• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Measurement of residual stress in a multi-layer semiconductor heterostructure by micro-Raman spectroscopy

    2016-11-04 08:53:25WeiQiuCuiLiChengRenRongLiangChunWangZhaoZhenKunLeiYuChengZhaoLuLuMaJunXuHuaJunFangYiLanKang
    Acta Mechanica Sinica 2016年5期
    關(guān)鍵詞:普普通通廣玉蘭大朵

    Wei Qiu·Cui-Li Cheng·Ren-Rong Liang·Chun-Wang Zhao· Zhen-Kun Lei·Yu-Cheng Zhao·Lu-Lu Ma· Jun Xu·Hua-Jun Fang·Yi-Lan Kang

    ?

    RESEARCH PAPER

    Measurement of residual stress in a multi-layer semiconductor heterostructure by micro-Raman spectroscopy

    Wei Qiu1·Cui-Li Cheng1·Ren-Rong Liang2·Chun-Wang Zhao3· Zhen-Kun Lei4·Yu-Cheng Zhao1·Lu-Lu Ma1· Jun Xu2·Hua-Jun Fang5·Yi-Lan Kang1

    Si-based multilayer structures are widely used in current microelectronics.During their preparation,some inhomogeneous residual stress is induced,resulting in competition between interface mismatching and surface energy and even leading to structure failure.This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure.Scanning electron microscopy(SEM),micro-Raman spectroscopy(MRS),and transmission electron microscopy(TEM)were applied to measure the geometric parameters of the multilayer structure.The relationship between the Raman spectrum and the stress/strain on the[100]and[110]crystal orientations was determined to enable surface and crosssection residual stress analyses,respectively.Based on the Raman mapping results,the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.

    ? Wei Qiu qiuwei@tju.edu.cn

    1Tianjin Key Laboratory of Modern Engineering Mechanics,Department of Mechanics,Tianjin University,Tianjin 300072,China

    2Institute of Microelectronics,Tsinghua University,Beijing 100084,China

    3College of Art and Sciences,Shanghai Maritime University,Shanghai 201306,China

    4State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116024,China

    5Graduate School of the Chinese Academy of Sciences,Beijing 100049,China

    Residual stress·Multi-layer semiconductor heterostructure·Micro-Raman spectroscopy(MRS)· Strained silicon·Germanium silicon

    1 Introduction

    Strain is introduced into Si-based semiconductor devices to effectively promote carrier mobility and reduce thermal energy consumption[1].The(biaxial and uniaxial)strain states and magnitudes directly determine the optical/electrical properties of such semiconductor devices[2]. Nevertheless,intrinsic and processing residual stresses are always introduced during the manufacture of Si-based structures coincident with the artificial strain[3].With the realization of new design microelectronic structures and the application of new processing and manufacturing technologies,residual stress always presents a complex three-dimensionally inhomogeneous distribution inside the devices.Unlike metal materials,which can produce plastic shearing bands[4-6],Si can only release residual stress through dislocation or cracking.Therefore,residual stress critically affects the optical/electrical functions and structural reliability of semiconductor devices[7].

    Several methods have been used to characterize residual stress and other mechanical parameters in thin films including the curvature method[8],X-ray diffraction(XRD)[9],and micro-Raman spectroscopy(MRS)[10].Basically,the curvature method is applied through optical metrology such as electronic speckle pattern interferometry[11]and the digital image correlation method[12,13],which measures the change in the curvature of the substrate before and after film deposition and calculation of the stress of the film using the Stoney equation[14].This method only provides an aver-age stress value over the film area,and is not suitable for multilayer structures with asymmetric stress owing to its approximate algorithm of stress distribution.XRD can be used to measure stresses by detecting lattice deformation. However,it is difficult to use XRD for mechanical measurements on microelectronic devices owing to its inherent limitations in spatial solution and accuracy.

    Because semiconductor materials usually have good Raman activity and Raman sensitivity to strain and stress,MRS has been regarded as an effective method of residual stress measurement on the micro-scale.It also has the advantages of high special resolution and being non-contact and non-destructive[15-17].For instance,the work by De Wolf[18]analyzed residual stress distribution in Si-based IC grooves of micro-electro-mechanical systems(MEMS)caused by processing and the thermal stress distribution produced during the electronic packaging process.Also,a tip-enhanced Raman spectroscopy(TERS)system was used by Hayazawa et al.[19]to measure the stress of strained silicon layers on the nano-scale.In addition,the Raman shift to stress relationship of transverse isotropic materials was successfully studied(Li et al.[20])and the residual stress in porous silicon films prepared by chemical and electrochemical corrosion was measured using MRS(Kang et al.[21]). Then,MRS was used by Qiu et al.[22]to study the dynamic capillary evolution of a porous silicon surface.

    Although several works have attempted to characterize the mechanical behavior of Si-based materials using Raman spectroscopy,there still remains a lack of systematic investigation ofa method formeasuring internalmechanicalbehavior,especially the distribution of residual stress near internal interfaces inside the materials.Furthermore,even though it has been widely accepted that preparing cross-section samples is an effective method to characterize mechanical and physical properties of three-dimensional inhomogeneity inside materials,the basic Raman-stress/strain relationship for such cross-sectional measurement is still unknown or misunderstood similar to that for surface measurement.

    This paper presents a methodological study of residual stress measurementcarried outon a multi-layersemiconductor heterostructure using MRS.The material was composed ofa biaxialstrained silicon filmand germaniumsilicon buffer layers grown on a silicon wafer.Cross-section samples were prepared for the subsequent investigation of the material and mechanical properties inside the specimens.Scanning electron microscopy(SEM),transmission electron microscopy(TEM),and MRS were used to measure the geometric parametersofthe multilayerstructure.The Raman to stress/strain relationship of the[100]and[110]crystal orientations was obtained to allow residual stress analysis of the surface and cross-section,respectively.Based on the Raman mapping results,the distribution of residual stress along the depth of the multi-layer structure was obtained.

    2 Materials and methods

    2.1Materials and samples

    The multi-layer semiconductor heterostructure material(ε-Si wafer for short)used in this work was prepared through reduced pressure chemical vapor deposition(RPCVD)[23]. Dichlorosilane(SiH2Cl2)gas was used as the Si source,germane(GeH4)as the Ge source,and H2as the carrier gas.A 5′′(001)monocrystalline silicon wafer substrate of 630 μm in thickness was used.Before epitaxy,the substrate was pretreated by steeping in 3:1 H2SO4:H2O2solution for 10 min to remove organic residues on the surface and then dipped in 1%HF solution for 45-50 s to remove the native oxide.The RPCVD growth temperature was 900?C,and the chamber pressure was 1.33×104Pa.The germanium composition was increased linearly to form a graded germanium silicon(GexSi1-x,x=0→ 0.2)buffer layer of~3 μm thickness.The growth rate was then decreased and the germanium composition was held to obtain a relaxed germanium silicon(Ge0.2Si0.8)buffer layer of~1 μm thickness.Finally,a strain silicon cap layer of~15 nm was grown at 750?C and 1.33×104Pa.The multilayer structure of the thereby obtained ε-Si wafers is shown in Fig.1a.

    Fig.1 Schematic of a as-grown multi-layer structure and b crosssection sample

    Cross-section samples were prepared to allow the accurate investigation of the internal material properties and mechanical behaviors of the multilayer structure.The crosssection samples(shown in Fig.1b)were prepared as follows.The ε-Si wafer was cut along the[110]direction into a number of rectangular pieces.Two of these pieces were pasted together with the ε-Si surfaces face-to-face using epoxy resin.Then,two C-Si pieces,cut from a 430 μmthick 2′′(100)monocrystalline silicon wafer,were pasted onto the outside of the two ε-Si pieces.After the epoxy resin was totally curved,the pasted group was cut,along its cross-section,into several thin slices with about 1 mm in thickness.All the new cross-section surfaces of each slice were polished with sandpaper with mesh numbers increasing from 600 to 10000 and then further polished using silica solution.TEM samples were obtained through further mechanicalthinning and ion thinning ofthe above specimens[24,25].

    2.2Characterization methods

    The material properties and mechanical behaviors of the cross-section samples were measured at different spatial scales using experimental techniques including SEM,TEM,and MRS.

    A Zeiss EVO/MA15 SEM system was used to measure the micro-structure of cross-section samples.The accelerating voltage ofthis system is 20 kVand its ultimate resolution is 3 nm.A JEM-2010 TEM system was applied to characterize the nanoscale morphology of the samples.The point resolution of this system is up to 0.23 nm,and its lattice resolution is 0.14 nm.

    The Raman spectroscopy experiments in this work were carried out with a Renishaw InVia microscopic confocal Raman system.A UV laser with 325 nm wavelength,whose output was regulated to 5%,was used to analyze the surface of the ε-Si wafer.A 40×UV object lens(NA=0.50)was selected,giving an incident laser spot size of about 5 μm in diameter.

    For the cross-section sample,spectral data from a 40 μm×20 μm region in the vicinity of the multilayers was obtained using Raman mapping(streamline)with 1.2 and 0.1 μm step lengths along the X and Y directions(viz.,parallel and vertical to the interfaces),respectively.During streamline measurement,the sampling spot of Raman laser was focused into a narrow line(not a circular)parallel to Y direction(vertical to the interface in this work)with about 1.2μmin thickness and 50μm in length.The data collection was first along this focus line with 1.2 μm step length.Then,the microscope stage moved along the X direction with a 0.1μmstep length,and the data collection wasrepeated.So,a 532 nm laser was used at 100%output power.A 50×object lens(NA=0.80)was selected,giving an incident laser spot size of about 1 μm in diameter.

    3 Experimental results

    3.1SEM and TEM results

    雖然廣玉蘭普普通通,但作者卻獨具慧眼,寫法與眾不同。廣玉蘭四季常青,一般人們關(guān)注他的枝葉常綠,感受到其生機(jī)盎然,但作者偏偏被掩映在綠葉之間的大朵的花所吸引;一般人看花,會被其香味、顏色、質(zhì)地所吸引,但作者卻能感受到廣玉蘭的精神;一般人會著力描寫盛開的花,但作者卻能從花的次第開放,尤其是從凋謝的花中感受到她旺盛的生命力。作者的寫作視角總是與常人不同,另辟蹊徑,讓讀者對廣玉蘭認(rèn)識耳目一新。教學(xué)中教師正是通過比較的方法,遵循作者寫作之路上引導(dǎo)學(xué)生去關(guān)注表達(dá),讓文章寫作模塊深深烙在孩子心中。

    Figure 2a shows an SEM image of a cross-section sample. The image is composed of several rectangular stripes distinguishable fromone anotherby theirdifferentgrayscales.The darkest stripe was the epoxy resin adhering the two(left and right)ε-Siwafers together.The region ofdeep grayscale atthe right side was the monocrystalline silicon(C-Si)substrate. The region next to C-Si,in which the grayscale changed gradually,was the graded germanium silicon buffer layer(GexSi1-x).Finally,the bright area between the epoxy resin and GexSi1-xlayers,was the relaxed germanium silicon buffer layer(Ge0.2Si0.8).The interface between the silicon substrate and the graded germanium silicon buffer layer was clear,straight,continuous,and complete.So wasthe interface between the two buffer layers,illustrating that a better transition between different layers was achieved in this strained silicon sample.The thicknesses of the graded and relaxed germanium silicon bufferlayerswere 2.7 and 0.9μm,respectively.The ε-Si was too thin to be observable by SEM.

    Fig.2 a SEM.b HR-TEM images of a cross-section sample

    Figure 2b shows a high resolution TEM(HR-TEM)image of a cross-section sample.The image clearly shows three different regions from right to left;the epoxy resin adhesive layer(the brightest region,where the pattern is totally disordered),the ε-Si layer,and the relaxed germanium sil-icon buffer layer,respectively.Both the ε-Si layer and the Ge0.2Si0.8layer were clean and flat without any visible defects/dislocations.Theε-Si/Ge0.2Si0.8interface was clear,straight,continuous,and complete.The left edge of the ε-Si layer,namely the surface of the ε-Si wafer,was flat at the atomic level.The thickness of the ε-Si layer was about 16.43 nm.Additionally,the lattice structure of the Ge0.2Si0.8layer was similar to that of the ε-Si layer,and it remained continuous atthe interface.Hence,the deformation and strain were continuous from the Ge0.2Si0.8layerto theε-Silayer.It can also be seen from Fig.2b thatthe crystalorientation ofthe cross-section sample was[110],while the growth direction of the ε-Si layer was[001].

    3.2Raman experiments

    A typical spectrum of the upper surface of the ε-Si wafer,which was achieved using a 325 nm laser,is shown in Fig.3a. The penetration depth of the 325 nm laser in the monocrystalline silicon is about 10 nm[26],almost the same as the thickness oftheε-Silayer(Fig.2b).Therefore,allthe Raman information in Fig.3a was derived from the strained silicon layer.The characteristic peak of the Si-Si band near 500 cm-1was single,strong,and narrow,indicating that the strained silicon prepared by RPCVDin thiswork wasprimarily in a monocrystalline state.Thisresultisin good agreement with those of the TEM shown in Fig.2b.

    Fig.3 Raman spectra of a the surface of the ε-Si wafer using a 325 nm laser,and b the cross-section sample using a 532 nm laser

    Fig.4(Color online)Measured wavenumber a mapping image and b distribution along the depth direction for the cross-section sample

    Figure 3b shows a typical Raman spectrum of germanium silicon detected from the cross-section sample.Three typical peaks were observable in this spectrum:the Si-Si band around 500 cm-1,the Ge-Si band around 400 cm-1,and the Ge-Ge band around 300 cm-1,respectively.When the Sielementispredominantin Ge-Sialloy,such asin the buffer layers in this work,the Si-Si band is still strong and narrow enough for mechanical analysis.

    Figure 4a shows the wavenumber image of the Si-Si peak obtained by Raman mapping on the cross-section sample in a 40 μm×20 μm region near the multilayer interfaces.The wavenumber distribution along the depth direction is shown in Fig.4b.The wavenumber of each sampling spot inside the C-Si substrate fluctuated slightly near 520 cm-1.Within the GexSi1-xlayer,it increased rapidly and almost linearly with depth.Itthen remained steady inside the relaxed bufferlayer. Raman information fromtheε-Silayerwashardly observable in the Raman spectra ofthe cross-section sample because the thickness of the ε-Si layer was about 10 nm,two orders of magnitude less than the spatial resolution(viz.,the size of sampling spot),about 1 μm,of the Raman system.

    4 Raman-mechanical relationship of silicon-based semiconductor materials

    Raman-mechanical measurements are based on deep understanding of the quantitative relationship between the Ramanshift and stress/strain of any given material.For the case of crystalline silicon,Eq.(1)gives a secular equation based on lattice dynamics for the Raman measurement of the[100]crystal orientation

    where p,q,and r denote the components of the phonon deformation potential,εi(i=1-6)are the strain components,uk(k=1,2,3)are the atom displacement components,and direction footnotes 1,2,3 are regarded as normalto the crystallographic planes(100),(010),and(001),respectively,without loss of generality.

    The shift△wjbetween the Raman wavenumber of an optical mode with strain,wj(j=1,2,3),and without strain,w0,can be calculated from the eigenvalues as follows

    In the case of biaxial stress σ in the(001)plane,the stress tensor components σ1=σ2=σ and σ3=0.Using generalized Hooke’s law,

    where s11,s12,and s44are the compliance coefficient components of monocrystalline silicon.

    During the backscattering measurement of the(001)plane,only the third eigenvalue equation is Raman visible according to the Raman selection rules[27].Hence, Eq.(3)becomes Eq.(5)in the biaxial stress state,where w0=520 cm-1,,s11= 7.68×10-12Pa-1,and s12=-2.14×10-12Pa-1.

    In the case of uniaxial stress(if σ1=σ,σ2=σ3=0),

    The Raman-mechanical model above was not directly applicable in this work because the cross-section of the sample was in[110]crystal orientation,as shown in Fig.2b,for which the mechanicalparameters,phonon deformation properties,and Raman selection rules are all different from those in[100]crystal orientation.Therefore,it was essential to rebuild the Raman-mechanicalrelationship forresidualRaman measurements on[110]crystal orientation before any analysis of the Raman results in this work.

    For the backscattering measurement of the cross-section sample,the coordinate transformation matrix Γ is given in Eq.(7)according to the coordinate set shown in Fig.1b.

    Since the normal stress of the cross-section surface was totally released and the materialwas in a uniaxialstress state,the residualstress to be measured was parallelto the GeSi/CSi interface,(viz.,σX= σ,σY= σZ=0).The strain components(εi,i=X,Y,Z),as wellas the components of the phonon deformation potential(Kjk,j,k=X,Y,Z),in the X-Y-Z coordinate set shown in Fig.1b can be obtained using coordinate transformation as follows

    Substituting Eq.(8)into the secular equation based on lattice dynamics yields

    During backscattering measurementon the Z-plane,only the third eigenvalue equation is Raman visible according to the Raman selection rules.Hence,Eq.(9)becomes Eq.(10)for the analysis of residual stress in the cross-section sample in thiswork,and s44=1.26×10-11Pa-1.

    For the Ge-Si alloy,the lattice dynamics equation is still applicable.Owing to the influence of phonon confinement[28],the change in the wavenumber of the Si-Si band in the Raman spectrum of germanium silicon is not only induced by strain,butalso by phonon confinement.An empiricalrelationship was determined,by Tsang et al.[29],between the Raman wavenumber wSi-Si,the Ge content x,and strainεfor[100]backscattering Raman measurements of Ge-Si alloy just by introducing a 62 x compensation for the wavenumber change to account for the influence of the phonon confinement.Meanwhile,the elastic parameters of germanium silicon follow the modulus-content linear model[7,30,31]

    Therefore,the Raman-strain relationship of germanium silicon in the uniaxial stress state for the backscattering measurement of the[110]cross-section sample is as follows

    5 Residual stress analyses

    A Lorenz function was used to fit all the Raman spectra. The average wavenumber of standard silicon without stress is w0=519.78 cm-1.It was calibrated,on the same day as the above measurements,on an original silicon wafer similar to those used for the ε-Si samples in this work. The average wavenumberobtained by backscattering Raman measurement on the surface of the ε-Si wafer at 66 sampling spots was 511.98 cm-1.As described above,all the layers were epitaxially grown on(001)plane silicon wafers. Figure 2b shows the perfect monocrystalline lattice of the strained silicon layer.Therefore,Eq.(5)was applicable to evaluate the average strain of the strained silicon layer,ε= -1.205×10-3×(511.98-519.78)=9.40/00≈1%and the average residual stress σ=-217.5×(511.98-519.78)= 1.70 GPa.

    Fig.5 Distribution of residual stress in the cross-section sample

    Forthe backscattering measurementson the cross-section,which had[110]crystal orientation,Eqs.(10)and(12)were applicable to evaluate the residual stress of sampling spots in the C-Si substrate and germanium silicon buffer layers,respectively.Hence,the residual stress distribution was obtained along the depth direction of this multi-layer structure as shown in Fig.5.

    The experimental results in Fig.5 show that the residual stress was inhomogeneously distributed inside the material. In the C-Si substrate,the residual stress changed linearly with depth,which led to a unitary warping of the whole ε-Si wafer.The residual stress then changed dramatically inside the graded germanium silicon buffer layer.In detail,from the GexSi1-x/Si interface to the Ge0.2Si0.8/GexSi1-xinterface,the residual stress increased rapidly and almost linearly,reached a maximum,and then decreased slightly. This occurred because intrinsic residual stress is generally induced by lattice mismatch.With increasing Ge content in the GexSi1-xbuffer layer,the average size of the lattice structure was enlarged,accompanied by increased lattice mismatches.Because lattice size cannot be enlarged continuously,it reached a stable and saturated state inside the GexSi1-xbufferlayer.Afterthat,furtherincreasesin Ge contentwere only helpfulforthe gradualrelaxation oralleviation of the lattice mismatch,releasing the intrinsic residual stress until it was close to the Ge0.2Si0.8/GexSi1-xinterface.In the relaxed germanium silicon buffer layer,the lattice structure was steady,and;hence,the residual stress was stabilized. Near the ε-Si/Ge0.2Si0.8interface,it was about 2.45 GPa.

    Fig.6 Flow chartofthe measurementofresidualstressin a multi-layer semiconductor heterostructure

    6 Conclusion

    Taking ε-Si/Ge0.2Si0.8/GexSi1-x/C-Si(shown in Fig.1)as an example of multi-layer heterostructure,this paper has presented a methodological study of residual stress measurement(Fig.6).For such multi-layer semiconductor heterostructures,it is efficient to prepare cross-section samples and then investigate theirmaterialand mechanicalproperties. SEM and TEM can be used to measure the geometric parametersofthe multilayerstructure,while MRS,TEM,perhaps energy dispersive spectroscopy(EDS),and others are powerful techniques for characterizing material composition and properties.Coincident with these experimental works,the Raman to stress/strain relationship ofthe studied materialfor a specific crystalorientation should be investigated at a theoretical level.Finally,the distribution of residual stress along the depth ofthe multi-layerheterostructure can be determined by combining the experimental and theoretical results.The geometric and material properties measured by SEM,TEM,MRS,and EDS experiments(such as those shown in Figs.2-4)are all essential parameters for calculation of the Raman to stress/strain relationship(such as by Eqs.(10)and(12))to evaluate the residual stress and its distribution(such as that shown in Fig.5).

    Acknowledgments The project was supported by the National Basic Research Program of China(Grant 2012CB937500),the National Natural Science Foundation of China(Grants 11422219,11227202,11372217,11272232),the Program for New Century Excellent Talents in University(Grant NCET-13),and China Scholarship Council(201308120092).

    1.Jacobsen,R.S.,Andersen,K.N.,Borel,P.I.,et al.:Strained silicon as a new electro-optic material.Nature 441,199-202(2006)

    2.Zhou,Z.W.,He,J.K.,Wang,R.C.:Heteroepitaxial growth of Ge films on Si substrates and its applications in optoelectronics. Physics 40,799-806(2011)

    3.Gogotsi,Y.,Baek,C.,Kirscht,F(xiàn).:Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon.Semicond.Sci.Technol.14,936-944(1999)

    4.Zhang,Q.C.,Jiang,Z.Y.,Jiang,H.F.,etal.:On the propagation and pulsation of Portevin-Le Chatelier deformation bands:an experimental study with digital speckle pattern metrology.Int.J.Plast. 21,2150-2173(2005)

    5.Jiang,H.F.,Zhang,Q.C.,Chen,X.D.,et al.:Three types of Portevin-Le Chatelier effects:experiment and modelling.Acta Mater.55,2219-2228(2007)

    6.Wang,M.,Hu,X.F.,Wu,X.P.:Internal microstructure evolution of aluminum foams under compression.Mater.Res.Bull.41,1949-1958(2006)

    7.Kasper,E.:PropertiesofStrained and Relaxed Silicon Germanium. INSPEC,Institution of Electrical Engineers,London(1995)

    8.Janssen,G.C.A.M.,Abdalla,M.M.,Keulen,V.F.,etal.:Celebrating the 100th anniversary of the Stoney equation for film stress:developments from polycrystalline steel strips to single crystal silicon wafers.Thin Solid Films 517,1858-1867(2009)

    9.Doyle,S.,Chernenko,V.A.,Besseghini,S.,etal.:Residualstressin Ni-Mn-Ga thin films deposited on different substrates.Eur.Phys. J.Spec.Top.158,99-105(2008)

    10.Pan,X.,Tan,C.W.,Miao,J.,etal.:The stress analysis of SiMEMS devices by micro-Raman technique.Thin Solid Films 517,4905-4908(2009)

    11.Li,X.D.,Tao,G.,Yang,Y.Z.:Continual deformation analysis with scanning phase method and time sequence phase method in temporal speckle pattern interferometry.Opt.Laser Technol.33,53-59(2001)

    12.Zhang,Z.F.,Kang,Y.L.,Wang,H.W.,et al.:A novel coarse-fine search scheme for digital image correlation method.Measurement 39,710-718(2006)

    13.Jiang,L.B.,Guo,B.Q.,Xie,H.M.:Identification ofthe elastic stiffnessofcompositesusing the virtualfieldsmethod and digitalimage correlation.Acta Mech.Sin.31,173-180(2015)

    14.Stoney,G.G.:The tension of metallic films deposited by electrolysis.Proc.R.Soc.Lond.A 82,172-175(1909)

    15.Qiu,W.,Kang,Y.L.,Lei,Z.K.,et al.:Experimental study of the Raman strain rosette based on the carbon nanotube strain sensor. J.Raman Spectrosc.41,1216-1220(2010)

    16.Qiu,W.,Li,Q.,Lei,Z.K.,et al.:The use of a carbon nanotube sensorformeasuring strain by micro-Raman spectroscopy.Carbon 53,161-168(2013)

    17.Qiu,W.,Kang,Y.L.:Mechanical behaviour study of microdevice and nanomaterials by Raman spectroscopy.Chin.Sci.Bull.59,2811-2824(2014)

    18.De Wolf,I.:Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits.Semicond.Sci.Technol.11,139-154(1996)

    19.Hayazawa,N.,Motohashi,M.,Saito,Y.,et al.:Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy.J.Raman Spectrosc.38,684-696(2007)

    20.Li,Q.,Qiu,W.,Tan,H.,et al.:Micro-Raman spectroscopy stress measurement method for porous silicon film.Opt.Lasers Eng.48,1119-1125(2010)

    21.Kang,Y.L.,Qiu,Y.,Lei,Z.K.,etal.:An application ofRaman spectroscopy on the measurement of residual stress in porous silicon. Opt.Lasers Eng.43,847-855(2005)

    22.Qiu,W.,Kang,Y.L.,Li,Q.,et al.:Experimental analysis for the effect of dynamic capillarity on stress transformation in porous silicon.Appl.Phys.Lett.92,041906(2008)

    23.Liang,R.R.,Zhang,K.,Yang,Z.R.,et al.:Fabrication and characterization of strained Si material using SiGe virtual substrate for high mobility devices.Chin.J.Semicond.28,1518-1522(2007)

    24.Zhao,C.W.,Xing,Y.M.,Zhou,C.E.,etal.:Experimentalexamination of displacement and strain fields in an edge dislocation core. Acta Mater.56,2570-2575(2008)

    25.She,X.,Wang,H.:Thermal stability of ALD lanthanum aluminate thin films on Si(100).J.Mater.Sci.Technol.30,347-352(2014)

    26.Moutanabbir,O.,Reiche,M.,H?hnel,A.,et al.:Multiwavelength micro-Raman analysis of strain in nanopatterned ultrathin strained silicon-on-insulator.Appl.Phys.Lett.97,053105(2010)

    27.Wolf,I.D.,Maes,H.,Jones,S.K.:Stress measurements in silicon devices through Raman spectroscopy:bridging the gap between theory and experiment.Appl.Phys.79,7148-7156(1996)

    28.Alonso,M.I.,Winer,K.:Raman spectra of c-Si1-x Ge x alloys. Phys.Rev.B 39,10056-10062(1989)

    29.Tsang,J.C.,Mooney,P.M.,Dacol,F(xiàn).,etal.:Measurementsofalloy composition and strain in thin GexSi1-xlayers.Appl.Phys.75,8098-8108(1994)

    30.Dismukes,J.P.,Ekstrom,L.,Paff,R.J.:Lattice parameter and density in germanium-silicon alloys.J.Phys.Chem.68,3021-3027(1964)

    31.Landolt,H.,B?rnstein,R.:Numerical data and functional relationships in science and technology new series,Group III,vol.17a. Springer,Berlin(1982)

    29 September 2015/Revised:17 November 2015/Accepted:8 December 2015/Published online:12 July 2016

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

    猜你喜歡
    普普通通廣玉蘭大朵
    樹皮下的小動物
    雨中的廣玉蘭
    云與紫外線
    我是一名普普通通的醫(yī)生
    大朵大朵
    江陰市徐霞客鎮(zhèn)僑眷張倫:我只是一塊普普通通的磚頭
    華人時刊(2018年17期)2018-12-07 01:02:18
    風(fēng)中的廣玉蘭
    中國詩歌(2018年5期)2018-11-14 20:52:30
    校園的廣玉蘭
    校園的廣玉蘭(2)
    不遠(yuǎn)
    紅巖(2017年6期)2017-11-28 19:18:51
    一级毛片黄色毛片免费观看视频| 亚洲av日韩在线播放| 一个人看的www免费观看视频| 精品国产露脸久久av麻豆| 免费看光身美女| 久久这里有精品视频免费| av在线老鸭窝| 国产亚洲av片在线观看秒播厂| 伊人久久国产一区二区| 国产久久久一区二区三区| a级毛色黄片| av卡一久久| 毛片一级片免费看久久久久| 亚洲色图综合在线观看| 青青草视频在线视频观看| 久久久久久国产a免费观看| 激情 狠狠 欧美| av在线播放精品| 中文乱码字字幕精品一区二区三区| 中文字幕亚洲精品专区| 免费av不卡在线播放| 精华霜和精华液先用哪个| 听说在线观看完整版免费高清| 水蜜桃什么品种好| 80岁老熟妇乱子伦牲交| 只有这里有精品99| 久久综合国产亚洲精品| 超碰97精品在线观看| av专区在线播放| 午夜福利在线观看免费完整高清在| 亚洲欧美精品专区久久| 一区二区三区四区激情视频| 国产在线一区二区三区精| 久久久久久久久久成人| 少妇人妻一区二区三区视频| 久久99热这里只频精品6学生| 天堂俺去俺来也www色官网| 亚洲丝袜综合中文字幕| 午夜福利在线在线| 欧美一区二区亚洲| 极品教师在线视频| 一个人看的www免费观看视频| 又大又黄又爽视频免费| 18禁裸乳无遮挡免费网站照片| 99久久人妻综合| 白带黄色成豆腐渣| 丰满人妻一区二区三区视频av| 18禁裸乳无遮挡免费网站照片| 97在线人人人人妻| 国产免费一级a男人的天堂| 国产精品人妻久久久影院| 日本欧美国产在线视频| 免费人成在线观看视频色| 麻豆久久精品国产亚洲av| 亚洲自偷自拍三级| 亚洲欧美日韩另类电影网站 | 国产 一区 欧美 日韩| 久久久久久久久久人人人人人人| 日韩三级伦理在线观看| 免费黄色在线免费观看| 人妻 亚洲 视频| 国产乱人视频| 天美传媒精品一区二区| 国产乱人偷精品视频| 色网站视频免费| 久久久久久伊人网av| 亚洲国产最新在线播放| 久久久久久久亚洲中文字幕| 男女边摸边吃奶| 97在线视频观看| 99热6这里只有精品| 另类亚洲欧美激情| 哪个播放器可以免费观看大片| 免费观看性生交大片5| 久久久久久久大尺度免费视频| 搞女人的毛片| 99久久精品热视频| 国产片特级美女逼逼视频| 国产精品伦人一区二区| 亚洲精品国产av蜜桃| 国产精品蜜桃在线观看| 久久久久久久大尺度免费视频| 丝袜喷水一区| 免费人成在线观看视频色| 亚洲无线观看免费| 网址你懂的国产日韩在线| 在线天堂最新版资源| 欧美区成人在线视频| 22中文网久久字幕| av播播在线观看一区| 少妇被粗大猛烈的视频| 亚洲美女视频黄频| 亚洲自偷自拍三级| 女人十人毛片免费观看3o分钟| 中文字幕免费在线视频6| 少妇高潮的动态图| 一级二级三级毛片免费看| 日韩亚洲欧美综合| 中文资源天堂在线| 亚洲国产av新网站| 国产精品嫩草影院av在线观看| 联通29元200g的流量卡| 国产 一区精品| 国产成人a∨麻豆精品| 精品人妻一区二区三区麻豆| 午夜福利网站1000一区二区三区| 精品一区在线观看国产| 国产91av在线免费观看| 国产成人精品久久久久久| 精品久久国产蜜桃| 91精品国产九色| 亚洲经典国产精华液单| 国产黄a三级三级三级人| 午夜激情福利司机影院| 欧美激情久久久久久爽电影| 日韩制服骚丝袜av| 亚洲最大成人手机在线| 97超碰精品成人国产| 黄片无遮挡物在线观看| 国产在视频线精品| 日韩在线高清观看一区二区三区| 深夜a级毛片| 一个人观看的视频www高清免费观看| 又爽又黄a免费视频| 成人免费观看视频高清| av免费观看日本| 欧美成人a在线观看| 老师上课跳d突然被开到最大视频| 亚洲欧美一区二区三区黑人 | 美女主播在线视频| 国产精品精品国产色婷婷| 只有这里有精品99| 边亲边吃奶的免费视频| 精华霜和精华液先用哪个| 亚洲美女视频黄频| 久久综合国产亚洲精品| 久久久久精品性色| videos熟女内射| 又黄又爽又刺激的免费视频.| 一级av片app| 午夜精品国产一区二区电影 | av黄色大香蕉| 97精品久久久久久久久久精品| 免费看日本二区| 美女视频免费永久观看网站| 亚洲人成网站在线观看播放| 在线天堂最新版资源| 五月伊人婷婷丁香| 激情五月婷婷亚洲| 丰满少妇做爰视频| 日本黄色片子视频| 最近最新中文字幕大全电影3| 精品酒店卫生间| 国产亚洲5aaaaa淫片| 色吧在线观看| 久久97久久精品| 色视频www国产| 国产成人精品一,二区| 伦精品一区二区三区| 亚洲第一区二区三区不卡| av免费观看日本| 免费大片18禁| a级毛色黄片| 日韩电影二区| 国产一区二区三区综合在线观看 | 亚洲一区中文字幕在线| 九色亚洲精品在线播放| 日本91视频免费播放| 国产成人一区二区在线| 狠狠婷婷综合久久久久久88av| 午夜日本视频在线| 一级毛片 在线播放| 人人澡人人妻人| 国产片特级美女逼逼视频| 在线观看www视频免费| 丝袜喷水一区| 日韩熟女老妇一区二区性免费视频| 欧美日韩成人在线一区二区| 99热国产这里只有精品6| 国产亚洲最大av| 欧美日韩av久久| 亚洲国产看品久久| 黄频高清免费视频| 日韩精品有码人妻一区| 国产精品 欧美亚洲| 99九九在线精品视频| 在线观看www视频免费| 午夜福利,免费看| 亚洲激情五月婷婷啪啪| 99热网站在线观看| 看免费av毛片| 建设人人有责人人尽责人人享有的| 如何舔出高潮| 欧美精品高潮呻吟av久久| 亚洲av电影在线进入| 男人操女人黄网站| 又粗又硬又长又爽又黄的视频| 丰满迷人的少妇在线观看| 日日爽夜夜爽网站| 亚洲熟女毛片儿| 国产精品麻豆人妻色哟哟久久| 亚洲成av片中文字幕在线观看| 母亲3免费完整高清在线观看| 精品一区二区免费观看| 在线观看国产h片| 亚洲精品日本国产第一区| 国产欧美日韩一区二区三区在线| 两个人免费观看高清视频| 亚洲欧美一区二区三区黑人| 操美女的视频在线观看| 午夜福利视频精品| 国产成人精品久久久久久| 视频区图区小说| av国产精品久久久久影院| 亚洲欧美激情在线| 国产日韩欧美在线精品| 国产精品一区二区在线观看99| 成人黄色视频免费在线看| 中国国产av一级| 韩国av在线不卡| 秋霞伦理黄片| 成人亚洲欧美一区二区av| 亚洲一区二区三区欧美精品| 一本色道久久久久久精品综合| 国精品久久久久久国模美| 国产精品一二三区在线看| 美女中出高潮动态图| 国产精品av久久久久免费| 99热网站在线观看| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品一区蜜桃| 亚洲精品美女久久久久99蜜臀 | 亚洲av国产av综合av卡| 日韩中文字幕视频在线看片| 一本久久精品| 国产精品蜜桃在线观看| 男女床上黄色一级片免费看| 汤姆久久久久久久影院中文字幕| 久久影院123| 亚洲精品在线美女| 国产伦理片在线播放av一区| 免费人妻精品一区二区三区视频| 欧美中文综合在线视频| 日韩欧美精品免费久久| 18禁观看日本| 91精品三级在线观看| 少妇被粗大猛烈的视频| 综合色丁香网| 国产老妇伦熟女老妇高清| 久久久久久久国产电影| 男女床上黄色一级片免费看| 国产免费福利视频在线观看| 各种免费的搞黄视频| 卡戴珊不雅视频在线播放| 激情视频va一区二区三区| 成人午夜精彩视频在线观看| 色精品久久人妻99蜜桃| 丰满乱子伦码专区| av不卡在线播放| 亚洲伊人色综图| 岛国毛片在线播放| 大香蕉久久成人网| 多毛熟女@视频| 亚洲四区av| 国产成人系列免费观看| 国产精品av久久久久免费| 一级毛片 在线播放| 在线观看免费高清a一片| 天堂俺去俺来也www色官网| 午夜福利一区二区在线看| 在线观看免费日韩欧美大片| 亚洲 欧美一区二区三区| 欧美黑人精品巨大| 自拍欧美九色日韩亚洲蝌蚪91| 女人被躁到高潮嗷嗷叫费观| 欧美日韩视频精品一区| 777久久人妻少妇嫩草av网站| 色网站视频免费| xxxhd国产人妻xxx| 一本一本久久a久久精品综合妖精| 一级片'在线观看视频| 乱人伦中国视频| 欧美精品一区二区免费开放| 麻豆乱淫一区二区| 亚洲国产欧美一区二区综合| 亚洲欧美中文字幕日韩二区| 欧美xxⅹ黑人| 国产精品久久久久成人av| 性高湖久久久久久久久免费观看| 久久综合国产亚洲精品| 国产精品国产av在线观看| 日韩大片免费观看网站| 高清在线视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品在线美女| 在线观看免费日韩欧美大片| 青春草国产在线视频| 交换朋友夫妻互换小说| 在线 av 中文字幕| 亚洲av日韩在线播放| 99九九在线精品视频| 亚洲国产日韩一区二区| 久久久久精品国产欧美久久久 | 9191精品国产免费久久| 亚洲成色77777| 校园人妻丝袜中文字幕| 亚洲成av片中文字幕在线观看| 欧美另类一区| av视频免费观看在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 97在线人人人人妻| 99久久精品国产亚洲精品| 黄色 视频免费看| 日韩大码丰满熟妇| 在线免费观看不下载黄p国产| 国产成人精品久久二区二区91 | 国产精品.久久久| 综合色丁香网| 不卡视频在线观看欧美| 久久青草综合色| 免费在线观看完整版高清| 国产片内射在线| 久久精品熟女亚洲av麻豆精品| 18禁裸乳无遮挡动漫免费视频| 老熟女久久久| 久久精品久久久久久噜噜老黄| 亚洲精品中文字幕在线视频| 制服诱惑二区| 另类精品久久| 精品免费久久久久久久清纯 | 国产片内射在线| 我要看黄色一级片免费的| 精品一品国产午夜福利视频| 久久精品亚洲av国产电影网| 亚洲婷婷狠狠爱综合网| 巨乳人妻的诱惑在线观看| 男女边摸边吃奶| 久久国产亚洲av麻豆专区| 国产又爽黄色视频| 街头女战士在线观看网站| 国产免费一区二区三区四区乱码| 美女午夜性视频免费| 亚洲精品久久久久久婷婷小说| 高清不卡的av网站| 免费少妇av软件| 日韩大码丰满熟妇| 好男人视频免费观看在线| 80岁老熟妇乱子伦牲交| www.熟女人妻精品国产| 亚洲欧美一区二区三区黑人| 国产精品久久久久成人av| 日韩熟女老妇一区二区性免费视频| 亚洲 欧美一区二区三区| 精品少妇黑人巨大在线播放| 国产片内射在线| 亚洲av成人不卡在线观看播放网 | 天天操日日干夜夜撸| 老司机影院成人| 51午夜福利影视在线观看| 9191精品国产免费久久| 看十八女毛片水多多多| 午夜日韩欧美国产| 免费高清在线观看日韩| 一本久久精品| 久久99一区二区三区| 欧美国产精品va在线观看不卡| 女人久久www免费人成看片| 成人漫画全彩无遮挡| 欧美老熟妇乱子伦牲交| 国产成人av激情在线播放| 欧美黑人欧美精品刺激| 日日摸夜夜添夜夜爱| 精品酒店卫生间| 啦啦啦视频在线资源免费观看| 伦理电影大哥的女人| 国产成人a∨麻豆精品| 国产免费现黄频在线看| 一区二区三区乱码不卡18| 99国产综合亚洲精品| 国产在视频线精品| 国产成人精品无人区| 男人爽女人下面视频在线观看| 亚洲七黄色美女视频| 老司机影院成人| 亚洲精品aⅴ在线观看| 9热在线视频观看99| 电影成人av| 侵犯人妻中文字幕一二三四区| 国产女主播在线喷水免费视频网站| 大片免费播放器 马上看| 久久亚洲国产成人精品v| 男女下面插进去视频免费观看| 天天躁夜夜躁狠狠久久av| 校园人妻丝袜中文字幕| 国产淫语在线视频| 婷婷色综合大香蕉| 亚洲欧美清纯卡通| 91精品三级在线观看| 一区二区av电影网| 亚洲五月色婷婷综合| 看十八女毛片水多多多| 国产精品 欧美亚洲| 亚洲国产精品国产精品| 国产精品偷伦视频观看了| 欧美国产精品va在线观看不卡| 午夜免费观看性视频| 国产一区二区三区av在线| 又黄又粗又硬又大视频| 国产精品二区激情视频| 国产成人91sexporn| 婷婷色av中文字幕| 欧美在线一区亚洲| 美女福利国产在线| 欧美人与善性xxx| 男女高潮啪啪啪动态图| 波多野结衣av一区二区av| 69精品国产乱码久久久| 亚洲精品日本国产第一区| 亚洲,欧美精品.| 一级毛片 在线播放| 韩国高清视频一区二区三区| 国产免费现黄频在线看| 丰满乱子伦码专区| 亚洲图色成人| 在线看a的网站| 一二三四中文在线观看免费高清| 搡老岳熟女国产| 操出白浆在线播放| 丝袜脚勾引网站| 90打野战视频偷拍视频| 看免费av毛片| 精品亚洲成国产av| av.在线天堂| 哪个播放器可以免费观看大片| 黑人欧美特级aaaaaa片| 另类精品久久| 久久鲁丝午夜福利片| 亚洲欧美成人综合另类久久久| 高清不卡的av网站| 三上悠亚av全集在线观看| avwww免费| 在线天堂最新版资源| 中国三级夫妇交换| 欧美日韩国产mv在线观看视频| 国产深夜福利视频在线观看| 欧美激情极品国产一区二区三区| 又大又黄又爽视频免费| 中文字幕av电影在线播放| 在线亚洲精品国产二区图片欧美| 国产男女超爽视频在线观看| 成人国产av品久久久| 国产免费又黄又爽又色| 亚洲一码二码三码区别大吗| 国产精品欧美亚洲77777| 激情视频va一区二区三区| 国产成人精品福利久久| 国产精品秋霞免费鲁丝片| 国产在视频线精品| 日韩精品免费视频一区二区三区| 青草久久国产| 国产乱来视频区| 老鸭窝网址在线观看| 日本欧美国产在线视频| 日韩av不卡免费在线播放| 久久天堂一区二区三区四区| 99香蕉大伊视频| 妹子高潮喷水视频| 久久精品久久久久久久性| 精品国产乱码久久久久久男人| 国产av国产精品国产| 久久久欧美国产精品| 国产成人欧美在线观看 | 熟女少妇亚洲综合色aaa.| 巨乳人妻的诱惑在线观看| 成人国产av品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区二区免费观看| 天天躁夜夜躁狠狠躁躁| 国产熟女午夜一区二区三区| 啦啦啦啦在线视频资源| 汤姆久久久久久久影院中文字幕| 欧美日韩精品网址| 最近最新中文字幕大全免费视频 | 最近2019中文字幕mv第一页| 伊人亚洲综合成人网| 亚洲婷婷狠狠爱综合网| 性高湖久久久久久久久免费观看| 啦啦啦视频在线资源免费观看| 欧美日本中文国产一区发布| 伦理电影免费视频| 日韩精品免费视频一区二区三区| 日韩一本色道免费dvd| 精品午夜福利在线看| 国产黄频视频在线观看| 在线免费观看不下载黄p国产| 亚洲精品久久久久久婷婷小说| 日韩中文字幕欧美一区二区 | 久久免费观看电影| 97人妻天天添夜夜摸| 亚洲av中文av极速乱| 国产日韩欧美视频二区| 青草久久国产| 女人被躁到高潮嗷嗷叫费观| 99精品久久久久人妻精品| 水蜜桃什么品种好| 男女边摸边吃奶| www日本在线高清视频| 亚洲七黄色美女视频| 国产精品熟女久久久久浪| 在线看a的网站| 曰老女人黄片| 精品国产乱码久久久久久男人| 国产成人a∨麻豆精品| 乱人伦中国视频| 久久久久精品久久久久真实原创| 欧美 日韩 精品 国产| 亚洲人成电影观看| 亚洲精品国产区一区二| 日韩不卡一区二区三区视频在线| 精品人妻一区二区三区麻豆| 在线观看三级黄色| h视频一区二区三区| 天堂8中文在线网| 亚洲成av片中文字幕在线观看| 午夜福利视频精品| 久久鲁丝午夜福利片| 国产av国产精品国产| 国产成人一区二区在线| 毛片一级片免费看久久久久| 夫妻性生交免费视频一级片| 2021少妇久久久久久久久久久| 一级片免费观看大全| 亚洲精品在线美女| 91aial.com中文字幕在线观看| 日韩中文字幕欧美一区二区 | 七月丁香在线播放| 国产一区有黄有色的免费视频| 午夜激情久久久久久久| 国产午夜精品一二区理论片| 久久久久久久久免费视频了| 黄色一级大片看看| 国产免费一区二区三区四区乱码| 欧美日韩亚洲综合一区二区三区_| 曰老女人黄片| 男女边摸边吃奶| 成年人午夜在线观看视频| 男女床上黄色一级片免费看| 丰满乱子伦码专区| 青春草视频在线免费观看| 中文字幕色久视频| 中文字幕制服av| 在线观看免费日韩欧美大片| 少妇 在线观看| 欧美精品一区二区大全| 国产在视频线精品| 午夜福利在线免费观看网站| 卡戴珊不雅视频在线播放| 高清视频免费观看一区二区| 国产人伦9x9x在线观看| 一区二区日韩欧美中文字幕| 桃花免费在线播放| 久久久久久人妻| 久久天躁狠狠躁夜夜2o2o | 国产人伦9x9x在线观看| 国产日韩欧美在线精品| av福利片在线| 成年人午夜在线观看视频| 亚洲在久久综合| 国产成人欧美在线观看 | 国产精品欧美亚洲77777| 赤兔流量卡办理| 精品一区二区三区av网在线观看 | 九草在线视频观看| 99久久综合免费| 国产成人精品久久久久久| 狂野欧美激情性bbbbbb| 黄片无遮挡物在线观看| 成年av动漫网址| 亚洲成国产人片在线观看| 久热这里只有精品99| 人人妻人人添人人爽欧美一区卜| 亚洲av日韩精品久久久久久密 | 人人妻人人添人人爽欧美一区卜| 成人免费观看视频高清| 婷婷色综合www| 亚洲激情五月婷婷啪啪| 亚洲国产毛片av蜜桃av| 黄色视频不卡| av又黄又爽大尺度在线免费看| av在线老鸭窝| 中文字幕最新亚洲高清| 黄片小视频在线播放| 国产免费视频播放在线视频| 天堂中文最新版在线下载| 亚洲精品国产区一区二| av线在线观看网站| 亚洲国产中文字幕在线视频| 亚洲成av片中文字幕在线观看| 我要看黄色一级片免费的| 国产熟女午夜一区二区三区| 国产精品香港三级国产av潘金莲 | 男女无遮挡免费网站观看| 久久青草综合色| 纵有疾风起免费观看全集完整版| 999久久久国产精品视频| www.熟女人妻精品国产| 亚洲成色77777| 激情视频va一区二区三区| 国产成人免费观看mmmm| 99国产精品免费福利视频| 丝袜脚勾引网站| 免费不卡黄色视频| 在线精品无人区一区二区三| 丝袜脚勾引网站| 色吧在线观看|