• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlocal vibration analysis of circular double-layered graphene sheets resting on an elastic foundation subjected to thermal loading

    2016-11-04 08:53:31RezaAnsariJalalTorabi
    Acta Mechanica Sinica 2016年5期

    Reza Ansari·Jalal Torabi

    ?

    RESEARCH PAPER

    Nonlocal vibration analysis of circular double-layered graphene sheets resting on an elastic foundation subjected to thermal loading

    Reza Ansari1·Jalal Torabi1

    Based on the nonlocal elasticity theory,the vibration behavior of circular double-layered graphene sheets(DLGSs)resting on the Winkler-and Pasternak-type elastic foundations in a thermal environment is investigated. The governing equation is derived on the basis of Eringen’s nonlocal elasticity and the classical plate theory(CLPT). The initial thermal loading is assumed to be due to a uniform temperature rise throughout the thickness direction.Using the generalized differential quadrature(GDQ)method and periodic differential operators in radial and circumferentialdirections,respectively,the governing equation is discretized.DLGSs with clamped and simply-supported boundary conditions are studied and the influence of van der Waals(vdW)interaction forces is taken into account. In the numerical results,the effects of various parameters such aselastic mediumcoefficients,radius-to-thicknessratio,thermal loading and nonlocal parameter are examined on both in-phase and anti-phase naturalfrequencies.The results show that the thermal load and elastic foundation respectively decreases and increases the fundamental frequencies of DLGSs.

    Circular DLGS·Vibration·Nonlocal theory· Thermal environment·Numerical solution

    ? Jalal Torabi jalal.torabii@gmail.com

    1Department of Mechanical Engineering,University of Guilan,P.O.Box 3756,Rasht,Iran

    1 Introduction

    Nanostructures are widely used in various micro-and nano-scale devices such as gas detectors,biosensors,microelectro-mechanical systems(MEMS)and nano-electromechanical systems(NEMS)due to their superior mechanical,thermal,and electrical properties[1].Among the nanostructures,carbon nanotubes(CNTs)and graphene sheets(GSs)have found a wide range ofapplications in engineering and medicine.

    There exist three main categories for the theoretical modeling of nanomaterials.One category is atomistic modeling including some methods such as classical molecular dynamics(MD),tight-binding MDand the ab initio techniques.The other category is hybrid atomistic-continuum mechanics by which one can directly incorporate the continuum treatment into the interatomic potential[2].The third approach is continuum modeling widely used in the analysis of materials at nano-scales.While conducting experiments at nanoscale is difficult,and the atomistic simulations are computationally expensive formodeling large scale nanostructures,the analysis ofnanomaterials based on the continuum mechanics is an interesting topic for researchers since the continuum models are computationally efficient and provide a reasonable accuracy.

    Classic continuum models including the beam,plate,and shellmodelshave been used to simulate CNTsand GSs[3-5]. Atvery smallsizes,lattice spacing between individualatoms becomes significantly important,and the nanostructure cannot be considered as a continuous medium.In other words,the mechanicalbehaviorofnanostructures is size-dependent. Since the classic continuum models cannot capture the size effect,some higher-order continuum theories such as the modified couple stress theory[6,7],the strain gradient the-ory[8,9],the surface stress theory[10-13],and the nonlocal elasticity theory[14-17]can be employed for the analysis of small-scale systems.In addition,Peddieson et al.[18]indicated that the nonlocal elasticity theory can be appropriately applied to nanotechnology applications.An important issue related to nonlocal models is the appropriate value of nonlocal parameters.The suitable value of the nonlocal parameter can be determined by matching the results obtained from experiments or atomistic methods such as MD simulations to those of nonlocal models.In this regard,some attempts have been made for calibrating the nonlocal parameter in some nonlocal models[19-22].

    In addition to the direct applications of GSs in different fields,they are the basic structural elements for carbon nanotubes,fullerenes,and nanorings Thus,understanding the mechanicalbehaviorof GSs is ofgreatimportance in designing MEMS and NEMS.Application of nonlocal elasticity theory has been reported by many researchers in the static and dynamic analyses of GSs.

    To be noted is that Gibson et al.[23]indicated employing the nonlocal elasticity theory results in accurate prediction of vibration behavior of nanostructures.Bending,vibration,and buckling ofrectangularand circular GSs have been studied by differentresearchers[24-34].Forexample,Arash and Wang[35]investigated the vibration of single-and doublelayered graphene sheets(SLGSs and DLGSs)using the nonlocal elasticity theory and molecular dynamics simulations.The nonlocal parameter was calibrated through the verification of natural frequency obtained by the nonlocal elasticity theory and molecular dynamics simulations. Employing the differential quadrature method and the nonlocal elasticity theory,Pradhan and Kumar[36]studied the vibration of orthotropic rectangular graphene sheets. The effects of nonlocal parameters,material properties,and boundary conditions on the non-dimensional frequency of GSs were presented.In addition,Jomehzadeh and his coworkers[37,38]investigated the large amplitude vibration of DLGSs resting on a nonlinear polymer matrix.Using Hamilton’s principle and von-Karman’s nonlinear geometricalmodel,the governing equations of DLGSs were obtained. The influences of nonlocal parameters and nonlinear behavior of a polymer matrix on the nonlinear vibration analysis of DLGSs were considered.

    Using the nonlocal continuum model,the effects of small scale on the vibration of quadrilateral nanoplates were studied by Babaei and Shahidi[39].The Galerkin method is employed to obtain the non-dimensional natural frequencies of skew,rhombic,trapezoidal,and rectangular nanoplates. Moreover,considering the nonlocalelasticity theory,Murmu et al.[40]studied the effects of a magnetic field on the vibration of rectangular SLGSs resting on elastic foundations. The results reveal that the in-plane magnetic field increases the natural frequencies of the SLGSs.Also,Mohammadi et al.[41]examined the free vibration of embedded circular and annular SLGSs employing the nonlocal continuum model.Furthermore,Mohammadi and his co-workers investigated the influence of thermo-mechanical pre-load on the vibration behavior of embedded SLGSs[42].

    The free vibration behaviorofrectangularGSs undershear in-plane loads was studied by Mohammadi et al.[43]based on the nonlocalelasticity theory.They employed the differentialquadrature method to solve the problem.In thatwork,the influences ofsurrounding elastic medium and boundary conditions were studied on the vibrations of orthotropic SLGSs. Asemi et al.[44]investigated the axisymmetric buckling of circular SLGS by decoupling the nonlocal equations of Eringen theory.The governing equations were derived using equilibrium equations of the circular plate in polar coordinates,and the Galerkin method wasimplemented to compute the buckling loads.

    Then Shen et al.[45]presented the nonlinear vibration analysis of rectangular DLGSs in thermal environments using MDsimulationsand the nonlocalelasticity.The nonlinear von-Karman relations were considered and the nonlocal parameterwas calibrated by equating the naturalfrequencies of GSs obtained from the MD simulations and those from the nonlocal plate model.In addition,the nonlocal vibration of DLGSs-based resonators was studied by Shi et al.[46]. By utilizing the nonlocal thin plate theory,both the in-phase mode(IPM)and the anti-phase mode(APM)of vibrational behavior of DLGSs with simply-supported boundary conditions were investigated.Employing the finite strip method and considering the van der Waals(vdW)effect,Sarrami-Foroushani and Azhari[47]analyzed the nonlocal vibration and stability behaviors of single-and multi-layered rectangular GSs.

    In the present study,the nonlocal vibration behavior of embedded circular DLGSs subjected to thermal load is studied.Based on the nonlocalelasticity theory,the classicalplate theory(CLPT),and the governing equation is derived.Both Winkler-and Pasternak-type elastic foundations are taken into account.A uniform temperature rise throughout the thickness direction is considered as a thermal loading.An efficient numerical method is employed to solve the governing equation and obtain the naturalfrequencies ofthe DLGSs. Using the generalized differential quadrature method and periodic differential operators in radial and circumferential directions,respectively,the governing equation is discretized in two directions.Employing the generalized differential quadrature(GDQ)method in the circumferential direction one should satisfy the periodicity condition on the boundary. While applying the periodic differential operators in the circumferentialdirection,the periodicity condition willbe satisfied by itself.DLGSswith clamped(C)and simply-supported(S)boundary conditions are studied.Furthermore,considering the vdW interaction forces between layers of DLGSs,the effects of elastic medium and thermal loadings on both in-phase and anti-phase natural frequencies were examined.

    2 Governing equations

    Unlike the classical continuum mechanics,which states that the stress tensor at a reference point x can be defined by the strain tensor at that point,based on the nonlocal elasticity theory proposed by Eringen[14],the stress at a reference point x of a body is a function of the strain field at every point in the medium.According to the nonlocal elasticity theory,the nonlocal stress tensor can be defined as

    where σij,?ij,and Cijklare elements of the stress,strain,and fourth-order elasticity tensor,respectively.Kernel functionis the nonlocal modulus which depends on the Euclidean distance,and a material constant α=e0a/l,where e0,a,and l are the material constant,internal characteristic lengths,and external characteristic lengths,respectively.The parameter e0a is the nonlocalparameter which captures the size effect in the behavior of the nanoscale structures.Eringen defined the kernel functionas

    where K0is the modified Bessel function and x·x presents the neighborhood distance[14].Considering Eqs.(1)and(2),the differential form of the constitutive relation could be obtained as

    where is the Laplacian operator.On the basis of Eq.(3)and considering the CLPT,the plane stress condition and thermal effects,the stress-strain relations are written as

    Fig.1 A continuum plate model of the circular graphene sheet

    where E,G,ν,and α are Young’s modulus,shear modulus,Poisson’s ratio,and the coefficient of thermal expansion,respectively.A continuum plate model of the circular graphene sheet and associated coordinates are shown in Fig.1.Based on the classical plate theory,the threedimensional displacement components U,V,and W are assumed as

    where u,v,and w are the displacement components of the middle surface of the graphene sheet,and t denotes time. Since neglecting the displacements of the middle surface along the radial and circumferential directions,i.e.,u=0,v=0,does not affect the transverse vibration behavior of GSs,the strain fields can be expressed as

    where z denotes the distance from the middle surface.The stress resultants can be given as

    Substituting Eqs.(4)-(6)into Eq.(7)gives

    From Eqs.(3)-(7),the governing equation of vibration of a pre-loaded circular plate resting on a Pasternak-type elastic foundation can be derived as

    where h,P,ρ,Kw,and Kgare thickness,distributed transverse pressure,density,Winklermodulus,and shearmodulus of the surrounding elastic medium,respectively.In addition,are stress resultants due to initial thermal loading.Assuming uniform temperature rise throughout the thickness direction and considering the linear equilibrium equation of the plate,the thermal stress resultants on the basis of the theory of thermal elasticity,can be written as

    Using Eqs.(8),(10),and(11),the equation ofmotion in terms of lateral deflection can be obtained as

    Since a DLGS is composed of two layers of GS,Eq.(13)can be extended into two equations for the upper and lower layers as

    where the superscripts 1 and 2 indicate the upper and lower layers of the circular DLGSs,respectively.In addition,P1and P2are the applied pressure on the GSs through the vdW interaction forces,which can be given as

    where c is the vdW interaction coefficient between two layers,which can be obtained from the Lennard-Jones pair potential as[46]

    where a is the characteristic internal length of the C-C bond. ζ=2.968 MeV and δ=0.3407 nm are parameters chosen to fit the physical properties of GSs and(j= 1,2).

    3 Solution procedure

    The equationsofmotion ofDLGSs resting on an elastic foundation and subjected to initial thermal loading are obtained based on the nonlocal CLPT.Using the GDQ method in radial direction and periodic differential matrix operators in the circumferential direction,the governing equation(14)will be discretized in two dimensions to find the natural frequency of DLGSs.In this regard,the GDQ method and periodic differential operators will be presented in the next section.

    3.1GDQ method

    On the basis of the GDQ method[48],the n-th derivative of f(r)can be obtained as a linear sum of the function,i.e.,

    in which Nris the numberoftotaldiscrete grid pointsused in the process of approximation in the r direction andthe weighting coefficients. A column vector F can be defined as shows

    where frjdenotes the nodal value of f(r)at r=rj.A differential matrix operator based on Eq.(17)can be written in the form

    In Eq.(20),n is the orderofdifferentiation andis obtained by[49]

    in which Iris an Nr×Nridentity matrix and

    Previous studies revealed thatthe Chebyshev-Gauss-Lobatto grid point distribution has the most convergence and stability among the other grid distributions.Thus,using this grid distribution,the mesh in the radialdirection can be generated as

    where R is the radius of the circular GSs.

    3.2Periodic differential operators

    To find out the periodic response of circular GSs in the circumferential direction,the general governing equation is discretized overthe circumferentialdirection via periodic differentialmatrix operators.Using this method,the periodicity condition will be naturally satisfied,and one does not need to impose the periodicity condition on differential operators. Considering an unbounded grid with periodic grid points between 0 and 2π and employing the derivatives of periodic sinc function,as a base function in a collocation method,the spectral differentiation matrix operators are obtained.The periodic differential matrix operators are defined as[49]

    where the coefficients ai,jand bi,jare given as

    where Nθis the number of grid points in the circumferential direction.

    3.3Discretization of governing equation

    The equation of motion of DLGSs will be discretized using the GDQ method and periodic differential matrix operator. The nodal values of lateral deflection of each GS layers are given as

    where Iθis an Nθ×Nθidentity matrix and?denotes the Kronecker product.Using Eqs.(27)and(28)and assuming

    harmonic solution in time domain,i.e.and,the governing equation(14)can be written as

    in which?0=Iθ?Irand

    Substituting the boundary conditions into the stiffness and inertia matrices and solving the set of linear Eq.(29),the two kinds of natural frequencies of DLGSs ωIPMand ωAPMare obtained.The subscripts IPM and APM denote the inphase mode and anti-phase mode,respectively.Considering Eq.(29),two sets of linear algebraic equations for IPM and APM natural frequencies can be written as

    4 Results and discussion

    On the basis of Eringen’s nonlocal elasticity and the classical plate theory,the vibration analysis of embedded circular DLGSs was carried out in a thermal environment. The mechanical properties of GSs are assumed as follows: Young’s modulus E=1 TPa,the mass density ρ= 2300 kg/m3,Poisson’s ratio ν=0.3,the thermal expansion coefficient for high temperature case α=1.1×10-6?C-1,and the thickness of GSs h=0.34 nm[42].The effects of Winkler and Pasternak coefficients of elastic foundation are taken into account.In this regard,non-dimensional coefficients of elastic medium are defined as

    Since the vibrational behavior of GSs is studied under initial thermal loading,the natural frequency of the structure becomes zero when the thermal loading meets its critical value.Both the IPM and the APM of natural frequency are assessed according to Eq.(33).

    The accuracy of the present work is verified by the given results for the non-dimensional natural frequency of SLGSs by Mohammadi et al.[41].Comparison of dimensionlessfrequencies for various nonlocal parameters is presented in Table 1.Moreover,the influences of various elastic foundation coefficients on the dimensionless frequency of SLGS are compared in Table 2.The results of both tables are in good agreement.

    Table 1 Comparison of dimensionless frequency parameters for two different boundary conditions and nonlocal parameters(R=10 nm)

    Table 2 Comparison of dimensionless frequency parameters for variouselastic foundation coefficientsand nonlocalparametersforclamped boundary condition(R=20 nm)

    Table 4 Changes of IPM natural frequencies(THz)of clamped DLGS forvariousthermalloadingsand nonlocalparameters(R/h=50,kw= 0,kg=0)

    The effects of elastic foundation coefficients and nonlocal parameter on IPM and APM natural frequencies of simply-supported DLGSs for different mode numbers are presented in Table 3.The values of nonlocal parameter are assumed to be 0(corresponding to the classical/local continuum model)and 2nm.The results show that the increase of the nonlocalparameterconsiderably reduces the IPMnatural frequencies.For APM,however,the effect of nonlocal parameter on the fundamental frequency is almost negligible due to the influential effect of the vdW interaction forces.The nonlocality continues to affect APM frequencies at higher mode numbers.In addition,itcan be seen thatthe increase of the elastic foundation coefficients increases the natural fre-quencies,whereas,these changes decrease at higher mode numbers.

    Table 3 Changes of IPM and APM natural frequencies(THz)of simply-supported DLGS for various elastic foundation coefficients and nonlocal parameters(R/h=10)

    Table 5 Changes of IPM natural frequencies(THz)of DLGS for different thermal loadings and boundary conditions(R/h=10)

    Fig.2 IPM natural frequencies versus mode numbers(R/h=10,kw=0,kg=0)

    Variations ofIPMnaturalfrequency ofclamped DLGSsin respect to increase of the temperature differences and nonlocal parameters are given in Table 4.The results indicate that the natural frequencies decrease by increasing the temperature difference.At higher mode numbers,the influences of thermal loading are weakened.

    IPM natural frequencies of DLGSs for different nonlocal parameters,boundary conditions,elastic foundation coefficients and thermal loadings are presented in Table 5.In addition to whatwas mentioned above,itisseen thatthe presence of elastic foundation decreases the effects of thermal loading on the fundamental frequency of the simply supported GSs.

    The variations of IPM and APM natural frequencies of clamped and simply-supported GSs versus mode numbers for various nonlocal parameters are shown in Figs. 2 and 3,respectively.It is observed that the natural frequencies of the DLGSs are more sensitive to nonlocal parameter at higher mode numbers.Furthermore,considering the clamped boundary condition makes the GSs stiffer and results in higher natural frequency in comparison with simply-supported one.

    Fig.3 APM natural frequencies versus mode numbers(R/h=10,kw=0,kg=0)

    Fig.4 IPM fundamental frequencies versus radius-to-thickness ratio(kw=0,kg=0)

    The changes of IPM and APM natural frequencies of clamped and simply-supported GSs versus the radius-tothickness ratios for various nonlocal parameters are demonstrated in Figs.4 and 5.The results reveal that the effects of nonlocal parameter at higher R/h ratios can be neglected,which is in agreement with nonlocal elasticity theory.Moreover,the vdW interaction forces play an important role on size dependency of APM natural frequencies and decrease the effects of nonlocal parameter.

    Figure 6 depicts the variations of IPM fundamental frequencies of GSs versus the radius-to-thickness ratios forvarious elastic foundation coefficients.It is found that at higher R/h ratios,the influences of elastic medium coefficients diminish.

    Fig.5 APM third natural frequency versus radius-to-thickness ratio(kw=0,kg=0)

    Fig.6 IPM natural frequencies versus radius-to-thickness ratio(e0α=1 nm)

    The variations of APM fundamental frequencies versus vdW interaction coefficients for various nonlocal parameters are plotted in Fig.7.It is observed that the quantities of vdW interaction coefficients play an important role on the size-dependency of the APM natural frequency.In addition,the higher vdW interaction coefficients lead to the higher values of natural frequency of DLGSs,as it is expected.

    Figure 8 presents the variations of IPM natural frequencies of clamped and simply-supported GSs versus the temperature differences through the thickness direction for various nonlocal parameters.The results obviously indicate that the fundamental natural frequencies of GS are size-dependent.Additionally,the fundamental frequencies decrease with the increase of thermal loading and tend to zero when the thermal loadings meet their critical values.

    Fig.7 APM natural frequencies versus vdW interaction coefficients(R/h=10,kw=0,kg=0)

    Fig.8 IPM natural frequencies versus Temperature rise(R/h=50,kw=0,kg=0)

    5 Conclusion

    The size-dependent vibration of circular DLGSs resting on an elastic foundation and subjected to thermal loading was investigated.Employing the nonlocal elasticity theory,the governing equations of DLGSs were derived.The Pasternaktype elastic foundation was considered.In addition,the thermal loading was considered to be due to a uniform temperature rise throughout the thickness direction.

    Using the generalized differential quadrature method in the radial direction and periodic differential operators in the circumferential direction,the governing equations were discretized.Considering the vdW interaction forces,both inphase and anti-phase natural frequencies were examined.

    Itwas observed thatthe nonlocalparameterhas significant effects on the natural frequencies of circular DLGSs.The higher mode numbers of IPM and APM natural frequencies are more sensitive to size-dependency.The results showed that the increase of elastic foundation coefficients increases the natural frequencies of DLGSs.Also,increase in R/h ratiosmakesthe naturalfrequency lesssensitive to increase of the elastic medium coefficients.In addition,itwas figured out that thermal loadings play an important role on the vibration analysis of DLGSs,as increase of the temperature difference yieldsto reduction offundamentalfrequency.Moreover,in the presence of an elastic foundation,considering the simply-supported boundary conditions decreases the effects of thermal loading on the fundamental frequency of the GSs.

    1.Li,X.,Bhushan,B.,Takashima,K.,etal.:Mechanicalcharacterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques.Ultramicroscopy 97,481-494(2003)

    2.Belytschko,T.,Xiao,S.P.,Schatz,G.C.,et al.:Atomistic simulations of nanotube fracture.Phys.Rev.B 65,235430(2002)

    3.Natsuki,T.,Matsuyama,N.,Shi,J.X.,et al.:Vibration analysis of nanomechanical mass sensor using carbon nanotubes under axial tensile loads.Appl.Phys.A 116,1001-1007(2014)

    4.Natsuki,T.,Shi,J.X.,Ni,Q.Q.:Vibration analysis of circular double-layered graphene sheets.J.Appl.Phys.111,044310(2012)

    5.Wang,J.,He,X.,Kitipornchai,S.,et al.:Geometrical nonlinear free vibration of multi-layered graphene sheets.J.Phys.D Appl. Phys.44,135401(2011)

    6.Yang,F(xiàn).A.C.M.,Chong,A.C.M.,Lam,D.C.C.,etal.:Couple stress based strain gradient theory for elasticity.Int.J.Solids Struct.39,2731-2743(2002)

    7.Park,S.K.,Gao,X.L.:Bernoulli-Euler beam model based on a modified couple stress theory.J.Micromech.Microeng.16,2355(2006)

    8.Mindlin,R.D.,Eshel,N.N.:On first strain-gradient theories in linear elasticity.Int.J.Solids Struct.4,109-124(1968)

    9.Ansari,R.,Gholami,R.,Shojaei,M.F.,etal.:Size-dependentbending,buckling and free vibration offunctionally graded Timoshenko microbeamsbased on the mostgeneralstrain gradienttheory.Compos.Struct.100,385-397(2013)

    10.Gurtin,M.E.,Weissmüller,J.,Larche,F(xiàn).:A general theory of curved deformable interfacesin solidsatequilibrium.Philos.Mag. A 78,1093-1109(1998)

    11.Dingreville,R.,Qu,J.,Cherkaoui,M.:Surface free energy and its effect on the elastic behavior of nano-sized particles,wires and films.J.Mech.Phys.Solids 53,1827-1854(2005)

    12.Farajpour,A.,Rastgoo,A.,Mohammadi,M.:Surface effects on the mechanical characteristics of microtubule networks in living cells.Mech.Res.Commun.57,18-26(2014)

    13.Asemi,S.R.,F(xiàn)arajpour,A.:Decoupling the nonlocal elasticity equations for thermo-mechanical vibration of circular graphene sheetsincluding surface effects.Phys.ELow Dimens.Syst.Nanostruct.60,80-90(2014)

    14.Eringen,A.C.:On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves.J.Appl.Phys. 54,4703-4710(1983)

    15.Rahmani,O.,Jandaghian,A.A.:Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory.Appl.Phys.A 119,1019-1032(2015)

    16.Moosavi,H.,Mohammadi,M.,F(xiàn)arajpour,A.,et al.:Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory.Phys.E Low Dimens.Syst.Nanostruct.44,135-140(2011)

    17.Mohammadi,M.,F(xiàn)arajpour,A.,Moradi,A.,et al.:Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermalenvironment.Compos.PartBEng.56,629-637(2014)

    18.Peddieson,J.,Buchanan,G.R.,McNitt,R.P.:Application of nonlocal continuum models to nanotechnology.Int.J.Eng.Sci.41,305-312(2003)

    19.Duan,W.H.,Wang,C.M.,Zhang,Y.Y.:Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics.J.Appl.Phys.101,24305-24305(2007)

    20.Ansari,R.,Rouhi,H.:Analytical treatment of the free vibration of single-walled carbon nanotubes based on the nonlocalFlugge shell theory.J.Eng.Mater.Technol.134,011008(2012)

    21.Ansari,R.,Rouhi,H.,Sahmani,S.:Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics.Int.J.Mech.Sci.53,786-792(2011)

    22.Aydogdu,M.:Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics.Int.J.Eng.Sci.56,17-28(2012)

    23.Gibson,R.F.,Ayorinde,E.O.,Wen,Y.F.:Vibrations of carbon nanotubes and their composites:a review.Compos.Sci.Technol.67,1-28(2007)

    24.Pradhan,S.C.,Phadikar,J.K.:Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models.Phys.Lett.A 373,1062-1069(2009)

    25.Mohammadi,M.,Moradi,A.,Ghayour,M.,et al.:Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium.Lat.Am.J.Solids Struct.11,437-458(2014)

    26.Shen,L.E.,Shen,H.S.,Zhang,C.L.:Nonlocal plate model for nonlinearvibration ofsingle layergraphene sheetsin thermalenvironments.Comput.Mater.Sci.48,680-685(2010)

    27.Ansari,R.,Rajabiehfard,R.,Arash,B.:Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets. Comput.Mater.Sci.49,831-838(2010)

    28.Ansari,R.,Sahmani,S.,Arash,B.:Nonlocal plate model for free vibrations of single-layered graphene sheets.Phys.Lett.A 375,53-62(2010)

    29.Shen,H.S.,Shen,L.,Zhang,C.L.:Nonlocalplatemodelfornonlinearbending ofsingle-layergraphene sheetssubjected to transverse loads in thermalenvironments.Appl.Phys.A 103,103-112(2011)

    30.Pradhan,S.C.,Murmu,T.:Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics.Comput.Mater.Sci.47,268-274(2009)

    31.Pradhan,S.C.,Phadikar,J.K.:Scale effect and buckling analysis of multilayered graphene sheets based on nonlocal continuum mechanics.J.Comput.Theor.Nanosci.7,1948-1954(2010)

    32.Farajpour,A.,Mohammadi,M.,Shahidi,A.R.,et al.:Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model.Phys.E Low Dimens.Syst.Nanostruct. 43,1820-1825(2011)

    33.Mohammadi,M.,Goodarzi,M.,Ghayour,M.,et al.:Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory.Compos.Part B Eng.51,121-129(2013)

    34.Mohammadi,M.,F(xiàn)arajpour,A.,Goodarzi,M.,et al.:Temperature effect on vibration analysis of annular graphene sheet embedded on visco-pasternak foundation.J.Solid Mech.5,305-323(2013)

    35.Arash,B.,Wang,Q.:Vibration of single-and double-layered graphene sheets.J.Nanotechnol.Eng.Med.2,011012(2011)

    36.Pradhan,S.C.,Kumar,A.:Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method.Compos.Struct.93,774-779(2011)

    37.Jomehzadeh,E.,Saidi,A.R.:A study on large amplitude vibration of multilayered graphene sheets.Comput.Mater.Sci.50,1043-1051(2011)

    38.Jomehzadeh,E.,Saidi,A.R.,Pugno,N.M.:Large amplitude vibration ofa bilayergraphene embedded in anonlinearpolymermatrix. Phys.E Low Dimens.Syst.Nanostruct.44,1973-1982(2012)

    39.Babaei,H.,Shahidi,A.R.:Vibration of quadrilateral embedded multilayered graphene sheets based on nonlocalcontinuum models using the Galerkin method.Acta Mech.Sin.27,967-976(2011)

    40.Murmu,T.,McCarthy,M.A.,Adhikari,S.:In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach.Compos. Struct.96,57-63(2013)

    41.Mohammadi,M.,Ghayour,M.,F(xiàn)arajpour,A.:Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model.Compos.Part B Eng.45,32-42(2013)

    42.Mohammadi,M.,F(xiàn)arajpour,A.,Goodarzi,M.,et al.:Thermomechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium.Lat.Am.J.Solids Struct. 11,659-682(2014)

    43.Mohammadi,M.,F(xiàn)arajpour,A.,Goodarzi,M.:Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium.Comput.Mater. Sci.82,510-520(2014)

    44.Asemi,S.R.,F(xiàn)arajpour,A.,Borghei,M.,et al.:Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics.Lat.Am.J.Solids Struct.11,704-724(2014)

    45.Shen,H.S.,Xu,Y.M.,Zhang,C.L.:Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity.Comput. Methods Appl.Mech.Eng.267,458-470(2013)

    46.Shi,J.X.,Ni,Q.Q.,Lei,X.W.,et al.:Nonlocal vibration analysis of nanomechanical systems resonators using circular double-layer graphene sheets.Appl.Phys.A 115,213-219(2014)

    47.Sarrami-Foroushani,S.,Azhari,M.:Nonlocal vibration and buckling analysis of single and multi-layered graphene sheets using finite strip method including van der Waals effects.Phys.E Low Dimens.Syst.Nanostruct.57,83-95(2014)

    48.Shu,C.:DifferentialQuadratureand itsApplication in Engineering. Springer,London(2000)

    49.Ansari,R.,Mohammadi,V.,Shojaei,M.F.,et al.:Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory.Eur.J.Mech.A Solids 45,143-152(2014)

    2 December 2015/Revised:9 February 2016/Accepted:12 April 2016/Published online:20 June 2016

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

    日韩精品免费视频一区二区三区| 黄色片一级片一级黄色片| 国产av精品麻豆| 久久精品熟女亚洲av麻豆精品| 免费看a级黄色片| 黄色 视频免费看| 成人永久免费在线观看视频| 精品久久久精品久久久| 热99re8久久精品国产| 这个男人来自地球电影免费观看| 午夜福利一区二区在线看| 午夜视频精品福利| 一本综合久久免费| 高清av免费在线| 男人的好看免费观看在线视频 | 国产亚洲精品久久久久5区| 亚洲精品粉嫩美女一区| 涩涩av久久男人的天堂| 国产高清视频在线播放一区| 黄网站色视频无遮挡免费观看| 黑人巨大精品欧美一区二区mp4| 亚洲在线自拍视频| 亚洲精品国产一区二区精华液| 人人妻人人澡人人看| 一区在线观看完整版| 中亚洲国语对白在线视频| 亚洲一码二码三码区别大吗| 国产成人精品在线电影| 欧美黑人欧美精品刺激| 午夜福利欧美成人| 嫩草影视91久久| ponron亚洲| 免费在线观看影片大全网站| 亚洲熟女毛片儿| 777久久人妻少妇嫩草av网站| 亚洲午夜理论影院| 欧美精品av麻豆av| 人妻久久中文字幕网| 两人在一起打扑克的视频| 精品福利永久在线观看| 精品国产乱码久久久久久男人| 国产三级黄色录像| 国产一卡二卡三卡精品| 国产又色又爽无遮挡免费看| 天天躁狠狠躁夜夜躁狠狠躁| 十八禁高潮呻吟视频| 免费看a级黄色片| 新久久久久国产一级毛片| 久久久久久免费高清国产稀缺| 免费日韩欧美在线观看| 亚洲欧美精品综合一区二区三区| 午夜日韩欧美国产| 久久人妻av系列| 久久久久国产一级毛片高清牌| 99精品久久久久人妻精品| a级毛片在线看网站| 国产成人精品在线电影| 国产精品二区激情视频| 国产蜜桃级精品一区二区三区 | 国产男女超爽视频在线观看| 他把我摸到了高潮在线观看| 国产一区二区三区视频了| 一级a爱视频在线免费观看| 亚洲自偷自拍图片 自拍| 日本黄色视频三级网站网址 | 欧美乱妇无乱码| 女人被狂操c到高潮| 欧美日韩亚洲国产一区二区在线观看 | 免费少妇av软件| videos熟女内射| 村上凉子中文字幕在线| 999久久久国产精品视频| 每晚都被弄得嗷嗷叫到高潮| 飞空精品影院首页| 欧美亚洲日本最大视频资源| 亚洲欧美日韩另类电影网站| 亚洲午夜精品一区,二区,三区| 欧美国产精品va在线观看不卡| 色播在线永久视频| 亚洲精品久久午夜乱码| 国产精品一区二区在线不卡| 欧美色视频一区免费| 亚洲人成电影观看| 久久精品国产亚洲av高清一级| 俄罗斯特黄特色一大片| 19禁男女啪啪无遮挡网站| 两个人免费观看高清视频| 成年动漫av网址| 午夜福利一区二区在线看| 欧美黑人精品巨大| 1024香蕉在线观看| 成年人免费黄色播放视频| 久久人妻福利社区极品人妻图片| 男女之事视频高清在线观看| 国产免费现黄频在线看| 欧美黄色片欧美黄色片| 天天影视国产精品| 亚洲,欧美精品.| 久久中文看片网| 久久国产精品男人的天堂亚洲| 午夜福利视频在线观看免费| 一a级毛片在线观看| 日韩欧美一区视频在线观看| 亚洲美女黄片视频| 色在线成人网| 欧美精品高潮呻吟av久久| 女同久久另类99精品国产91| 欧美精品亚洲一区二区| 欧美精品亚洲一区二区| 国产精品一区二区精品视频观看| 美女国产高潮福利片在线看| 久久久久久免费高清国产稀缺| 久久精品国产a三级三级三级| 国产成+人综合+亚洲专区| xxxhd国产人妻xxx| 黄色a级毛片大全视频| 成人永久免费在线观看视频| 999久久久精品免费观看国产| 亚洲成人免费电影在线观看| av国产精品久久久久影院| 怎么达到女性高潮| 亚洲色图综合在线观看| www.熟女人妻精品国产| 精品久久久久久久久久免费视频 | 日韩 欧美 亚洲 中文字幕| 国产一区有黄有色的免费视频| av天堂在线播放| 亚洲av成人不卡在线观看播放网| 老汉色∧v一级毛片| 女同久久另类99精品国产91| 亚洲精品中文字幕在线视频| 国产精品亚洲一级av第二区| 一区二区三区激情视频| 日本黄色视频三级网站网址 | 亚洲av电影在线进入| 国产免费现黄频在线看| 99精品欧美一区二区三区四区| 99热只有精品国产| 久久精品国产清高在天天线| 久久亚洲精品不卡| 两个人免费观看高清视频| 国产精品久久久av美女十八| 午夜免费成人在线视频| 亚洲精品在线观看二区| 国产在线一区二区三区精| 老司机靠b影院| 妹子高潮喷水视频| 麻豆乱淫一区二区| 久久香蕉精品热| 亚洲熟女毛片儿| 天堂俺去俺来也www色官网| 国产精品1区2区在线观看. | 天天躁夜夜躁狠狠躁躁| 午夜视频精品福利| 亚洲全国av大片| 91字幕亚洲| 超碰97精品在线观看| 欧美日韩黄片免| 国产成人欧美| 婷婷成人精品国产| 9热在线视频观看99| av电影中文网址| 国产精品久久久久成人av| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品免费视频内射| 亚洲欧美精品综合一区二区三区| 下体分泌物呈黄色| 超碰成人久久| 曰老女人黄片| 两性午夜刺激爽爽歪歪视频在线观看 | 妹子高潮喷水视频| 丝袜在线中文字幕| 天天躁夜夜躁狠狠躁躁| 亚洲伊人色综图| 色在线成人网| 精品视频人人做人人爽| 国产91精品成人一区二区三区| 久久精品国产亚洲av香蕉五月 | 免费在线观看亚洲国产| 操美女的视频在线观看| 在线av久久热| 亚洲国产中文字幕在线视频| 最新美女视频免费是黄的| 人妻丰满熟妇av一区二区三区 | 久久久久国产一级毛片高清牌| 免费在线观看黄色视频的| 国产麻豆69| 成年女人毛片免费观看观看9 | 国产在视频线精品| 不卡av一区二区三区| 水蜜桃什么品种好| 久久香蕉精品热| 免费在线观看影片大全网站| 一进一出抽搐gif免费好疼 | 激情视频va一区二区三区| 国产一区二区三区视频了| 女人被躁到高潮嗷嗷叫费观| 纯流量卡能插随身wifi吗| 新久久久久国产一级毛片| 一a级毛片在线观看| 国产免费现黄频在线看| 亚洲熟妇中文字幕五十中出 | 久久亚洲精品不卡| 国产精品免费一区二区三区在线 | 亚洲欧美一区二区三区黑人| 老鸭窝网址在线观看| 一级,二级,三级黄色视频| 大香蕉久久成人网| 黄色a级毛片大全视频| 国产激情欧美一区二区| 色婷婷久久久亚洲欧美| 热re99久久精品国产66热6| 亚洲成人免费av在线播放| 欧美老熟妇乱子伦牲交| 国产精品二区激情视频| 精品国产一区二区三区久久久樱花| 少妇裸体淫交视频免费看高清 | 久久午夜亚洲精品久久| 亚洲成国产人片在线观看| 怎么达到女性高潮| 一级a爱视频在线免费观看| 久久亚洲精品不卡| 99精品欧美一区二区三区四区| 99精国产麻豆久久婷婷| 十八禁人妻一区二区| 三级毛片av免费| 国产日韩一区二区三区精品不卡| 国产亚洲精品一区二区www | 99国产综合亚洲精品| 中亚洲国语对白在线视频| 在线观看日韩欧美| 亚洲第一欧美日韩一区二区三区| 婷婷丁香在线五月| 免费av中文字幕在线| 国产成人免费无遮挡视频| 色婷婷久久久亚洲欧美| 国产成+人综合+亚洲专区| 欧美精品亚洲一区二区| 丝袜在线中文字幕| 91成人精品电影| 99久久人妻综合| 村上凉子中文字幕在线| 啦啦啦免费观看视频1| 久久久久精品人妻al黑| 亚洲国产欧美一区二区综合| 欧美日韩视频精品一区| 国产欧美亚洲国产| 国产精品久久久久久人妻精品电影| 国产欧美日韩一区二区精品| 成熟少妇高潮喷水视频| 9191精品国产免费久久| 久热爱精品视频在线9| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美色中文字幕在线| 精品人妻熟女毛片av久久网站| 色94色欧美一区二区| 18在线观看网站| 日本vs欧美在线观看视频| 日韩欧美在线二视频 | 成年动漫av网址| 亚洲熟妇中文字幕五十中出 | 女人久久www免费人成看片| 久久人妻福利社区极品人妻图片| 国产精品久久久久久人妻精品电影| bbb黄色大片| 夫妻午夜视频| 久久青草综合色| 亚洲色图av天堂| 身体一侧抽搐| 色在线成人网| 人人妻人人澡人人爽人人夜夜| 国产成人精品无人区| 国产黄色免费在线视频| 最新的欧美精品一区二区| 欧美中文综合在线视频| 欧美乱码精品一区二区三区| 久久人人97超碰香蕉20202| 欧美激情 高清一区二区三区| 亚洲七黄色美女视频| 日韩一卡2卡3卡4卡2021年| 黑人欧美特级aaaaaa片| 亚洲国产精品合色在线| 亚洲全国av大片| 国产主播在线观看一区二区| 亚洲在线自拍视频| 精品卡一卡二卡四卡免费| 少妇粗大呻吟视频| 精品乱码久久久久久99久播| 亚洲性夜色夜夜综合| 成人黄色视频免费在线看| 国产亚洲欧美精品永久| 亚洲中文日韩欧美视频| 午夜两性在线视频| 99re在线观看精品视频| 日本黄色日本黄色录像| 天天操日日干夜夜撸| 别揉我奶头~嗯~啊~动态视频| 午夜成年电影在线免费观看| 成年版毛片免费区| 黄色女人牲交| 久久久国产成人免费| 少妇猛男粗大的猛烈进出视频| 国产亚洲av高清不卡| av天堂在线播放| 99re6热这里在线精品视频| a在线观看视频网站| av网站在线播放免费| 女同久久另类99精品国产91| 老汉色av国产亚洲站长工具| 啦啦啦 在线观看视频| 国产精品 国内视频| 国产97色在线日韩免费| 人人妻人人添人人爽欧美一区卜| 999久久久国产精品视频| 亚洲熟妇中文字幕五十中出 | 人人妻人人澡人人爽人人夜夜| av福利片在线| 精品国内亚洲2022精品成人 | 午夜福利一区二区在线看| 久久中文字幕一级| 日韩有码中文字幕| 一级毛片精品| 韩国精品一区二区三区| 国产av精品麻豆| 免费在线观看黄色视频的| 亚洲在线自拍视频| 老司机在亚洲福利影院| 极品少妇高潮喷水抽搐| 在线天堂中文资源库| 一区二区三区精品91| 欧美另类亚洲清纯唯美| 在线观看舔阴道视频| 中文字幕制服av| 天堂动漫精品| 一边摸一边抽搐一进一小说 | 黄色 视频免费看| 另类亚洲欧美激情| 一夜夜www| 日本vs欧美在线观看视频| 99精品在免费线老司机午夜| 国产精品亚洲一级av第二区| 日韩精品免费视频一区二区三区| 久久国产精品大桥未久av| 男人操女人黄网站| 国产精品 欧美亚洲| 亚洲va日本ⅴa欧美va伊人久久| 91字幕亚洲| 亚洲精品美女久久久久99蜜臀| 电影成人av| av网站在线播放免费| 欧美乱色亚洲激情| www.自偷自拍.com| 91精品三级在线观看| a在线观看视频网站| svipshipincom国产片| 757午夜福利合集在线观看| videos熟女内射| 亚洲av日韩精品久久久久久密| 在线观看日韩欧美| 一级毛片女人18水好多| 动漫黄色视频在线观看| 亚洲视频免费观看视频| 欧美在线一区亚洲| 很黄的视频免费| 一级毛片高清免费大全| 一进一出抽搐gif免费好疼 | 久久国产乱子伦精品免费另类| 亚洲中文av在线| 在线观看日韩欧美| 人人澡人人妻人| 亚洲五月色婷婷综合| av视频免费观看在线观看| 如日韩欧美国产精品一区二区三区| 久久 成人 亚洲| 免费在线观看影片大全网站| 中文字幕人妻丝袜制服| 亚洲avbb在线观看| 欧美成人午夜精品| 亚洲人成77777在线视频| 国产国语露脸激情在线看| 午夜日韩欧美国产| 亚洲国产毛片av蜜桃av| 在线观看午夜福利视频| 午夜久久久在线观看| 欧美成人午夜精品| 午夜免费观看网址| 久久精品91无色码中文字幕| 婷婷丁香在线五月| 建设人人有责人人尽责人人享有的| 两个人免费观看高清视频| 成人手机av| 亚洲在线自拍视频| 亚洲 国产 在线| 精品免费久久久久久久清纯 | 18禁观看日本| 色94色欧美一区二区| 亚洲人成电影免费在线| 亚洲专区字幕在线| 巨乳人妻的诱惑在线观看| 国产精品 国内视频| 人人澡人人妻人| 国产高清视频在线播放一区| 99国产精品免费福利视频| 欧美日韩福利视频一区二区| 在线观看舔阴道视频| 人妻 亚洲 视频| 波多野结衣一区麻豆| 又黄又粗又硬又大视频| 多毛熟女@视频| 97人妻天天添夜夜摸| 国产主播在线观看一区二区| av福利片在线| 757午夜福利合集在线观看| 他把我摸到了高潮在线观看| 麻豆国产av国片精品| 午夜91福利影院| 亚洲精品久久成人aⅴ小说| 高清黄色对白视频在线免费看| 正在播放国产对白刺激| 99国产极品粉嫩在线观看| 精品福利永久在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产蜜桃级精品一区二区三区 | 手机成人av网站| 亚洲精品粉嫩美女一区| 黄色丝袜av网址大全| 在线视频色国产色| 青草久久国产| 超碰成人久久| 国产精品一区二区在线观看99| 欧美久久黑人一区二区| 十八禁高潮呻吟视频| 免费人成视频x8x8入口观看| 精品少妇久久久久久888优播| 成年动漫av网址| 亚洲欧美激情综合另类| 精品国产亚洲在线| 18禁美女被吸乳视频| 久久 成人 亚洲| 国产91精品成人一区二区三区| x7x7x7水蜜桃| 欧美日韩精品网址| 叶爱在线成人免费视频播放| 午夜免费鲁丝| 国产在线一区二区三区精| 母亲3免费完整高清在线观看| 窝窝影院91人妻| 在线观看免费视频网站a站| bbb黄色大片| 亚洲中文字幕日韩| 亚洲成人手机| 99精品久久久久人妻精品| 国产激情久久老熟女| 丰满饥渴人妻一区二区三| 亚洲专区字幕在线| 丰满的人妻完整版| 亚洲一区高清亚洲精品| 搡老熟女国产l中国老女人| 欧美黑人精品巨大| 交换朋友夫妻互换小说| 久久久久精品国产欧美久久久| 999久久久精品免费观看国产| 19禁男女啪啪无遮挡网站| 精品久久蜜臀av无| 欧美日韩精品网址| 欧美黑人欧美精品刺激| 两人在一起打扑克的视频| 激情在线观看视频在线高清 | a级毛片黄视频| 亚洲精品久久成人aⅴ小说| 操出白浆在线播放| 亚洲一区二区三区不卡视频| 久久国产精品男人的天堂亚洲| 最近最新中文字幕大全免费视频| 高清在线国产一区| 亚洲av成人不卡在线观看播放网| 久久人妻熟女aⅴ| 亚洲国产中文字幕在线视频| 欧美日韩亚洲高清精品| а√天堂www在线а√下载 | 成人av一区二区三区在线看| 亚洲av日韩精品久久久久久密| 欧美中文综合在线视频| 美女视频免费永久观看网站| 大陆偷拍与自拍| xxx96com| 少妇粗大呻吟视频| 露出奶头的视频| 高清在线国产一区| 纯流量卡能插随身wifi吗| 亚洲av熟女| 成人18禁在线播放| 亚洲国产欧美日韩在线播放| 久久香蕉国产精品| 亚洲精品乱久久久久久| 又紧又爽又黄一区二区| 一个人免费在线观看的高清视频| 极品人妻少妇av视频| 香蕉久久夜色| 一区福利在线观看| 国产成人一区二区三区免费视频网站| 欧美乱码精品一区二区三区| 国产不卡一卡二| 亚洲人成电影免费在线| 欧美日韩国产mv在线观看视频| 亚洲国产看品久久| 欧美人与性动交α欧美精品济南到| 精品卡一卡二卡四卡免费| 一a级毛片在线观看| 99热国产这里只有精品6| 香蕉久久夜色| 99热只有精品国产| 夫妻午夜视频| 中文字幕制服av| 久久99一区二区三区| 男男h啪啪无遮挡| 国产又爽黄色视频| 亚洲人成电影观看| 欧美 亚洲 国产 日韩一| 黑人操中国人逼视频| 乱人伦中国视频| 麻豆国产av国片精品| 欧美日韩瑟瑟在线播放| 国产一区二区激情短视频| 久久热在线av| 欧美在线黄色| 国产精品秋霞免费鲁丝片| 免费日韩欧美在线观看| 高清视频免费观看一区二区| 久久这里只有精品19| 每晚都被弄得嗷嗷叫到高潮| 天天操日日干夜夜撸| 91精品国产国语对白视频| 国产高清激情床上av| cao死你这个sao货| 中文字幕高清在线视频| 两个人免费观看高清视频| 一级片'在线观看视频| 黑人巨大精品欧美一区二区mp4| 丝袜美腿诱惑在线| 色尼玛亚洲综合影院| 飞空精品影院首页| a级毛片在线看网站| 真人做人爱边吃奶动态| 欧美老熟妇乱子伦牲交| 精品无人区乱码1区二区| 婷婷成人精品国产| 日韩人妻精品一区2区三区| 两个人看的免费小视频| 亚洲一区中文字幕在线| 欧美午夜高清在线| 久久九九热精品免费| 精品福利观看| 宅男免费午夜| x7x7x7水蜜桃| 久久香蕉精品热| 丝袜人妻中文字幕| 国产免费男女视频| 精品国产一区二区三区久久久樱花| av天堂久久9| 日韩欧美一区二区三区在线观看 | 日韩有码中文字幕| a级毛片黄视频| 99精国产麻豆久久婷婷| 精品第一国产精品| 亚洲国产毛片av蜜桃av| 久久草成人影院| 老熟女久久久| 国产97色在线日韩免费| 国产深夜福利视频在线观看| 精品无人区乱码1区二区| 欧美 日韩 精品 国产| 99香蕉大伊视频| 在线观看www视频免费| 久久久国产成人免费| 欧美日韩国产mv在线观看视频| 91精品三级在线观看| 久久久久久久久免费视频了| 国产真人三级小视频在线观看| 最新在线观看一区二区三区| 亚洲精品中文字幕在线视频| 一级片免费观看大全| 国产1区2区3区精品| 80岁老熟妇乱子伦牲交| 熟女少妇亚洲综合色aaa.| 成人国产一区最新在线观看| 桃红色精品国产亚洲av| 久久久精品区二区三区| 亚洲精品中文字幕一二三四区| 久久久久国产精品人妻aⅴ院 | 男人操女人黄网站| 国产精品久久久久久精品古装| 一级片免费观看大全| 在线观看66精品国产| 久久99一区二区三区| 手机成人av网站| 中文字幕人妻丝袜制服| 午夜福利影视在线免费观看| 十八禁网站免费在线| 一级毛片精品| 亚洲av电影在线进入| 中文字幕av电影在线播放| 亚洲中文av在线| 精品一区二区三区av网在线观看| 午夜福利,免费看| 亚洲精品国产一区二区精华液| 下体分泌物呈黄色| 亚洲aⅴ乱码一区二区在线播放 | 久久久精品国产亚洲av高清涩受| 午夜免费成人在线视频| 人人妻人人澡人人看| 涩涩av久久男人的天堂| 最新在线观看一区二区三区| 亚洲美女黄片视频| av网站在线播放免费|