ω=0),while it increases with respect to the negative electric field(ω=π),which corresponds with the experimentalresults of Jiang etal.[54].Next,the domain switching zone isinvestigated foran interfacialcrack embedded in ferroelectric composites.Material constants of the each constituentare listed in Table 1.An asymmetric domain switching zone is obtained due to the mismatch of bimaterial properties,as depicted in Fig.5.It implies that the electric loading can tune the switching zone geometry in homogeneous and bimaterial ferroelectrics.Note that the crack-tip stress field fulfils the non-oscillation condition for a mode III interfacial crack in an infinite body[44,55].Therefore,the appearance of material II does not change the stress field in materialI[45].Domain switching zones ofthe upper halfplane are identical for the homogeneous case(Fig.4a)and the bimaterial case(Fig.5)under the same external loading.

    Table 1 Elastic and domain switching parameters of theferroelectric constituents when the electric field vanishes

    Fig.5 The contoursofthe domain switching zone around an interfacial stationary crack tip in ferroelectric composites versus the magnitude of electric field,when Kapp=1 MPa·m1/2,ω=0,and φ=0

    5 Non-uniform switch toughening with electric field tuning

    5.1The weight function method

    Utilizing the crack tip field and domain switching zone obtained in previous sections,we will explore the electric field tuning of switch toughening effect by evaluating the crack tip stress intensity factor(SIF),

    where a toughness increment △K appears because of the transformation strain induced by the non-uniform ferroelectric-ferroelastic domain switching[56].A stationary and a quasi-static growing interfacial crack will be analyzed in detail.

    The weightfunction method isapplied here to quantify the interaction between the transformation strain and the interfacial crack.The switch toughening effect can be achieved by a surface integral through the domain switching zone[53],

    Here AIand AIIdenote the domain switching zones in the upper and lower half-planes,respectively,are the weightfunctions ofan anti-plane semi-infinite interfacial crack between dissimilar isotropic materials[55],given by

    where μIand μIIare the shear moduli of ferroelectric constituents,, and other components ofare zero.Owing to the piecewise property of V90,it is convenient to divide the toughness increment △K into three fractions[35]:the uniform switching fraction(denoted as the subscript“uni”),the transitional switching fraction(denoted as the subscript“tran”),and the saturated fraction(denoted as the subscript“sat”),

    5.2Electrically-dependent switch toughening effect of a stationary crack

    Our calculation begins with a stationary interfacial crack. Following the scheme above,we will evaluate these three fractions of toughening effect separately.Firstly,we concentrate on the uniform switching partin materialI.Substituting the domain switching zone in Eq.(14)into Eq.(18),we obtain

    and the transitional switching fraction,

    Similar conclusions can be obtained for material II.Finally,we obtain the toughening effect of a stationary interfacial crack by substituting Eqs.(21)-(23)into Eq.(20),

    NI(E,ω),NII(E,ω),and ū are three coupling parameters defined to evaluate the influence of bimaterial properties. Note that NI(E,ω)and NII(E,ω)are functions of the magnitude and direction ofthe electric field,reflecting the electric field tuning offracture toughness in ferroelectric composites. On the contrary,ū is independent of the electric field.

    Substituting the domain switching zone in Appendix 1 into Eq.(24),we arrive at,

    It is concluded that the variation of stress intensity factor is identical to zero for a stationary interfacial crack in spite of the electric loading.The transformation toughening effect is equal to the transformation weakening effect for a stationary interfacial crack in bimaterial ferroelectrics,which is identical to the results of a stationary crack in homogeneous brittle materials[39,40]and ferroelastic materials[28,41,52].

    5.3Electrically-dependent switch toughening effect of a quasi-static growing crack

    Next,we calculate the toughening effect of a quasi-static growing interfacial crack.The switching zone is divided into two parts:the front zone and the wake zone,

    where the frontzone can be regarded as one partofthe switching area around a stationary crack,while the wake zone is a strip switching area that emerged when the interfacial crack propagates along the interface.

    The switch toughening effect of the front zone is obtained by substituting the corresponding initial and final angles into Eq.(24),

    Then the contribution of the wake zone is explored.Similarly,we also divide the wake zone into three fractions:the uniform one,the transitional one,and the saturated one,

    where h denotes the height of the wake zone,and △a is the increment length of the interfacial crack,h/△a→0 means that the interfacial crack has reached a quasi-static growing condition.The area of the wake zone is an infinite horizontal strip with a finite height.The area elements of the integral are expressed as

    Again,the calculation isperformed formaterialIfirst.Substituting Eq.(30)into Eq.(21)yieldsthe contribution ofuniform switching zone in material I,

    In addition,we obtain the transitional switching fraction,

    and the saturated switching fraction,

    Substituting Eqs.(33)-(35)into Eq.(29)yields the switch toughening effect in the wake zone,

    Finally,we obtain the crack tip SIF ofa quasi-static growing interfacial crack by substituting Eqs.(27),(28),and(36)into Eq.(17),

    where

    Note that Eq.(37)can degenerate to the formulation of ferroelastic domain switching[35]when the electric field vanishes.

    Employing the stress intensity factor criterion,Ktip= KIIIc,we obtain the electrically-dependent critical applied SIF for a mode III quasi-static growing interfacial crack,

    where KIIIcisthe mode IIIfracture toughness offerroelectric composites.

    5.4Electrically-dependent multi-domain solution

    Now,we concentrate on the ferroelectric composites consisting of domains in different orientations.An orientation distribution function f(φ)is introduced to describe the distribution of initial poling orientations,which is normalized byTwo categories of multi-domain poling configurations,i.e.,the non-poled and fully-poled ferroelectric composites,are investigated as below.

    5.4.1Non-poled configuration

    For ferroelectric composites in the non-poled configuration,a random orientation distribution function is involved,

    Combining Eqs.(37)and(40),we obtain the switch toughening effect for non-poled ferroelectric composites,

    5.4.2Fully-poled configuration

    Forferroelectric composites in fully-poled configuration,the orientation distribution function[28]is considered as,

    where ωpdenotes the poled direction.Similarly,we achieve the switch toughening effect for fully-poled ferroelectric composites by combining Eqs.(37)and(42),

    In addition,the value of ?maxfor fully-poled ferroelectric composites is given in Appendix 2 with respect to the poled direction ωp,which is used in Eq.(43)to evaluate the switch toughening effect.

    6 Numerical results and discussions

    Numericalcalculationsare given inthissection on the electric field tuning of critical applied SIF by using specific material constants.The constituents of ferroelectric composites are selected as PIC 151 and another ferroelectric material,with material properties listed in Table 1.It is convenient to adopt dimensionless parameters in the plot.The normalized magnitude ofelectric field and the normalized criticalapplied SIF are defined as,

    where the super-imposed tilde indicates the normalization,and Ec=1 MV/m is the coercive electric field[57].The variation ofthe criticalapplied SIF is discussed in detailwith respect to the magnitude and direction of the electric field. The mono-domain and multi-domain solutions of a quasistatic growing crack are discussed as below.

    6.1Electric field tuning in the mono-domain solution

    Firstly,we explore the electric field tuning ofswitch toughening in the mono-domain solution.Figure 6 depicts the critical applied SIF,plotted against the magnitude and direction of the electric field under different initial poling orientations. The direction of the electric field can be divided into the toughening range,

    Fig.6 Normalized critical applied stress intensity factors of monodomain quasi-static growing crack versus the normalized magnitude and direction of electric field under different initial poling orientations: a φ=0,b φ=π,c φ=7π/4

    and the weakening range,

    with respect to the initial poling orientation.The critical applied SIFincreases with the normalized magnitude ofelectric field when the direction of the electric field is within the toughening range,while it decreases with the normalized magnitude of electric field when the direction of the electric field is within the weakening range,as shown in Fig.6a-c. It is similar to the results in the homogeneous ferroelectrics through the phase-field simulation[58,59].In addition,the optimal toughening and weakening directions of the electric field are given analytically with respect to the initial poling orientation as,

    It implies that the electric field can be utilized to tune the fracture toughness of ferroelectric composites.

    6.2Electric field tuning in the multi-domain solution

    6.2.1Ferroelectric composites in non-poled configuration Then similar analysis is explored for the electric field tuning of switch toughening in the multi-domain solution.Figure 7 reveals the critical applied SIF in non-poled ferroelectric composites plotted againstthe magnitude ofthe electric field under different electric directions.Figure 7a shows the normalized criticalapplied SIF increasesmonotonously with the normalized magnitude of electric field.However,it varies periodically with respect to the direction of the electric field,as depicted in Fig.7b.The normalized critical applied SIF reaches the maximum in the direction of ω=π/4 or ω=5π/4,while it reaches the minimum in the direction of ω=3π/4 or ω=7π/4.

    6.2.2Ferroelectric composites in fully-poled configuration Figure 8 shows thatthe criticalapplied SIF in fully-poled ferroelectric compositesvarieswith the magnitude and direction of the electric field under different poled directions.Similar to the case of the mono-domain solution,the direction of the electric field can also be divided into the toughening range and weakening range for fully-poled ferroelectric composites.The optimal toughening and weakening directions of the electric field vary with respect to the poled direction,as depicted in Fig.8a-c.These figures can provide guidance

    to determine the optimal direction of the electric field for fully-poled ferroelectric composites.

    7 Concluding remarks

    This work deals with the tuning of fracture toughness of ferroelectric composites by an electric field.The tuning process is implemented by the non-uniform ferroelectricferroelastic domain switching near the interfacial crack tip.The electrically-dependent switch toughening effect is obtained for stationary and quasi-static growing interfacial cracks by employing the weight function method.Multidomain solutions are derived for non-poled and fully-poled ferroelectric composites.The conclusionsthatcan be reached from the analysis above are:

    (1)The size of the domain switching zone varies with respect to the electric loading.However,no toughening effect exists for a stationary interfacial crack in spite of the electric loading.

    Fig.7 Normalized criticalapplied stress intensity factors ofnon-poled quasi-staticgrowing crack versus a thenormalized magnitudeofelectric field,and b the direction of electric field

    (2)The electric loading can toughen orweaken the fracture toughness of a quasi-static growing interfacial crack through the domain switching process.The optimal toughening and weakening directions of the electric field are derived analytically with respect to the initial poling orientation for a quasi-static growing interfacial crack in the mono-domain solution.

    (3)For a quasi-static growing interfacial crack in nonpoled ferroelectric composites,the critical applied SIF increases monotonously with the magnitude ofthe electric field,and varies periodically with the direction of the electric field.For a quasi-static growing interfacial crack in fully-poled ferroelectric composites,the criticalapplied SIFvarieswith respectto the electric loading and poled direction.The electric field can be utilized to tune the fracture toughness of ferroelectric composites.

    This work focuses on the possible application of an electric field in the tuning of fracture toughness of ferroelectric composites based on an assumption of elastic and dielectric isotropy.The influence of elastic and dielectric anisotropy will be further investigated in our future work.

    Fig.8 Normalized critical applied stress intensity factors of a fullypoled quasi-static growing crack versus the normalized magnitude and direction ofthe electric field under differentpoled directions:a ωp=0,b ωp=π/2,c ωp=π

    Acknowledgments Theprojectwassponsored by the NationalNatural Science Foundation of China(Grants 11090334,11572227).

    Appendix 1:Actualdomain switching modesfor ferroelectric mono-crystal with respect to the initial poling orientation and the direction of electric field

    Each tetragonal ferroelectric mono-crystal possesses four types of probable 90?domain switching modes.The condition ofdetermines the actual domainswitching mode and the range ofdomain switching zone with respectto the poling orientationφ and the direction ofelectric field ω.

    The actual domain switching mode is given under a positive electric field(0≤ω<π)as

    The actual domain switching mode is given under a negative electric field(π≤ω<2π)as:

    Appendix 2:The values of ?max for fully-poled ferroelectric composites with respect to the poled direction ωp

    By taking the partial derivative to the height of domain switching zone H(E,ω)with respect to ?,we obtain the value of ?maxassociated with the maximum height of the domain switching zone Hmax(E,ω):

    1.Scott,J.F.:Prospectsforferroelectrics:2012-2022.ISRNMat.Sci. 2013,187313(2013)

    2.Scott,J.F.:Applications of modern ferroelectrics.Science 315,954-959(2007)

    3.Kim,S.,Bastani,Y.,Lu,H.D.,etal.:Directfabrication ofarbitraryshaped ferroelectric nanostructures on plastic,glass,and silicon substrates.Adv.Mater.23,3786-3790(2011)

    4.Lu,H.,Bark,C.W.,de los Ojos,D.E.,et al.:Mechanical writing of ferroelectricpolarization.Science 336,59-61(2012)

    5.Pritchard,J.,Bowen,C.R.,Lowrie,F(xiàn).:Multilayeractuators:review. Br.Ceram.Trans.100,265-273(2001)

    6.H?usler,C.,Jelitto,H.,Neumeister,P.,et al.:Interfacial fracture of piezoelectric multilayer actuators under mechanical and electrical loading.Int.J.Fract.160,43-54(2009)

    7.Furuta,A.,Uchino,K.:Dynamic observation of crack propagation in piezoelectric multilayeractuators.J.Am.Ceram.Soc.76,1615-1617(1993)

    8.Chen,Y.H.,Hasebe,N.:Current understanding on fracture behaviors of ferroelectric/piezoelectric materials.J.Intell.Mater.Syst. Struct.16,673-687(2005)

    9.Govorukha,V.,Kamlah,M.,Loboda,V.,et al.:Interface cracks in piezoelectric materials.Smart Mater.Struct.25,023001(2016)

    10.Suo,Z.,Kuo,C.M.,Barnett,D.M.,et al.:Fracture mechanics for piezoelectric ceramics.J.Mech.Phys.Solids 40,739-765(1992)

    11.Ru,C.Q.:Exactsolution forfinite electrode layersembedded atthe interface oftwo piezoelectrichalf-planes.J.Mech.Phys.Solids48,693-708(2000)

    12.Gao,C.F.,Wang,M.Z.:Green’s functions of an interfacial crack between two dissimilar piezoelectric media.Int.J.Solids Struct. 38,5323-5334(2001)

    13.Beom,H.G.:Permeable cracks between two dissimilar piezoelectric materials.Int.J.Solids Struct.40,6669-6679(2003)

    14.Li,Q.,Chen,Y.H.:Analysisofapermeableinterfacecrack in elastic dielectric/piezoelectric bimaterials.Acta Mech.Sin.23,681-687(2007)

    15.Ou,Z.C.,Wu,X.J.:On the crack-tip stresssingularity ofinterfacial cracks in transversely isotropic piezoelectric bimaterials.Int.J. Solids Struct.40,7499-7511(2003)

    16.Narita,F(xiàn).,Shindo,Y.:Layered piezoelectric medium with interface crack under anti-plane shear.Theor.Appl.Fract.Mech.30,119-126(1998)

    17.Soh,A.K.,F(xiàn)ang,D.N.,Lee,K.L.:Analysis of a bi-piezoelectric ceramic layerwith an interfacialcrack subjected to anti-plane shear and in-plane electric loading.Eur.J.Mech.A Solids 19,961-977(2000)

    18.Li,X.F.,F(xiàn)an,T.Y.,Wu,X.F.:A moving mode-III crack atthe interface between two dissimilar piezoelectric materials.Int.J.Eng. Sci.38,1219-1234(2000)

    19.Gao,C.F.,Wang,M.Z.:General treatment of mode III interfacial crack problems in piezoelectric materials.Arch.Appl.Mech.71,296-306(2001)

    20.Li,R.,Kardomateas,G.A.:The mode III interface crack in piezoelectro-magneto-elastic dissimilar bimaterials.J.Appl.Mech.73,220-227(2006)

    21.Li,X.F.,Liu,G.L.,Lee,K.Y.:Magnetoelectroelastic field induced by a crack terminating atthe interface ofa bi-magnetoelectric material.Philos.Mag.89,449-463(2009)

    22.Calderon-Moreno,J.M.:Stress induced domain switching of PZT in compression tests.Mater.Sci.Eng.A 315,227-230(2001)

    23.Fang,F(xiàn).,Yang,W.,Zhang,F(xiàn).C.,et al.:Domain structure evolution and fatigue cracking of001-oriented[Pb(Mg1/3Nb2/3)O3]0.67(PbTiO3)0.33ferroelectric single crystals under cyclic electric loading.Appl.Phys.Lett.91,081903(2007)

    24.Evans,D.,Schilling,A.,Kumar,A.,et al.:Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT. Nat.Commun.4,1534(2013)

    25.Park,S.,Sun,C.T.:Fracture criteria for piezoelectric ceramics.J. Am.Ceram.Soc.78,1475-1480(1995)

    26.Fu,R.,Zhang,T.Y.:Effects of an electric field on the fracture toughness of poled lead zirconate titanate ceramics.J.Am.Ceram. Soc.83,1215-1218(2000)

    27.dos Santos e Lucato,S.L.,Bahr,H.A.,Pham,V.B.et al.:Crack deflection in piezoelectric ceramics.J.Eur.Ceram.Soc.23,1147-1156(2003)

    28.Yang,W.,Zhu,T.:Switch-toughening of ferroelectrics subjected to electric fields.J.Mech.Phys.Solids 46,291-311(1998)

    29.Landis,C.M.:Uncoupled,asymptotic mode III and mode E crack tip solutionsin non-linearferroelectricmaterials.Eng.Fract.Mech. 69,13-23(2002)

    30.Wang,J.,Landis,C.:Effectsofin-plane electric fieldson the toughening behavior of ferroelectric ceramics.J.Mech.Mater.Struct.1,1075-1095(2006)

    31.Liu,M.,Hsia,K.J.:Interfacial cracks between piezoelectric and elastic materials under in-plane electric loading.J.Mech.Phys. Solids 51,921-944(2003)

    32.Liu,B.,F(xiàn)ang,D.N.:Domain-switching embedded nonlinear electromechanicalfinite elementmethod forferroelectric ceramics. Sci.China Phys.Mech.Astron.54,606-617(2011)

    33.Qiao,H.,Wang,J.,Chen,W.Q.:Phase field simulation of domain switching in ferroelectric single crystalwith electrically permeable and impermeable cracks.Acta Mech.Solida Sin.25,1-8(2012)

    34.Li,F(xiàn).X.,Sun,Y.,Rajapakse,R.:Effect of electric boundary conditions on crack propagation in ferroelectric ceramics.Acta Mech. Sin.30,153-160(2014)

    35.Xia,X.D.,Cui,Y.Q.,Zhong,Z.:A mode III interfacial crack under nonuniform ferro-elastic domain switching.Theor.Appl.Fract. Mech.69,44-52(2014)

    36.Zhu,T.,Yang,W.:Toughness variation of ferroelectrics by polarization switch under non-uniform electric field.Acta Mater.45,4695-4702(1997)

    37.Yang,W.,Wang,H.T.,Cui,Y.Q.:Composite Eshelby model and domain band geometries of ferroelectric ceramics.Sci.China Ser. E 44,403-413(2001)

    38.Cui,Y.Q.,Zhong,Z.:A novel criterion for nonuniform domain switching of tetragonal ferroelectrics.Mech.Mater.45,61-71(2012)

    39.McMeeking,R.M.,Evans,A.G.:Mechanics of transformationtoughening in brittle materials.J.Am.Ceram.Soc.65,242-246(1982)

    40.Lambropoulos,J.C.:Shear,shape and orientation effects in transformation toughening.Int.J.Solids Struct.22,1083-1106(1986)

    41.Ru,C.Q.,Batra,R.C.:Toughening due to transformations induced by a crack tip stress field in ferroelastic materials.Int.J.Solids Struct.32,3289-3305(1995)

    42.Cui,Y.Q.,Yang,W.:Electromechanical cracking in ferroelectrics driven by large scale domain switching.Sci.China Phys.Mech. Astron.54,957-965(2011)

    43.Cui,Y.Q.,Zhong,Z.:Large scale domain switching around the tip ofan impermeable stationary crack in ferroelectric ceramics driven by near-coercive electric field.Sci.China Phys.Mech.Astron.54,121-126(2011)

    44.Suo,Z.:Singularities,interfaces and cracks in dissimilar anisotropic media.Proc.R.Soc.Lond.A 427,331-358(1990)

    45.Gao,H.,Abbudi,M.,Barnett,D.M.:Interfacial crack-tip field in anisotropic elastic solids.J.Mech.Phys.Solids40,393-416(1992)

    46.Parton,V.Z.:Fracture mechanics of piezoelectric materials.Acta Astron.3,671-683(1976)

    47.Wang,B.L.,Han,J.C.:Discussion on electromagnetic crack face boundary conditions for the fracture mechanics of magnetoelectro-elastic materials.Acta Mech.Sin.22,233-242(2006)

    48.Hwang,S.C.,Lynch,C.S.,McMeeking,R.M.:Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall.Mater.43,2073-2084(1995)

    49.Jiang,B.,Bai,Y.,Chu,W.Y.,et al.:Direct observation of two 90 steps of 180 domain switching in BaTiO3single crystal under an antiparallel electric field.Appl.Phys.Lett.93,152905(2008)

    50.Yang,W.,F(xiàn)ang,F(xiàn).,Tao,M.:Critical role of domain switching on the fracture toughness of poled ferroelectrics.Int.J.Solids Struct. 38,2203-2211(2001)

    51.Hackemann,S.,Pfeiffer,W.:Domain switching in processzonesof PZT:characterization by microdiffraction and fracture mechanical methods.J.Eur.Ceram.Soc.23,141-151(2003)

    52.Cui,Y.Q.,Yang,W.:Toughening under non-uniform ferro-elastic domain switching.Int.J.Solids Struct.43,4452-4464(2006)

    53.Cui,Y.Q.,Zhong,Z.:Nonuniform ferroelastic domain switching driven by two-parameter crack tip stress field.Eng.Fract.Mech. 96,226-240(2012)

    54.Jiang,Y.J.,F(xiàn)ang,D.N.,Li,F(xiàn).X.:In situ observation of electricfield-induced domain switching near a crack tip in poled 0.62PbMg1/3Nb2/3O3-0.38PbTiO3single crystal.Appl.Phys. Lett.90,222907(2007)

    55.Gao,H.:Weightfunction method forinterface cracksin anisotropic bimaterials.Int.J.Fract.56,139-158(1992)

    56.Kolleck,A.,Schneider,G.,Meschke,F(xiàn).:R-curve behavior of BaTiO3 and PZT ceramics under the influence of an electric field applied parallel to the crack front.Acta Mater.48,4099-4113(2000)

    57.Zhou,D.,Kamlah,M.:Room-temperature creep ofsoft PZT under static electrical and compressive stress loading.Acta Mater.54,1389-1396(2006)

    58.Wang,J.,Zhang,T.Y.:Phase field simulations of polarization switching-induced toughening in ferroelectric ceramics.Acta Mater.55,2465-2477(2007)

    59.Abdollahi,A.,Arias,I.:Phase-field modeling of the coupled microstructure and fracture evolution in ferroelectric single crystals.Acta Mater.59,4733-4746(2011)

    2 May 2016/Revised:26 May 2016/Accepted:12 June 2016/Published online:2 September 2016

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

    午夜老司机福利片| 亚洲成色77777| 老司机在亚洲福利影院| 久久午夜综合久久蜜桃| 黑人欧美特级aaaaaa片| 欧美日韩一级在线毛片| 欧美黄色片欧美黄色片| 美女高潮到喷水免费观看| 国产免费又黄又爽又色| 国产精品久久久人人做人人爽| 欧美黄色片欧美黄色片| 国产男女超爽视频在线观看| 欧美精品一区二区大全| 精品国产乱码久久久久久男人| 日韩欧美一区视频在线观看| 国产成人系列免费观看| 日韩欧美一区视频在线观看| 老汉色av国产亚洲站长工具| 精品视频人人做人人爽| 黄片小视频在线播放| 女人久久www免费人成看片| 中文字幕人妻丝袜制服| 在线精品无人区一区二区三| 亚洲成人av在线免费| 天天操日日干夜夜撸| 国产黄频视频在线观看| 久久这里只有精品19| 又粗又硬又长又爽又黄的视频| 国产视频首页在线观看| 午夜激情久久久久久久| 国产精品二区激情视频| 国产男女内射视频| 亚洲情色 制服丝袜| 99久久综合免费| 五月天丁香电影| 丰满饥渴人妻一区二区三| 亚洲图色成人| h视频一区二区三区| 国产探花极品一区二区| 在线天堂最新版资源| 亚洲精品自拍成人| 99热国产这里只有精品6| 久久久久视频综合| 人人妻人人添人人爽欧美一区卜| 色播在线永久视频| 日韩成人av中文字幕在线观看| 成人毛片60女人毛片免费| 久久精品国产亚洲av高清一级| 亚洲熟女毛片儿| av国产精品久久久久影院| 日日爽夜夜爽网站| 秋霞在线观看毛片| 免费黄频网站在线观看国产| 日本欧美视频一区| 日韩一区二区视频免费看| 国产精品二区激情视频| 天堂中文最新版在线下载| 一区二区三区精品91| 日日撸夜夜添| 久久久久精品国产欧美久久久 | 少妇 在线观看| 美女视频免费永久观看网站| 亚洲欧美色中文字幕在线| 黄片小视频在线播放| 一级毛片黄色毛片免费观看视频| 久久99精品国语久久久| 国产97色在线日韩免费| 黑人欧美特级aaaaaa片| av不卡在线播放| 热re99久久精品国产66热6| 国产野战对白在线观看| 亚洲成人国产一区在线观看 | 国产av码专区亚洲av| 日韩av不卡免费在线播放| 国产黄色免费在线视频| 日韩一卡2卡3卡4卡2021年| 多毛熟女@视频| 在线观看免费高清a一片| 欧美日韩av久久| 久久人人97超碰香蕉20202| 久久婷婷青草| av有码第一页| 日韩av不卡免费在线播放| 精品一区二区免费观看| 国产人伦9x9x在线观看| 一级毛片我不卡| 建设人人有责人人尽责人人享有的| 女人高潮潮喷娇喘18禁视频| 欧美老熟妇乱子伦牲交| 99国产综合亚洲精品| 大香蕉久久成人网| 成人国语在线视频| 校园人妻丝袜中文字幕| 亚洲精品日本国产第一区| 国产爽快片一区二区三区| 久久久欧美国产精品| 亚洲成人av在线免费| 91aial.com中文字幕在线观看| 亚洲成国产人片在线观看| 黑人欧美特级aaaaaa片| 国产片特级美女逼逼视频| 三上悠亚av全集在线观看| 午夜福利乱码中文字幕| 午夜福利在线免费观看网站| 亚洲精品,欧美精品| 亚洲综合色网址| 久久 成人 亚洲| 亚洲欧美中文字幕日韩二区| 亚洲少妇的诱惑av| 欧美人与善性xxx| 永久免费av网站大全| 视频区图区小说| 夫妻午夜视频| 丰满少妇做爰视频| 悠悠久久av| 少妇被粗大的猛进出69影院| 精品国产露脸久久av麻豆| 亚洲美女黄色视频免费看| 亚洲综合色网址| netflix在线观看网站| 亚洲精品在线美女| 午夜福利乱码中文字幕| 国产熟女欧美一区二区| 欧美人与性动交α欧美精品济南到| 美女扒开内裤让男人捅视频| 午夜日韩欧美国产| 妹子高潮喷水视频| 人妻 亚洲 视频| 国产av码专区亚洲av| 欧美日韩福利视频一区二区| 精品一区在线观看国产| 不卡av一区二区三区| 久久精品国产a三级三级三级| 国产伦理片在线播放av一区| 不卡av一区二区三区| 亚洲专区中文字幕在线 | 男女国产视频网站| 免费在线观看视频国产中文字幕亚洲 | 青青草视频在线视频观看| 日韩 亚洲 欧美在线| 一个人免费看片子| 久久久久久久久久久免费av| 国产精品成人在线| 男女边吃奶边做爰视频| 亚洲自偷自拍图片 自拍| 99久久人妻综合| 亚洲国产日韩一区二区| 国产精品国产三级专区第一集| 亚洲国产欧美在线一区| 午夜福利视频精品| 啦啦啦啦在线视频资源| 国产精品国产av在线观看| 中文字幕另类日韩欧美亚洲嫩草| av福利片在线| 人人澡人人妻人| 少妇人妻精品综合一区二区| 日韩 欧美 亚洲 中文字幕| 美女脱内裤让男人舔精品视频| 成人黄色视频免费在线看| 精品一区在线观看国产| a 毛片基地| 国产xxxxx性猛交| 人体艺术视频欧美日本| 欧美乱码精品一区二区三区| av不卡在线播放| 亚洲少妇的诱惑av| 国产精品一区二区在线观看99| 欧美日韩一级在线毛片| 久久久久久久精品精品| 青春草国产在线视频| 午夜免费男女啪啪视频观看| 国产成人精品无人区| 国产一区亚洲一区在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲国产日韩一区二区| 母亲3免费完整高清在线观看| 爱豆传媒免费全集在线观看| 色播在线永久视频| 丝瓜视频免费看黄片| 看免费成人av毛片| 日本av免费视频播放| 久久影院123| 国语对白做爰xxxⅹ性视频网站| 成年人免费黄色播放视频| 久久人妻熟女aⅴ| 国产熟女午夜一区二区三区| 多毛熟女@视频| 国产精品久久久久久精品电影小说| 午夜福利视频在线观看免费| 国产精品av久久久久免费| 午夜老司机福利片| 午夜福利视频精品| 亚洲美女搞黄在线观看| 黄色视频不卡| 日本午夜av视频| 人人妻人人添人人爽欧美一区卜| 久久久精品区二区三区| 国产伦理片在线播放av一区| 只有这里有精品99| 中文字幕最新亚洲高清| 九色亚洲精品在线播放| 国产精品香港三级国产av潘金莲 | 久久久久国产精品人妻一区二区| 国产又爽黄色视频| 波野结衣二区三区在线| 人人妻人人澡人人看| 中文字幕高清在线视频| 久久人人97超碰香蕉20202| 国产精品.久久久| 久久精品久久久久久噜噜老黄| 日日爽夜夜爽网站| 男人舔女人的私密视频| 国产在线免费精品| 在线观看免费午夜福利视频| 久久久久久久久免费视频了| 精品卡一卡二卡四卡免费| 色吧在线观看| 色视频在线一区二区三区| 久热爱精品视频在线9| 欧美精品高潮呻吟av久久| 在线天堂中文资源库| 亚洲激情五月婷婷啪啪| 日韩大片免费观看网站| 久久精品国产综合久久久| 嫩草影视91久久| 色网站视频免费| 国产精品 欧美亚洲| 久久久久久久国产电影| 天天操日日干夜夜撸| 91精品国产国语对白视频| 一区福利在线观看| 日韩制服骚丝袜av| 蜜桃国产av成人99| 国产精品 国内视频| 少妇猛男粗大的猛烈进出视频| 考比视频在线观看| 青草久久国产| 久久精品国产综合久久久| 亚洲成人国产一区在线观看 | 夫妻午夜视频| 精品亚洲乱码少妇综合久久| 这个男人来自地球电影免费观看 | 精品国产露脸久久av麻豆| 亚洲国产av影院在线观看| 欧美日韩精品网址| 色94色欧美一区二区| 日韩伦理黄色片| 一区二区三区四区激情视频| 各种免费的搞黄视频| 伦理电影免费视频| 啦啦啦在线免费观看视频4| 中文字幕制服av| 国产毛片在线视频| 国产熟女欧美一区二区| 日本wwww免费看| 国精品久久久久久国模美| 啦啦啦啦在线视频资源| 久久天堂一区二区三区四区| 在线观看免费午夜福利视频| 啦啦啦中文免费视频观看日本| 欧美精品亚洲一区二区| 99久久人妻综合| 亚洲视频免费观看视频| 夫妻性生交免费视频一级片| 欧美人与性动交α欧美精品济南到| 日本爱情动作片www.在线观看| 自线自在国产av| 欧美黑人欧美精品刺激| 日韩精品有码人妻一区| 国产免费一区二区三区四区乱码| 久久精品国产a三级三级三级| 国产高清不卡午夜福利| 亚洲成国产人片在线观看| 在线 av 中文字幕| 热99久久久久精品小说推荐| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看免费高清a一片| 日韩视频在线欧美| 亚洲国产av影院在线观看| 免费看av在线观看网站| 日韩av不卡免费在线播放| 欧美 亚洲 国产 日韩一| 国产欧美亚洲国产| 精品一区二区三区av网在线观看 | 天天躁夜夜躁狠狠久久av| 午夜福利影视在线免费观看| 美女高潮到喷水免费观看| 久久午夜综合久久蜜桃| 久久天堂一区二区三区四区| 欧美另类一区| 一区福利在线观看| 亚洲精品乱久久久久久| 日日啪夜夜爽| 波多野结衣一区麻豆| 亚洲精品成人av观看孕妇| 最近最新中文字幕大全免费视频 | 男女午夜视频在线观看| 精品一区二区免费观看| av线在线观看网站| 国产麻豆69| 妹子高潮喷水视频| 国产精品无大码| 日日爽夜夜爽网站| 丁香六月天网| 欧美xxⅹ黑人| 黑人猛操日本美女一级片| 黄色 视频免费看| 国产精品av久久久久免费| 亚洲综合色网址| 最近2019中文字幕mv第一页| 黄片小视频在线播放| 午夜老司机福利片| 亚洲一区中文字幕在线| 亚洲国产精品999| 日本wwww免费看| 少妇人妻精品综合一区二区| 久久久国产精品麻豆| 9色porny在线观看| 男女床上黄色一级片免费看| 亚洲精品国产色婷婷电影| 天天影视国产精品| 可以免费在线观看a视频的电影网站 | 国产av精品麻豆| 十分钟在线观看高清视频www| 日韩不卡一区二区三区视频在线| 黄色怎么调成土黄色| 国产精品免费视频内射| 宅男免费午夜| 青草久久国产| 王馨瑶露胸无遮挡在线观看| 精品视频人人做人人爽| 国产精品无大码| 亚洲精品国产av成人精品| 国产成人午夜福利电影在线观看| 成人国产麻豆网| 水蜜桃什么品种好| 美女脱内裤让男人舔精品视频| 精品少妇内射三级| 国产精品.久久久| 成人漫画全彩无遮挡| 日韩欧美一区视频在线观看| 欧美少妇被猛烈插入视频| h视频一区二区三区| 午夜激情久久久久久久| 日韩欧美一区视频在线观看| 国产精品免费大片| 一区二区日韩欧美中文字幕| 国产视频首页在线观看| 免费在线观看完整版高清| 成人18禁高潮啪啪吃奶动态图| 精品人妻在线不人妻| 中文精品一卡2卡3卡4更新| 精品亚洲成a人片在线观看| 亚洲国产av新网站| 亚洲成人免费av在线播放| 日本wwww免费看| 九九爱精品视频在线观看| 国产欧美日韩综合在线一区二区| 亚洲av成人不卡在线观看播放网 | 亚洲国产日韩一区二区| 91精品伊人久久大香线蕉| 美女高潮到喷水免费观看| 国产av国产精品国产| 国产欧美亚洲国产| 精品卡一卡二卡四卡免费| 波野结衣二区三区在线| 日韩免费高清中文字幕av| 99国产综合亚洲精品| 人妻人人澡人人爽人人| 亚洲av日韩在线播放| 2021少妇久久久久久久久久久| 国产有黄有色有爽视频| 亚洲一区中文字幕在线| 日韩av在线免费看完整版不卡| 亚洲欧美精品综合一区二区三区| 欧美日韩成人在线一区二区| 丝袜在线中文字幕| 亚洲美女视频黄频| 无遮挡黄片免费观看| 狂野欧美激情性xxxx| 丝袜喷水一区| 国产精品免费大片| 国产一卡二卡三卡精品 | 精品国产一区二区三区四区第35| 男女边吃奶边做爰视频| a级片在线免费高清观看视频| 欧美精品av麻豆av| 99re6热这里在线精品视频| 日本爱情动作片www.在线观看| 日韩,欧美,国产一区二区三区| 亚洲精品久久午夜乱码| 久久久久久久久久久免费av| 亚洲综合精品二区| 宅男免费午夜| 久久午夜综合久久蜜桃| 久久久久精品人妻al黑| 好男人视频免费观看在线| 中文字幕人妻丝袜一区二区 | 精品国产乱码久久久久久男人| 免费在线观看视频国产中文字幕亚洲 | 婷婷成人精品国产| 精品国产一区二区久久| 日韩制服丝袜自拍偷拍| 日本wwww免费看| 国产日韩欧美亚洲二区| 国产亚洲欧美精品永久| 另类亚洲欧美激情| 久久久久久久久免费视频了| 亚洲av日韩精品久久久久久密 | 国产片特级美女逼逼视频| 欧美精品人与动牲交sv欧美| 99热全是精品| 中文字幕人妻熟女乱码| 国产日韩欧美亚洲二区| 2018国产大陆天天弄谢| 国产伦理片在线播放av一区| 久久 成人 亚洲| 老司机影院毛片| 中文字幕精品免费在线观看视频| a级毛片在线看网站| 一区二区三区激情视频| 少妇被粗大猛烈的视频| 午夜福利视频在线观看免费| 多毛熟女@视频| 亚洲国产精品999| 日日爽夜夜爽网站| 欧美日韩一区二区视频在线观看视频在线| 欧美精品亚洲一区二区| 波多野结衣一区麻豆| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产欧美在线一区| 蜜桃在线观看..| 精品少妇久久久久久888优播| 女性生殖器流出的白浆| 99久国产av精品国产电影| a级毛片在线看网站| 激情视频va一区二区三区| 亚洲熟女精品中文字幕| 女人高潮潮喷娇喘18禁视频| 日本猛色少妇xxxxx猛交久久| 国产精品久久久人人做人人爽| 天堂8中文在线网| 在线天堂中文资源库| 丰满少妇做爰视频| 国产精品 国内视频| 久久久精品区二区三区| 精品一区二区三区四区五区乱码 | 亚洲国产精品999| 啦啦啦在线免费观看视频4| 99精国产麻豆久久婷婷| 欧美精品亚洲一区二区| 观看av在线不卡| 黑人巨大精品欧美一区二区蜜桃| 日韩av不卡免费在线播放| 丝袜喷水一区| 丝袜人妻中文字幕| 99久久综合免费| 亚洲男人天堂网一区| 久久久久国产一级毛片高清牌| 久久久久久人妻| 街头女战士在线观看网站| a级毛片黄视频| 免费女性裸体啪啪无遮挡网站| 嫩草影院入口| 国产一区二区三区综合在线观看| 在线观看国产h片| 午夜免费观看性视频| 精品久久蜜臀av无| 国产爽快片一区二区三区| 少妇人妻久久综合中文| 精品人妻在线不人妻| 黑人欧美特级aaaaaa片| 最近中文字幕2019免费版| 成年人午夜在线观看视频| 在线观看免费日韩欧美大片| 亚洲av在线观看美女高潮| 精品午夜福利在线看| 熟女av电影| 毛片一级片免费看久久久久| 人成视频在线观看免费观看| 免费黄色在线免费观看| 少妇被粗大猛烈的视频| 欧美在线黄色| 黑人欧美特级aaaaaa片| 人体艺术视频欧美日本| 一级黄片播放器| 又大又黄又爽视频免费| 波多野结衣av一区二区av| 夫妻午夜视频| av有码第一页| 曰老女人黄片| 看非洲黑人一级黄片| 午夜福利视频在线观看免费| 中国国产av一级| 午夜福利免费观看在线| 免费日韩欧美在线观看| 国产黄频视频在线观看| 熟妇人妻不卡中文字幕| 精品久久蜜臀av无| 亚洲成av片中文字幕在线观看| 王馨瑶露胸无遮挡在线观看| 久久久亚洲精品成人影院| 亚洲精品中文字幕在线视频| 爱豆传媒免费全集在线观看| 人妻一区二区av| 好男人视频免费观看在线| 老鸭窝网址在线观看| 亚洲精品在线美女| 18禁裸乳无遮挡动漫免费视频| 国产午夜精品一二区理论片| 大片免费播放器 马上看| 国产成人精品无人区| 国产成人欧美| av又黄又爽大尺度在线免费看| 国产又色又爽无遮挡免| 精品国产国语对白av| 1024视频免费在线观看| www.自偷自拍.com| 丰满乱子伦码专区| 午夜福利在线免费观看网站| 亚洲精品第二区| 日韩制服骚丝袜av| 国产成人午夜福利电影在线观看| 男男h啪啪无遮挡| av.在线天堂| 在线观看www视频免费| 国产成人91sexporn| 蜜桃在线观看..| 9191精品国产免费久久| 最新的欧美精品一区二区| 国产在线一区二区三区精| 男女边吃奶边做爰视频| 午夜福利免费观看在线| 男人爽女人下面视频在线观看| 日本av免费视频播放| 久久久国产欧美日韩av| 久久热在线av| 久久国产精品大桥未久av| 狂野欧美激情性bbbbbb| 日本午夜av视频| 美女中出高潮动态图| xxxhd国产人妻xxx| 人成视频在线观看免费观看| 久久人人97超碰香蕉20202| 国产精品欧美亚洲77777| 国产一区二区三区综合在线观看| 美女国产高潮福利片在线看| 日本一区二区免费在线视频| 欧美av亚洲av综合av国产av | 啦啦啦啦在线视频资源| 桃花免费在线播放| a级片在线免费高清观看视频| 人妻人人澡人人爽人人| 两性夫妻黄色片| 天天影视国产精品| 日日爽夜夜爽网站| 一级,二级,三级黄色视频| 亚洲国产精品国产精品| 成人影院久久| 中文字幕人妻丝袜制服| 悠悠久久av| 日本猛色少妇xxxxx猛交久久| 女人久久www免费人成看片| 狂野欧美激情性bbbbbb| 久久这里只有精品19| 另类亚洲欧美激情| 最近手机中文字幕大全| 免费观看a级毛片全部| 日韩精品免费视频一区二区三区| 在线观看免费高清a一片| 午夜日本视频在线| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧洲精品一区二区精品久久久 | 日韩大码丰满熟妇| 国产野战对白在线观看| 校园人妻丝袜中文字幕| 最近最新中文字幕大全免费视频 | 黄色视频不卡| 国产精品99久久99久久久不卡 | 考比视频在线观看| 丰满少妇做爰视频| 大香蕉久久成人网| 欧美在线黄色| 亚洲成人手机| 久久性视频一级片| 国产精品香港三级国产av潘金莲 | 国产乱人偷精品视频| 久久热在线av| 天天操日日干夜夜撸| 亚洲av在线观看美女高潮| 中文字幕最新亚洲高清| 亚洲人成77777在线视频| 性色av一级| 熟女少妇亚洲综合色aaa.| 啦啦啦 在线观看视频| 免费黄色在线免费观看| 亚洲成国产人片在线观看| 黄色视频不卡| 韩国av在线不卡| 亚洲国产欧美在线一区| 色94色欧美一区二区| 热re99久久精品国产66热6| 美女扒开内裤让男人捅视频| 黑丝袜美女国产一区| 老汉色∧v一级毛片| svipshipincom国产片| 在线天堂最新版资源| 国产欧美日韩一区二区三区在线| 国产精品 欧美亚洲| 99精国产麻豆久久婷婷| 黄色 视频免费看| 激情五月婷婷亚洲| 国产熟女欧美一区二区| 在线亚洲精品国产二区图片欧美| 国产视频首页在线观看|