劉春生, 韓 飛
(1.黑龍江科技大學(xué), 哈爾濱 150022; 2.黑龍江科技大學(xué) 機(jī)械工程學(xué)院, 哈爾濱 150022)
?
鎬型截齒側(cè)向載荷譜特性實驗研究
劉春生1,韓飛2
(1.黑龍江科技大學(xué), 哈爾濱 150022; 2.黑龍江科技大學(xué) 機(jī)械工程學(xué)院, 哈爾濱 150022)
為研究軸向傾斜角不為零時鎬型截齒側(cè)向載荷的特性,采用ABAQUS軟件模擬鎬型截齒截割煤巖的動態(tài)過程,獲得鎬型截齒截割過程的側(cè)向載荷譜。利用頻譜分析方法將其與多截齒參數(shù)可調(diào)截割實驗臺測得的側(cè)向載荷譜進(jìn)行對比分析,根據(jù)實驗數(shù)據(jù)建立了側(cè)向載荷擬合的數(shù)學(xué)模型。結(jié)果表明:實驗與仿真?zhèn)认蜉d荷變化趨勢具有一致性;鎬型截齒所受側(cè)向載荷方向與其軸向傾斜角方向相同;側(cè)向載荷幅值主要集中在低頻區(qū)域,且側(cè)向載荷低頻段幅值隨軸向傾斜角的增加而增加,其擬合曲線的均值與軸向傾斜角呈線性相關(guān);高頻段幅值對鎬型截齒軸向傾斜角的變化敏感度較弱,主要集中在0.2 kN以內(nèi)。該研究可以為探明截出側(cè)向載荷提供參考。
鎬型截齒; 側(cè)向載荷; 頻譜分析; 數(shù)學(xué)模型
采煤機(jī)普遍使用的鎬型截齒,消耗了整機(jī)大部分的功率。提高鎬齒的截割性能,對研究采煤機(jī)整機(jī)受力,提升采煤工作效率,保障安全生產(chǎn)均具有重要意義[1]。R.A.Qayyum對不同形狀和不同的合金頭尺寸鎬型截齒進(jìn)行實驗,獲得了截割力與合金頭尺寸、鎬型截齒錐角的關(guān)系[2]。劉送永等[3]對不同齒身錐度和合金頭直徑鎬型截齒進(jìn)行截割實驗,得出了鎬型截齒錐度、合金頭尺寸大小與截割力和塊煤率的關(guān)系。劉春生等[4]對鎬型截齒破碎煤巖側(cè)向載荷分布特性進(jìn)行研究,給出不同類型鎬型截齒破碎煤巖側(cè)向載荷分布特性。目前,對于軸向傾斜角θ=0°的鎬型截齒,國內(nèi)外學(xué)者取得了諸多的研究成果。對于θ≠0°的鎬型截齒,研究尚不夠深入。為探討鎬型截齒側(cè)向載荷與軸向傾斜角θ的關(guān)系,筆者利用自行研制的多截齒參數(shù)可調(diào)式旋轉(zhuǎn)截割實驗臺和ABAQUS軟件,研究鎬型截齒側(cè)向載荷的特性。
1.1有限元模型
煤巖采用剪切損傷模型和Drucker-Prager模型[5]。由于截割過程復(fù)雜,伴隨著應(yīng)力、應(yīng)變的劇烈變化,包括彈、塑性變形和斷裂,煤巖截割過程的仿真分析需假設(shè)條件具體如下:截齒絕對速度的大小和方向都不變;煤巖的質(zhì)地均勻,不含夾矸;忽略截齒運動過程中的振動,認(rèn)為截齒始終是在一個平面內(nèi)運動。
將Pro/e中建立的模型另存為iges模式,導(dǎo)入ABAQUS軟件中,并為模型賦予材料屬性,之后按照ABAQUS界面左側(cè)模型樹的裝配、分析步、輸出請求、相互作用、約束、載荷以及邊界條件等模塊,建立分析模型[6],有限元模型如圖1所示。
圖1 截齒和煤巖有限元模型
1.2仿真?zhèn)认蚪睾尚?/p>
根據(jù)旋轉(zhuǎn)截割實驗臺的結(jié)構(gòu)與工作參數(shù),選取旋轉(zhuǎn)截割實驗中煤壁最大切削厚度附近的0.1 s進(jìn)行仿真模擬。設(shè)定參數(shù)與實驗參數(shù)相同,運用Matlab軟件得到側(cè)向載荷譜,如圖2所示。
圖2 不同軸向傾斜角下的仿真?zhèn)认蜉d荷
由于仿真實驗中煤壁僅為截割實驗煤壁弧長的1/7,所以對于鎬型截齒來說,其切削厚度變化不大,因此,對側(cè)向載荷曲線用其均值進(jìn)行擬合。側(cè)向載荷的幅值隨著軸向傾斜角的增加,由0°時的正負(fù)交替變化,向著與軸向傾斜角的方向相同的方向變化,且幅值也相應(yīng)的增大。
利用多截齒參數(shù)可調(diào)式旋轉(zhuǎn)截割實驗臺進(jìn)行煤巖截割實驗[7]。實驗采用普通鎬型截齒,鎬型截齒切向安裝角β為40°,沿滾筒軸向傾斜的軸向傾斜角θ分別為0°、5°、10°和15°,截割阻抗Z0為180~ 200 kN/m,滾筒轉(zhuǎn)速40.8 r/min,牽引速度0. 82 m/min,最大切削厚度hmax20 mm,鎬型截齒截割完整的月牙形(180°)煤巖需要0.735 s。
實驗中鎬型截齒截割煤壁時所受的截割阻力通過齒套傳遞,由后端的力傳感器測量其大小。傳感器測力方向與鎬型截齒軸線一致,定義軸向載荷為Fz,所測力方向與鎬型截齒軸線方向垂直,定義徑向載荷為Fy,測力方向同時與軸向載荷和徑向載荷垂直,定義側(cè)向載荷為Fx,指向采空區(qū)一側(cè)為正值[8]。測力裝置如圖3所示。
1 鎬型截齒; 2 齒套; 3 齒座; 4、5、6、7 力傳感器
鎬型截齒齒尖側(cè)向載荷曲線,如圖4所示。由圖4可見,隨著軸向傾斜角θ的增加,側(cè)向載荷幅值的大小和方向發(fā)生顯著變化。當(dāng)θ=0°時,鎬型截齒兩側(cè)面與煤巖接觸的面積基本相等,鎬型截齒側(cè)向載荷方向交變波動;當(dāng)θ≠0°時,截割過程中側(cè)向載荷整體為負(fù)值,說明當(dāng)鎬型截齒向煤壁側(cè)傾斜時,鎬型截齒所受側(cè)向載荷方向指向煤壁側(cè),隨著θ的增加,側(cè)向載荷曲線逐漸向負(fù)方向移動。在宏觀和微觀上面,θ≠0°時,鎬型截齒兩側(cè)受到不平衡的側(cè)向載荷。這是因為此時鎬型截齒截割煤巖,由于軸向傾斜角的存在,鎬型截齒擠壓一側(cè)煤巖的崩落空間,截齒側(cè)向載荷既有截割成分,也有擠壓成分。
a θ=0°
b θ=5°
c θ=10°
d θ=15°
3.1仿真載荷譜
為研究鎬型截齒軸向傾斜角對鎬型截齒側(cè)向載荷的影響及其相互關(guān)系,進(jìn)行鎬型截齒仿真實驗的側(cè)向載荷譜頻譜分析,結(jié)果如圖5所示。
a θ=0°
b θ=5°
c θ=10°
d θ=15°
由圖5可見,θ=0°的鎬型截齒,其側(cè)向載荷幅值在整個頻域內(nèi)均小于0.2 kN;而當(dāng)θ開始增加時,鎬型截齒側(cè)向載荷在低頻段,尤其是零頻的幅值隨之增加,而高頻段的幅值基本上還集中在0.2 kN以內(nèi)。
3.2 實驗載荷譜
為研究鎬型截齒軸向傾斜角對鎬型截齒側(cè)向載荷的影響及其相互關(guān)系,對鎬型截齒實驗的側(cè)向載荷譜進(jìn)行頻譜分析,結(jié)果如圖6所示。
a θ=0°
b θ=5°
c θ=10°
d θ=15°
由圖6可見,鎬型截齒的側(cè)向載荷幅值主要集中在低頻區(qū)域,且隨著θ的增加側(cè)向載荷低頻段幅值隨之增加,其成分來源主要是鎬型截齒截割煤巖作用[9];高頻段幅值對鎬型截齒θ的變化敏感度較弱,幅值主要集中在0.2 kN以內(nèi),其成分來源主要是實驗過程中的一些干擾信號。
從圖6和圖5可以看出,實驗與仿真?zhèn)认蜉d荷的變化規(guī)律基本上是一致的,但是仿真得出的低頻幅值要遠(yuǎn)小于實驗的低頻幅值。究其原因,采用ABAQUS等有限元軟件模擬截齒截割煤巖時,有限元法軟件采用的是連續(xù)介質(zhì)力學(xué)方法[10]。將煤巖顆粒群體看作一個整體來考慮,忽略了煤巖內(nèi)部結(jié)構(gòu)的不連續(xù)性,而當(dāng)鎬型截齒存在軸向傾斜角時,截齒對煤巖體不僅存在截割作用,還對截槽一側(cè)產(chǎn)生擠壓作用。利用有限元軟件所給出的本構(gòu)模型對這部分穩(wěn)態(tài)值進(jìn)行模擬仿真,就產(chǎn)生很大的誤差,因此,有必要深入研究其模擬的本構(gòu)模型、算法與假設(shè)條件。
由實驗數(shù)據(jù)計算得到低頻段側(cè)向載荷,據(jù)此給出在實驗條件下側(cè)向載荷波峰擬合峰值與軸向傾斜角和切削厚度的關(guān)系模型:
(1)
式中:Z——煤巖截割阻抗,kN/mm;
Z0——實驗煤巖截割阻抗,Z0=0.2,kN/mm;
h0——實驗最大切削厚度,h0=20,mm;
h——切削厚度,h=h0sin(4.27t),mm;
K1——軸向傾斜角系數(shù);
K2——崩落角影響系數(shù);
α+Δα——鎬型截齒當(dāng)量半錐角,α+Δα=0.951 rad;
φ——崩落角,在實驗范圍內(nèi)取φ=π(80-h)/180,rad。
變量(θ,h,Fx)的3n組實驗數(shù)據(jù)應(yīng)滿足
(2)
式中:K1、K2——待估參數(shù);
εθ11,εθ22,…,εθ33——3n個相互獨立且服從同一正態(tài)分布N(0,σ2)的隨機(jī)變量。
K2(θj+α+Δα-φ)]}}2。
(3)
對式(3)求偏導(dǎo)取0,可以求得K1=21.372,K2=0.128。
側(cè)向載荷峰值與軸向傾斜角和切削厚度的三維關(guān)系,如圖7所示。
圖7 側(cè)向載荷峰值與軸向傾斜角和切削厚度的擬合關(guān)系
分別取圖7中切削厚度h為5、10、15和20 mm時,給出的側(cè)向載荷峰值與軸向傾斜角擬合關(guān)系,以及θ為5°、10°和15°時,側(cè)向載荷峰值與切削厚度擬合關(guān)系,如圖8所示。
圖8a表示切削厚度5、10、15和20 mm時,軸向傾斜角與側(cè)向載荷的關(guān)系,圖8b表示軸向傾斜角5°、10°、15°時,切削厚度與側(cè)向載荷的關(guān)系。
a
b
圖8中的散點是實驗數(shù)據(jù),從圖8可以發(fā)現(xiàn),所給出的擬合關(guān)系與實驗結(jié)果吻合,變化規(guī)律一致。這也說明數(shù)學(xué)模型能較好的符合原始數(shù)據(jù),可以對原始數(shù)據(jù)進(jìn)行良好地擬合。獲得側(cè)向載荷擬合公式:
(4)
(1)利研制的旋轉(zhuǎn)截割實驗臺,對鎬型截齒進(jìn)行實驗研究,得到不同軸向傾斜角時,鎬型截齒所受側(cè)向載荷的譜值。從實驗結(jié)果可以看出,當(dāng)θ=0°時,鎬型截齒兩側(cè)面與煤巖接觸的面積基本相等,鎬型截齒側(cè)向載荷方向交變波動;當(dāng)θ≠0°時,截割過程中側(cè)向載荷宏觀上整體為負(fù)值,說明當(dāng)鎬型截齒向煤壁側(cè)傾斜時,鎬型截齒所受側(cè)向載荷幅值在指向煤壁側(cè),當(dāng)θ增大時,側(cè)向載荷幅值增大。
(2)對側(cè)向載荷譜進(jìn)行頻譜分析處理,可以看出,鎬型截齒的側(cè)向載荷幅值主要集中在低頻區(qū)域,隨著鎬型截齒軸向傾斜角的增加,側(cè)向載荷低頻段幅值隨之增加;高頻段幅值較小主要集中在0.2kN以內(nèi),對于鎬型截齒軸向傾斜角的變化不敏感。低頻段側(cè)向載荷譜擬合峰值、均值與軸向傾斜角呈線性關(guān)系,并且在實驗范圍內(nèi)隨著軸向傾斜角的增大,呈增大的趨勢。
(3)建立鎬型截齒截割煤巖的有限元模型,采用剪切損傷模型和Drucker-Prager模型,通過ABAQUS/Explicit模擬鎬型截齒截割煤巖的動態(tài)過程,得到鎬型截齒截割煤巖的側(cè)向載荷譜,其高頻段變化規(guī)律與實驗結(jié)果基本一致,而低頻段幅值誤差很大。原因就在于,有限元法軟件所采用的連續(xù)介質(zhì)力學(xué)方法在對復(fù)雜工況下類似于煤巖等各向異性材料進(jìn)行模擬仿真時,其本構(gòu)模型只能對模型的一部分精確仿真。
[1]劉春生, 于信偉, 任昌玉. 滾筒式采煤機(jī)工作機(jī)構(gòu)[M]. 哈爾濱: 哈爾濱工程大學(xué)出版社, 2010.
[2]QAYYUM R A. Effects of bit geometry in multiple bit-rock interaction[D]. West Virginia: West Virginia University, 2003.
[3]劉送永, 杜長龍, 崔新霞, 等. 不同齒身錐度和合金頭直徑截齒的截割實驗[J]. 煤炭學(xué)報, 2009, 34(9): 1276-1280.
[4]劉春生, 任春平, 王慶華. 截齒破碎煤巖側(cè)向載荷分布特性研究[J]. 煤礦機(jī)電, 2014, 17(5): 14-17.
[5]宋楊. 鎬型截齒截割煤巖力學(xué)特性的數(shù)值模擬[D]. 哈爾濱: 黑龍江科技大學(xué), 2013.
[6]石亦平, 周玉蓉. ABAQUS 有限元分析實例詳解[M]. 北京: 機(jī)械工業(yè)出版社, 2006.
[7]劉春生, 任春平, 李德根. 修正離散正則化算法的截割煤巖載荷譜的重構(gòu)與推演[J]. 煤炭學(xué)報, 2014, 39(5): 981-986.
[8]劉春生, 王慶華, 李德根. 鎬型截齒截割阻力譜的分形特征與比能耗模型[J]. 煤炭學(xué)報, 2015, 40(11): 2623-2628.
[9]劉春生, 韓飛, 任春平, 等. 基于最大似然估計-Hilbert 法的截齒側(cè)向載荷特征識別[J]. 黑龍江科技大學(xué)學(xué)報, 2015 (3): 299-303.
[10]紀(jì)玉杰, 曹學(xué)濤. 截齒截割煤巖的離散元法仿真方法研究[J]. 礦業(yè)研究與開發(fā), 2013, 22(1): 22-24.
(編輯李德根)
Experimental study of lateral load on conical pick cutting coal
LIUChunsheng1,HANFei2
(1.Heilongjiang University of Science & Technology, Harbin 150022, China;2.School of Mechanical Engineering, Heilongjiang University of Science & Technology, Harbin 150022, China)
This paper is an attempt to explore the lateral loading condition of conical pick when the angle of axial inclination is not zero. The research works towards simulating the dynamic process of conical pick cutting the coal using ABAQUS and obtaining the lateral load spectrum during the cutting and finally using spectral analysis method to compare the experimental results with the lateral load spectrum obtained from multi-picks parameter adjustable rotary cutting test bench. The study shows that there is a consistency between the trends of the experimental and simulated load ; the direction of the lateral load is consistent with that of axial inclination angle; the lateral load amplitude mainly concentrated in the low frequency region tends to increase with an increase in the axial inclination angle; the mean value has linear correlation with the axial inclination angle;and the lateral load amplitude in the high frequency region shows a weaker sensitivity to the change of the axial inclination angle, mainly within 0.2 kN. The study produces the lateral force mathematical model.
conical pick; lateral load; spectrum analysis; mathematical model
2016-02-16
國家自然科學(xué)基金面上項目(51274091)
劉春生(1961-),男,山東省牟平人,教授,研究方向:機(jī)械設(shè)計和液壓傳動與控制,E-mail:liu_chunsheng@163.com。
10.3969/j.issn.2095-7262.2016.02.014
TD421.61
2095-7262(2016)02-0177-06
A