• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust Resilient Guaranteed Cost Control for Singular Impulsive Switched Systems with Time-varying Delay*

    2016-11-02 02:49:22王慶芝宗廣燈
    廣西科學(xué) 2016年4期
    關(guān)鍵詞:工程院魯棒控制時滯

    王慶芝,宗廣燈

    (曲阜師范大學(xué)工程院,山東日照 276826)

    ?

    Robust Resilient Guaranteed Cost Control for Singular Impulsive Switched Systems with Time-varying Delay*

    王慶芝,宗廣燈

    (曲阜師范大學(xué)工程院,山東日照 276826)

    This paper focuses on the problem of robust resilient guaranteed cost control for a class of singular impulsive switched systems with time-varying delay.Based on the multiple Lyapunov functional technique,some sufficient criteria,ensuring the regularity,causality,and asymptotic stability,are obtained initially for the nominal and unforced systems.Then the resilient controller is designed such that the corresponding closed-loop system,for all admissible uncertainties,is regular,causal and asymptotically stable, and the cost function does not exceed a cost upper bound.Further,a minimization approach of the largest singular value of matrices and a convex optimization method are introduced to seek the optimal robust resilient guaranteed cost controller.All the conditions are cast into the form of linear matrix inequalities (LMIs) through ingenious processing.Finally,two examples are presented to illustrate the less conservativeness and the effectiveness of the proposed results.

    singular switched systems,impulsive switched systems,resilient guaranteed cost control,multiple Lyapunov technique,linear matrix inequalities (LMIs)

    0 Introduction

    Switched systems have attracted considerable attention in recent decades[1-7]which include a series of continuous-time or discrete-time subsystems and a switching rule that orchestrates the switching between subsystems.They can be found in various real-world systems such as transportation systems[8-9],electric power systems[10],communication networks[11-12],and chemical processes[13].However,singular phenomena often exist in practical processes modeled by switching systems such as robotics,economics,chemistry and power systems.We call this kind of systems as singular switched systems.The past decades have witnessed considerable research on analysis and synthesis of singular switched systems[14-15].In addition,impulses often take place in various applications modeled by switching systems,which makes it more intricate to analyze the property of impulsive switched systems.Recently,some theoretical results on impulsive switched systems are reported in literatures,respectively[16-21].

    In actually physical processes,due to some physical restriction such as resistance errors,A/D or D/A conversion,finite word length in digital systems and rounding off errors in numerical computation,it is impossible to implement controller precisely,and it is important to take the controller gain perturbations into account during the designing process of the controller.On the other hand,the relatively small fluctuation of controller parameters may lead to the performance degradation or even instability.The two aspects above inspire us to design a controller that should be able to tolerate some levels of controller parameter perturbations.This kind of controllers are usually called as “resilient controllers”.Therefore,it is extremely imperative to design a resilient controller,and at the same time, some techniques and approaches solving this problem have been proposed.In [22],the problem of non-fragile hybrid guaranteed cost control is addressed for a class of uncertain switched linear systems.An observer-based resilient controller is designed in [23] for singular time-delay systems.Up to now,just little attention has been paid to design a resilient guaranteed cost controller for singular impulsive switched systems with time-varying delay,which stimulates the authors’ research interests.

    Here,we mainly study the robust resilient guaranteed cost control problem for a class of singular impulsive switched systems with time-varying delay.The outstanding contributions lie in several aspects:Firstly,we consider the uncertainty,impulse,singularity and time delay in switched systems at the same time,which throw out the greater challenge for the authors;Secondly,for the singular impulsive switched systems with time-varying delay,the derived conclusions can apply to various systems such as singular switched systems,impulsive switched systems,and singular impulsive systems,which fully demonstrates the less conservativeness and the broader applicability;Thirdly,uncertainties exist not only in the system structure but also in the resilient controller,which make it more difficult to simplify and solve inequalities;Fourthly,we introduce a minimization approach of the largest singular value of matrices and a convex optimization method in this paper to seek the optimal robust resilient guaranteed cost controller;Finally,all the conditions are cast into linear matrix inequalities(LMIs),and two examples are provided to illustrate the effectiveness of the proposed results.

    Notations Throughout this paper,T denotes the transpose.Rnrepresents the n-dimensional Euclidean space.Z+is a positive integer set,C stands for complex domain.Matrix P>0(P≥0) means that P is positive definite (positive semi-definite),and I is identity matrix with appropriate dimensions.* stands for the symmetric part in a block symmetric matrix.

    1 Problem formulation and preliminaries

    Consider the following singular impulsive

    switched system with time-varying delay

    Δx(t)=(Cσ(t)+ΔCσ(t))x(t),t=tk,

    x(t)=φ(t),t∈[-τm,0],

    (1)

    (2)

    (3)

    Associated with system Σ(1),the cost function is given by

    (4)

    where S and R are positive definite weighted matrices.

    For system Σ(1),a resilient controller

    uσ(t)(t)=(Kσ(t)+ΔKσ(t))x(t),

    (5)

    is considered,where Ki,i∈M is a controller gain to be designed,and ΔKi,i∈M represents a additive controller gain variation which has the following form

    (6)

    where N3iand D3iare known real constant matrices,and F3i(t) describes the uncertainty of the controller gain.

    Definition 1[15]Consider the pair (E,Aσ(t)).

    1.For a given i∈M,the pair (E,Ai) is said to be regular if det(sE-Ai)≠0,s∈C.

    2.For a given i∈M,the pair (E,Ai) is said to be causal if it is regular and deg(det(sE-Ai))=rank(E).

    3.The pair (E,Aσ(t)) is said to be regular and causal if every pair (E,Ai) is regular and causal,i∈M.

    Definition 2[15]The system Σ(1)with ΔAi=0,ΔAτ i=0,ui(t)=0,i∈M is said to be regular and causal if the pair (E,Aσ(t)) is regular and causal.

    Remark 1 The existence and uniqueness of the solutions of systems Σ(1)with ΔAi=0,ΔAτ i=0,ui(t)=0 for each i∈M,can be ensured by regularity and causality.

    The main object of this paper is to construct a switching signal,design a robust resilient guaranteed cost controller and give an upper bound of the cost function for systems Σ(1).

    Lemma 1[24]Let Y=YT,H,E and F be real matrices of appropriate dimensions with FTF≤I.The following statements are equivalent

    a.Y+HFE+ETFTHT<0,

    Lemma 2[25]For matrix Q≥0, if there is a zero element qion the main diagonal line of Q, then the column and row which qilies on are both zero.

    2 Main results

    2.1 Stability analysis

    In this section,we initially establish stability conditions for the following system Σ(2).

    t≠tk,

    Δx(t)=Cσ(t)x(t),t=tk,

    x(t)=φ(t),t∈[-τm,0].

    Theorem 1 Consider system Σ(2).If,for any i∈M, there exist constants βij≥0(j∈M), matrices Qi>0,Xi≥0,Zi>0,Pi,Yisuch that

    (7)

    (8)

    (I+Cj)TPiE(I+Cj)-PjE≤0,i≠j,j∈M,

    (9)

    (10)

    then the system Σ(2)is regular,causal and asymptotically stable under a state-dependent switching signal

    σ(t)=argmin{xT(t)PiEx(t),i∈M}.

    (11)

    Vσ(t)(t)=xT(t)Pσ(t)Ex(t)+

    and design the switching signal (11).

    When t∈(tk,tk+1],suppose that the i-th subsystem is activated.Then one obtains

    (12)

    From (11) and the condition βij≥0,we get

    (13)

    In the following,we firstly prove that system Σ(2)is regular and causal.

    Corresponding to the blocks of matrix E,one denotes

    (14)

    Substituting (14) into (10),we obtain

    which implies from Lemma 2 that

    (15)

    From (7),there holds

    (16)

    From (8),we have

    (17)

    Bearing (13) and Qi>0,Xi≤0,Zi>0,τm>0 in mind,one gets from (17)

    (18)

    Subsequently,we will focus on our attention to asymptotical stability analysis.

    Δx(t)=Cσ(t)x(t),t=tk,

    x(t)=φ(t),t∈[-τm,0].

    (19)

    From (10),it is easy to derive

    which implies

    (20)

    Substituting (20) into (19) gives

    (21)

    Vj(tk)=xT(tk)PjEx(tk)+

    Cj)-PjE]x(tk).

    Remark 2 For the nominal and unforced form of the singular impulsive switched system with time-varying delay,this theorem designs the state-dependent switching signal,under which the given system is regular,causal,and asymptotically stable based on the multiple Lyapunov functional technique.Further,it should be observed that this result can also apply to various systems such as singular switched systems,impulsive switched systems and singular impulsive systems.For impulsive switched systems and singular impulsive systems,the following corollaries state the related conclusions,which can fully demonstrate the universality and practicability of the theorem.

    Corollary 1 Consider the following impulsive switched system with time delay

    Δx(t)=Cσ(t)x(t),t=tk,

    x(t)=φ(t),t∈[-h,0].

    If,for any i∈M,there exist constants βij≥0(j∈M),matrices Qi>0,Pi>0 such that

    (22)

    (I+Cj)TPi(I+Cj)-Pj≤0,i≠j,j∈M,

    then the system Σ″(2)is regular,causal and asymptotically stable under a state-dependent switching signal σ(t)=argmin{xT(t)Pix(t),i∈M}.

    Remark 3 Theorem 2 in paper [18] requires that the energy function decreases on the whole space Rn,that is,every subsystem is stable on the whole space Rn,while this corollary just requires that the energy function decreases on the corresponding area Ωi,which can stand out the merit of the result proposed in the paper.

    Corollary 2 Consider the following singular time-varying delay system

    x(t)=φ(t),t∈[-τm,0].

    If there exist matrices Q>0,X≥0,Z>0,P and Y such that

    PE=ETPT≥0,

    with Γ=PA+ATPT+Q+τmX+Y+YT+τmATZA,then systems Σ?(2)is regular,causal and asymptotically stable.

    Remark 4 Lemma 2 in literature [23] studies the constant time delay while this corollary presents the corresponding results for the time-varying delay.

    Corollary 3 Consider system Σ(2).If,for any i∈M,there exist constants βij≤0(j∈M),matrices Qi>0,Xi≥0,Zi>0,Pi,Yisatisfying (7),(8),(9),(10),then system Σ(2)is regular,causal and asymptotically stable under a switching signal

    (23)

    Remark 5 When βij≤0,this corollary designs a new state-dependent switching signal (23),which differs from Theorem 1.In a word,this corollary,together with Theorem 1,shows two different cases.

    2.2 Performance analysis

    Based on Theorem 1,we are now in the position to provide the sufficient conditions on the existence of a robust resilient guaranteed cost controller for system Σ(1).

    Theroem 2 Consider system Σ(1)with the cost function (4).If,for i∈M,there exist scalars βij≥0(j∈M),matrices Qi>0,Xi≥0,Zi>0,Pi,Yisatisfying (7),(10) and

    Γ2=

    (24)

    (I+Cj+ΔCj)TPiE(I+Cj+ΔCj)-PjE≤0,i≠j,j∈M,

    (25)

    where

    Ak i=Ai+BiKi,ΔAk i=ΔAi+BiΔKi,

    and a state-dependent switching signal (11),then controller (5) is a robust resilient guaranteed cost controller for system Σ(1)with the performance upper bound

    Proof When t∈(tk,tk+1],assume that the i-th subsystem is activated.Applying the controller (5) to systems Σ(1)results in the following closed-loop system

    Δx(t)=(Cj+ΔCj)x(t),t=tk,

    x(t)=φ(t),t∈[-τm,0].

    Based on Theorem 1 and R>0,S>0,it is easy to obtain that the closed-loop system Σ(3)is also regular,causal and asymptotically stable by replacing Ai,Aτ i,Cjwith Ak i+ΔAk i,Aτ i+ΔAτ i,Cj+ΔCj.In the next,we shall prove that there exists a positive scalar J*such that the value of the cost function (4) satisfies J≤J*.Similar to the proof of Theorem 1,when t∈(tk,tk+1],one has

    where

    Γ23=τm(Ak i+ΔAk i)TZi(Aτ i+ΔAτ i)-Yi+Pi(Aτ i+ΔAτ i),

    Γ24=τm(Aτ i+ΔAτ i)TZi(Aτ i+ΔAτ i)-(1-μ)Qi.

    From (24),we derive

    (26)

    which gives rise to

    Vσ(tρ+1)(tρ+1)]≤Vσ(0)(0)=J*.

    Therefore,by Definition 3,controller (5) is a robust resilient guaranteed cost controller for system Σ(1)with the performance upper bound J*.The proof is completed.

    Remark 6 Based on the Theorem 1,this theorem further analyzes the performance of the singular impulsive switched system with time-varying delay.It is necessary to point out that the controller designed in Theorem 2 is not only a guaranteed cost controller but also a resilient controller.In addition,there exist uncertainties in the system structure,which,together with uncertainties in resilient controller,make it more difficult to simplify inequalities.The corresponding process will be stated in detail.

    Remark 7 The paper [23] designs a robust resilient guaranteed cost controller for the uncertain singular time-delay system,but the main results in [23] fail to work when impulsive phenomena or switching behaviors occur.On the contrast, this theorem is feasible for the case that impulsive phenomena and switching behaviors take place at the same time.Obviously,Theorem 1 in literature [23] is the special case of this theorem,which shows that this conclusion has the broader application and less conservativeness.

    Remark 8 It should be observed that the paper [18] ignores uncertainties of impulses.Here,it is more meaningful to add the uncertain term ΔCσ(t)to the system matrix,which to some extent can reflect some uncertainties of impulsive phenomena.Besides,compared with the paper [18],the more complex systems are considered and the more information in Lyapunov functional are added in this theorem.

    Corollary 4 Consider system Σ(1)with the cost function (4).If,for i∈M,there exist scalars βij≤0(j∈M),matrices Qi>0,Xi≥0,Zi>0,Pi,Yisatisfying (7),(10),(24),(25),and a state-dependent switching signal satisfying (23),then controller (5) is a robust resilient guaranteed cost controller for system Σ(1)with the performance upper bound J*in the form of (26).

    2.3 The robust resilient guaranteed cost controller design

    In Theorem 2,uncertain terms ΔAi,ΔAτ i,ΔKi,ΔCjexist in conditions,which makes it impossible to solve inequalities.Therefore,how to remove uncertain terms is the key to overcome this problem.Here,by the LMIs technique,the feasible conditions solving a robust resilient guaranteed cost controller for systems Σ(1)are presented in Theorem 3.

    Theorem 3 Consider system Σ(1)with the cost function (4).If,for any i∈M,the following conditions hold

    a.there exist scalars βij≥0(j∈M),λi>0,i>0,ρj>0,matrices Qi>0,Xi≥0, Zi>0,Pi,Yi,Gisatisfying (7),(10) and

    (27)

    i≠j,j∈M,

    (28)

    where

    Γ32=PiAτ i-Yi,

    Λ12=

    b.there exists a state-dependent switching signal satisfying (11),then controller (5) is a robust resilient guaranteed cost controller for system Σ(1).Here,the controller gain is

    (29)

    and the performance upper bound J*can be given in the form of (26).

    Proof Using (27),(29),and Schur complement lemma,we obtain thatΓ3<0 is equivalent to

    (30)

    where

    Δ11=

    Ak i=Ai+BiKi,

    Δ12=

    Δ22=

    From (30),we can derive

    (31)

    where

    H1=

    Define

    After some manipulations,by Lemma 1,we get from (1),(2),(6)

    (32)

    Pi(Aτ i+ΔAτ i)-Yi. Obviously,we can see that (32) is equivalent to (24).From (28),by Schur complement lemma,one has

    (33)

    By Lemma 1,(3) and (33),we get

    (34)

    Remark 9 It is easy to see that various techniques are utilized to simplify inequalities of Theorem 2.Eventually,uncertain terms are successfully removed from conditions.Meanwhile,all the conditions are cast into LMIs for the given scalars βij,λi,which can be solved by the LMIs toolbox.

    Remark 10 We state briefly the solving sequence of inequalities of Theorem 3.

    Step 1 Calculate the Pi,Qi,Xi,Zi,Yiby (7),(10) and (27).

    Step 3 Verify the condition (28),and solve the controller gain by (29).

    Corollary 5 Consider system Σ(1)with the cost function (4).If,for any i∈M,the following conditions hold

    a.there exist scalars βij≤0(j∈M),λi>0,i>0,ρj>0,matrices Qi>0,Xi≥0,Zi>0,Pi,Yi,Gisatisfying (7),(10),(27),(28),

    b.there exists a state-dependent switching signal satisfying (23),then controller (5) is a robust resilient guaranteed cost controller for system Σ(1).Here,the controller gain is (29),and a performance upper bound J*can be given in the form of (26).

    2.4 The optimal robust resilient guaranteed cost controller design

    Theorem 3 factually presents a set of parameter representations of guaranteed cost controllers.From the expression of J*,the upper bound of the performance not only depends on the selection of guaranteed cost controllers but also matrices Qi,Zi.Therefore,it is imperative to optimize the values of matrices in order to achieve the minimal guaranteed cost of the corresponding closed-loop system.

    Theorem 4 For system Σ(1)with ΔCσ(t)=0,and the cost function (4),if the following optimization problem Ωopt

    minβij,λi,i,Pi,Qi,Zi,Xi,YiC1αi+C2βi+C3γis.t.

    (a)(7),(9),(10),(27),

    (b)βij≥0(j∈M),

    (c)λi>0,i>0,

    (35)

    (36)

    (37)

    (38)

    σmax(PiE)C1,

    Therefore,the minimization of C1αi+C2βi+C3γiimplies the minimization of the guaranteed cost J*.The optimal solution of problem Ωoptcan be derived from the convexity of the objective function and constraint conditions.This completes the proof.

    Remark 11 In order to obtain the optimal robust resilient guaranteed cost controller,a minimization approach of the largest singular value of matrices and a convex optimization method are introduced,which play an important role in the proof.In addition,Theorem 3 provides a feasible solution of solving a robust resilient guaranteed cost controller while this theorem further gives a optimal robust resilient guaranteed cost controller.To some extent,this theorem improves the conclusion of Theorem 3.

    3 Numerical examples

    Example 1 Consider the impulsive switched systems Σ″(2)with parameters given below

    For the given system,the linear matrix inequalities have not a feasible solution by Theorem 2 in [18].Therefore,we are unable to judge the stability of the above system and Theorem 2 in [18] fails to work.However,Corollary 1 in this paper can be worked well to check the stability of the given system.Choosing β12=-0.2,β21=-0.1,we can see that the nonlinear matrix inequality (22) becomes the linear matrix inequality which can be solved by LMIs toolbox as following

    Under the switching signal σ(t)=argmin{xT(t)Pix(t),i∈{1,2}},the given system is asymptotically stable from Fig.1,which can verify the feasibility of Corollary 1.In conclusion,both the theoretical analysis in Remark 3 and simulation result can show the fact that Corollary 1 has the wider application and the less conservativeness than the result in [18].

    Fig.1 The state trajectory x(t) of the given system

    S=R=I,

    N1i=N2i=N3i=D1i=D2i=D3i=0.1I,N5i=

    D5i=0,i=1,2,

    F1i=F2i=F3i=F5i=0.1sin(t)I,i=1,2,

    τ(t)=0.1sint.

    Choose τm=1,μ=0.1,λ1=λ2=0.01,and give the initial function φ(t)=[1 t 0]T.

    By Theorem 3,we can obtain

    a robust resilient guaranteed cost controller uσ(t)(t)=(Kσ(t)+ΔKσ(t))x(t) with

    and a performance upper bound J*=8.677 0.The above results derived from Theorem 3 just present a feasible solution.In the following,we aim at seeking the optimal controller and the optimal performance upper bound of systems Σ(1)by Theorem 4.By solving optimization problem Ωopt,one gets

    The switching signal is designed by

    (39)

    From Fig.2,under the switching signal (39),the closed-loop system is asymptotically stable,which can illustrate the correctness of Theorem 4.

    Fig.2 The state trajectory x(t) of the closed-loop system

    4 Conclusions

    In this paper,we have investigated the problem of the robust resilient guaranteed cost control for the uncertain impulsive switched singular system with time-varying delay.A robust resilient guaranteed cost controller and a state-dependent switching signal have been established,which guarantee that the closed-loop system is regular,causal,asymptotically stable,and satisfies a cost upper bound.Further,a minimization approach and a convex optimization method have been presented to seek the optimal robust resilient guaranteed cost controller.For the sake of the computation,all the conditions have been cast into LMIs,which can be easily solved by the LMIs toolbox.Finally,two examples have been provided to show the effectiveness of the main conclusions.

    [1] HESPANHA J P,MORSE A S.Stability of switched systems with average dwell-time[C]//Proceedings of the 38th IEEE Conference on Decision and Control Arizona,USA:IEEE,1999:2655-2660.DOI:10.1109/CDC.1999.831330.

    [2] LIBERZON D,MORSE A S.Basic problems in stability and design of switched systems[J].IEEE Control Systems Magazine,1999,19(5):59-70.

    [3] WANG R,ZHAO J.Non-fragile hybrid guaranteed cost control for a class of uncertain switched linear systems[J].Journal of Control Theory and Applications,2006,4(1):32-37.DOI:10.1007/s11768-006-5144-x.

    [4] WU Z G,SHI P,SU H Y, et al.Asynchronous l2-lfiltering for discrete-time stochastic markov jump systems with randomly occurred sensor nonlinearities[J].Automatica,2014,50(1):180-186.

    [5] YANG H,JIANG B,COCQUEMPOT V.A survey of results and perspectives on stabilization of switched nonlinear systems with unstable modes[J].Nonlinear Analysis:Hybrid systems,2014,13:45-60.

    [6] ZHANG H B,XIE D H,ZHANG H Y,et al.Stability analysis for discrete-time switched systems with unstable subsystems by a mode-dependent average dwell time approach[J].ISA Transactions,2014,53(4):1081-1086.

    [7] ZONG G D,HOU L L,WU Y Q.Robust l2-lguaranteed cost filtering for uncertain discrete-time switched system with mode-dependent time-varying delays[J].Circuits,Systems,and Signal Processing,2011,30(1):17-33.DOI:10.1007/s00034-010-9204-6.

    [8] VARAIYA P.Smart cars on smart roads:Problems of control[J].IEEE Transactions on Automatic Control,1993,38(2):195-207.

    [9] 王亦兵,韓曾晉,羅贊文.智能運輸系統(tǒng)初探[J].控制與決策,1997,12(S1):403-407.

    WANG Y B,HAN Z J,LUO Z W.An Opening study of intelligent transportation systems[J].Control and Decision,1997,12(S1):403-407.

    [10] QIN S Y,SONG Y H.The theory of hybrid control

    systems and its application perspective in electric power systems[C]//Proceedings of the 2001 International Conferences on Info-tech and Info-net. Beijing:IEEE,2001,4:85-94.DOI:10.1109/ICII.2001.983729.

    [11] HU S S,ZHU Q X.Stochastic optimal control and analysis of stability of networked control systems with long delay[J].Automatica,2003,39(11):1877-1884.

    [12] WU Z G,SHI P,SU H Y,et al.Stochastic synchronization of markovian jump neural networks with time-varying delay using sampled data[J].IEEE Transactions on Cybernetics,2013,43(6):1796-1806.DOI:10.1109/TSMCB.2012.2230441.

    [13] LENNARTSON B,TITTUS M,EGARDT B,et al.Hybrid systems in process control[J].IEEE Control Systems Magazine,1996,16(5):45-56.DOI:10.1109/37.537208.

    [14] LIN J X,FEI S M,WU Q.Reliable H∞filtering for discrete-time switched singular systems with time-varying delay[J].Circuits,System,and Signal Processing,2012,31(3):1191-1214.DOI:10.1007/s00034-011-9361-2.

    [15] MA S P,ZHANG C H,WU Z.Delay-dependent stability and H∞control for uncertain discrete switched singular systems with time-delay[J].Applied Mathematics and Computation,2008,206(1):413-424.

    [16] LIU X,ZHANG S M,DING X Y.Robust exponential stability of nonlinear impulsive switched systems with time-varying delays[J].Nonlinear Analysis:Modeling and Control,2012,17(2):210-222.

    [17] 毛北行,慕小武,卜春霞.不確定時滯脈沖切換系統(tǒng)的保性能控制[J].鄭州大學(xué)學(xué)報:理學(xué)版,2010,42(3):7-10.

    MAO B X,MU X W,BU C X.Guaranteed cost control problems for a class of impulsive switched system with time delay and uncertain parameters[J].J Zhengzhou Univ:Nat Sci Ed,2010,42(3):7-10.

    [18] XU H L,TEO K L,LIU X Z.Robust stability analysis of guaranteed cost control for impulsive switched systems[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2008,38(5):1419-1422.

    [19] XU H L,LIU X Z,TEO K L.A LMI approach to stability analysis and synthesis of impulsive switched systems with time delays[J].Nonlinear Analysis:Hybrid Systems,2008,2(1):38-50.

    [20] YANG C D,ZHU W.Stability analysis of impulsive

    switched systems with time delays[J].Mathematical and Computer Modelling,2009,50(7/8):1188-1194.

    [21] ZONG G D,XU S Y,WU Y Q.Robust H∞stabilization for uncertain switched impulsive control systems with state delay:An LMI approach[J].Nonlinear Analysis:Hybrid Systems,2008,2(4):1287-1300.

    [22] WANG R,ZHAO J.Non-fragile hybrid guaranteed

    cost control for a class of uncertain switched linear systems[J].Journal of Control Theory and Applications,2006,4(1):32-37.

    [23] LI L,JIA Y.Observer-based resilient l2-l∞control for singular time-delay systems[J].IET Control Theory & Applications,2009,3(10):1351-1362.DOI:10.1049/iet-cta.2008.0361.

    [24] XIE L H.Output feedback H∞control of systems with

    parameter uncertainty[J].International Journal of Control,1996,63(4):741-750.

    [25] ZHANG F Z.Matrix Theory:Basic Results and Techniques[M].New York:Springer-Verlag,1999.

    (責(zé)任編輯:米慧芝)

    2016-05-11

    王慶芝(1988-),女,主要從事切換系統(tǒng)、魯棒控制研究。

    http://www.cnki.net/kcms/detail/45.1206.G3.20160913.0948.014.html

    時變時滯奇異脈沖切換系統(tǒng)的魯棒彈性保成本控制

    WANG Qingzhi,ZONG Guangdeng**

    (School of Engineering,Qufu Normal University,Rizhao,Shandong,276826,China)

    針對一類具有時變時滯的奇異脈沖切換系統(tǒng),研究魯棒彈性保成本控制問題.首先,基于多Lyapunov泛函技術(shù),建立標(biāo)稱自由系統(tǒng)具有正則性、因果性及漸近穩(wěn)定性的充分條件.然后,給出一個彈性保性能控制器的設(shè)計方案,該方案能保證對所有容許的不確定性,閉環(huán)系統(tǒng)是正則的、因果的和漸近穩(wěn)定的,且成本函數(shù)不超過某個上界.并進一步運用矩陣最大奇異值的最小化方法和凸優(yōu)化方法,求解最優(yōu)魯棒彈性保成本控制器.所有的充分條件均巧妙地表示為線性矩陣不等式形式.最后,運用兩個仿真實例驗證本研究方法較少的保守性和有效性.

    奇異切換系統(tǒng) 脈沖切換系統(tǒng) 彈性保成本控制 多Lyapunov 技術(shù) 線性矩陣不等式

    TP273

    A

    1005-9164(2016)04-0354-12

    修回日期:2016-08-03

    *國家自然科學(xué)基金項目(61273123,61374004,61304059),新世紀(jì)優(yōu)秀人才支持計劃項目(NCET-13-0878),山東省高校優(yōu)秀科研創(chuàng)新團隊計劃項目和山東省泰山學(xué)者計劃項目資助。

    **通訊作者:宗廣燈(1976-),男,教授,主要從事網(wǎng)絡(luò)控制,切換系統(tǒng)和魯棒控制研究,E-mail:lovelyletian@gmail.com,zonggdeng@126.com。

    網(wǎng)絡(luò)優(yōu)先數(shù)字出版時間:2016-09-13 【DOI】10.13656/j.cnki.gxkx.20160913.007

    廣西科學(xué)Guangxi Sciences 2016,23(4):354~365

    猜你喜歡
    工程院魯棒控制時滯
    少先隊活動(2022年9期)2022-11-23 06:56:24
    華裔科學(xué)家董洪標(biāo)教授榮膺英國皇家工程院院士
    華人時刊(2022年23期)2022-09-24 23:12:28
    熱烈祝賀本刊編委孫立寧教授當(dāng)選 俄羅斯工程院外籍院士
    紡織業(yè)兩人入圍工程院院士增選第二輪
    帶有時滯項的復(fù)Ginzburg-Landau方程的拉回吸引子
    針對輸入時滯的橋式起重機魯棒控制
    漂浮基空間機械臂T-S模糊魯棒控制
    基于高階奇異值分解的LPV魯棒控制器設(shè)計
    基于干擾估計的高超聲速飛行器魯棒控制方法
    一階非線性時滯微分方程正周期解的存在性
    亚洲欧美色中文字幕在线| 在线观看免费视频网站a站| 少妇的逼水好多| 夫妻性生交免费视频一级片| 国产 一区精品| 午夜久久久在线观看| 国产免费视频播放在线视频| 人妻系列 视频| 午夜福利视频在线观看免费| 看免费成人av毛片| 欧美日韩视频精品一区| 成人国产av品久久久| 看十八女毛片水多多多| 在线亚洲精品国产二区图片欧美| 男人爽女人下面视频在线观看| 国产男女超爽视频在线观看| 天堂俺去俺来也www色官网| 亚洲一级一片aⅴ在线观看| 亚洲av欧美aⅴ国产| 黄片无遮挡物在线观看| 国产精品国产三级国产av玫瑰| 亚洲欧洲精品一区二区精品久久久 | 极品人妻少妇av视频| 免费久久久久久久精品成人欧美视频 | 人人妻人人添人人爽欧美一区卜| 日韩大片免费观看网站| 亚洲综合精品二区| 80岁老熟妇乱子伦牲交| 国产在线免费精品| 波野结衣二区三区在线| 日本色播在线视频| 丰满迷人的少妇在线观看| 9191精品国产免费久久| 国产一区二区在线观看日韩| 狠狠精品人妻久久久久久综合| 国产成人免费观看mmmm| 日韩伦理黄色片| 久久久亚洲精品成人影院| 国产精品.久久久| 欧美激情 高清一区二区三区| 午夜福利视频在线观看免费| 亚洲国产成人一精品久久久| 国语对白做爰xxxⅹ性视频网站| 久久国产亚洲av麻豆专区| 各种免费的搞黄视频| freevideosex欧美| 99国产综合亚洲精品| 国产伦理片在线播放av一区| 久久国产亚洲av麻豆专区| 日韩熟女老妇一区二区性免费视频| 亚洲五月色婷婷综合| 91久久精品国产一区二区三区| 久久久久国产网址| 亚洲,一卡二卡三卡| 一本—道久久a久久精品蜜桃钙片| 捣出白浆h1v1| 高清毛片免费看| 高清在线视频一区二区三区| 精品国产露脸久久av麻豆| 国产 一区精品| 男女高潮啪啪啪动态图| 一级黄片播放器| 精品一区二区三卡| 纵有疾风起免费观看全集完整版| 亚洲av福利一区| 日韩欧美精品免费久久| 如何舔出高潮| 岛国毛片在线播放| 免费在线观看黄色视频的| 成人影院久久| 国产亚洲一区二区精品| 久久精品国产亚洲av涩爱| 蜜臀久久99精品久久宅男| 一级a做视频免费观看| 久久国内精品自在自线图片| 国产精品久久久av美女十八| 在线看a的网站| 七月丁香在线播放| 日韩免费高清中文字幕av| 免费黄网站久久成人精品| 欧美+日韩+精品| 最新的欧美精品一区二区| 色哟哟·www| av不卡在线播放| 伊人久久国产一区二区| 欧美日韩一区二区视频在线观看视频在线| 99久久中文字幕三级久久日本| 毛片一级片免费看久久久久| 乱人伦中国视频| 欧美日本中文国产一区发布| 少妇被粗大猛烈的视频| 毛片一级片免费看久久久久| 国产亚洲精品第一综合不卡 | 国产一区二区在线观看日韩| 精品卡一卡二卡四卡免费| 18禁动态无遮挡网站| 免费在线观看完整版高清| 男女边摸边吃奶| 欧美精品国产亚洲| 欧美精品亚洲一区二区| 国产不卡av网站在线观看| 男的添女的下面高潮视频| 又粗又硬又长又爽又黄的视频| 中文字幕精品免费在线观看视频 | 日韩av免费高清视频| 大香蕉97超碰在线| 久久狼人影院| 亚洲av中文av极速乱| 多毛熟女@视频| 下体分泌物呈黄色| 尾随美女入室| 日韩精品有码人妻一区| 美国免费a级毛片| 精品人妻一区二区三区麻豆| 满18在线观看网站| 精品一区在线观看国产| 超碰97精品在线观看| 伦精品一区二区三区| 亚洲精品乱码久久久久久按摩| 男女边吃奶边做爰视频| 建设人人有责人人尽责人人享有的| 国产av一区二区精品久久| 人成视频在线观看免费观看| 有码 亚洲区| 中文乱码字字幕精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 香蕉丝袜av| 国产成人免费观看mmmm| 人妻少妇偷人精品九色| 亚洲性久久影院| 亚洲色图 男人天堂 中文字幕 | 久久狼人影院| 亚洲精品,欧美精品| 成人漫画全彩无遮挡| 久久久精品区二区三区| 成人亚洲精品一区在线观看| 大码成人一级视频| 韩国av在线不卡| 亚洲国产欧美日韩在线播放| 99精国产麻豆久久婷婷| 各种免费的搞黄视频| 女性被躁到高潮视频| 国产淫语在线视频| av播播在线观看一区| 最近中文字幕高清免费大全6| 亚洲国产欧美日韩在线播放| 精品国产露脸久久av麻豆| 少妇人妻 视频| 美女内射精品一级片tv| 久久久久久久亚洲中文字幕| 这个男人来自地球电影免费观看 | 一边亲一边摸免费视频| 99热这里只有是精品在线观看| 欧美老熟妇乱子伦牲交| 一区二区三区精品91| 黑人欧美特级aaaaaa片| av线在线观看网站| 永久免费av网站大全| 国产激情久久老熟女| 久久精品夜色国产| 精品酒店卫生间| 精品久久久久久电影网| 国产 精品1| 18禁国产床啪视频网站| 一区二区av电影网| 国产片特级美女逼逼视频| 精品一品国产午夜福利视频| 哪个播放器可以免费观看大片| 久久综合国产亚洲精品| 国产在线一区二区三区精| av.在线天堂| 日韩av免费高清视频| 在线免费观看不下载黄p国产| 18禁国产床啪视频网站| 精品一区二区免费观看| 欧美精品亚洲一区二区| 亚洲中文av在线| 少妇人妻久久综合中文| 亚洲欧美一区二区三区国产| 免费大片黄手机在线观看| 亚洲国产av新网站| 人妻少妇偷人精品九色| 九草在线视频观看| 亚洲国产欧美在线一区| 在线观看www视频免费| 黄色配什么色好看| 国产男人的电影天堂91| 久久久精品区二区三区| 香蕉丝袜av| 男女边吃奶边做爰视频| 亚洲精品国产av蜜桃| 国产有黄有色有爽视频| 久久久国产一区二区| 久久青草综合色| 日韩熟女老妇一区二区性免费视频| 国产成人精品一,二区| a级片在线免费高清观看视频| 你懂的网址亚洲精品在线观看| 久久精品国产自在天天线| 久久97久久精品| 久久99热6这里只有精品| 久久久a久久爽久久v久久| 人人妻人人爽人人添夜夜欢视频| 美女脱内裤让男人舔精品视频| 久久久久久久久久人人人人人人| 免费女性裸体啪啪无遮挡网站| 欧美精品一区二区免费开放| 2018国产大陆天天弄谢| 欧美日韩视频高清一区二区三区二| 男男h啪啪无遮挡| 晚上一个人看的免费电影| 成人亚洲精品一区在线观看| av福利片在线| 国国产精品蜜臀av免费| 少妇猛男粗大的猛烈进出视频| 久久久久国产精品人妻一区二区| 午夜影院在线不卡| 性高湖久久久久久久久免费观看| av在线观看视频网站免费| 亚洲精品色激情综合| 美女内射精品一级片tv| 国产精品久久久久成人av| 中文欧美无线码| 五月玫瑰六月丁香| videossex国产| 国产精品蜜桃在线观看| 一本久久精品| 99久久中文字幕三级久久日本| 亚洲综合色惰| 久久午夜综合久久蜜桃| 久久99热这里只频精品6学生| 精品一区二区三区视频在线| 亚洲精品456在线播放app| 日韩一区二区视频免费看| 日本黄色日本黄色录像| 午夜福利网站1000一区二区三区| 亚洲av成人精品一二三区| 国产激情久久老熟女| 男男h啪啪无遮挡| 成人二区视频| 国产女主播在线喷水免费视频网站| 在线观看美女被高潮喷水网站| 91成人精品电影| 亚洲精品乱码久久久久久按摩| 久久韩国三级中文字幕| 国产精品不卡视频一区二区| 国产精品人妻久久久影院| 在线观看www视频免费| 少妇高潮的动态图| 免费在线观看黄色视频的| 亚洲精品视频女| 午夜福利乱码中文字幕| 男女边摸边吃奶| 夫妻午夜视频| 日韩免费高清中文字幕av| 丁香六月天网| 最近最新中文字幕大全免费视频 | 日韩一本色道免费dvd| 国产激情久久老熟女| 最近的中文字幕免费完整| 国产不卡av网站在线观看| 在线观看免费日韩欧美大片| 亚洲人成77777在线视频| 日本av免费视频播放| 久久ye,这里只有精品| 婷婷成人精品国产| 精品亚洲成a人片在线观看| 大话2 男鬼变身卡| 亚洲国产欧美在线一区| 最近手机中文字幕大全| 成人综合一区亚洲| 亚洲精品aⅴ在线观看| 亚洲精品乱久久久久久| 久久韩国三级中文字幕| 18禁国产床啪视频网站| 国产国拍精品亚洲av在线观看| 另类精品久久| 国产女主播在线喷水免费视频网站| 一区二区三区四区激情视频| 免费看不卡的av| 亚洲av男天堂| 国产成人欧美| 精品人妻偷拍中文字幕| 人妻人人澡人人爽人人| 女性生殖器流出的白浆| 欧美性感艳星| 国产av一区二区精品久久| 亚洲综合色惰| 中文字幕免费在线视频6| 一级片免费观看大全| 卡戴珊不雅视频在线播放| 日韩欧美一区视频在线观看| 各种免费的搞黄视频| 欧美成人精品欧美一级黄| 中文天堂在线官网| 欧美 亚洲 国产 日韩一| 精品少妇黑人巨大在线播放| 中文字幕最新亚洲高清| 午夜福利乱码中文字幕| 国产一区亚洲一区在线观看| 久久精品国产鲁丝片午夜精品| 一区二区三区精品91| 国产精品嫩草影院av在线观看| 性高湖久久久久久久久免费观看| 天美传媒精品一区二区| 蜜桃在线观看..| 成人国语在线视频| 久久精品国产鲁丝片午夜精品| 成人手机av| 欧美日韩av久久| 色网站视频免费| 久久久久久久精品精品| 午夜视频国产福利| 女人精品久久久久毛片| 精品99又大又爽又粗少妇毛片| 亚洲av国产av综合av卡| 曰老女人黄片| 亚洲欧美精品自产自拍| 亚洲高清免费不卡视频| 精品少妇黑人巨大在线播放| 亚洲国产精品一区三区| 欧美变态另类bdsm刘玥| 日韩av免费高清视频| 十八禁高潮呻吟视频| 亚洲色图 男人天堂 中文字幕 | 精品国产露脸久久av麻豆| 久久精品久久精品一区二区三区| 免费在线观看完整版高清| 少妇的逼好多水| 国产日韩欧美亚洲二区| 国产精品秋霞免费鲁丝片| 国产日韩欧美视频二区| 亚洲一区二区三区欧美精品| 女性被躁到高潮视频| 大陆偷拍与自拍| 久久久久久久精品精品| 97超碰精品成人国产| 国产精品人妻久久久影院| 老熟女久久久| 99热国产这里只有精品6| 激情视频va一区二区三区| 男的添女的下面高潮视频| 在线观看免费高清a一片| 老女人水多毛片| 成人二区视频| 欧美 日韩 精品 国产| 看十八女毛片水多多多| 国产片内射在线| 国产色婷婷99| 一本—道久久a久久精品蜜桃钙片| 狠狠精品人妻久久久久久综合| 久久99蜜桃精品久久| 日韩 亚洲 欧美在线| 亚洲欧美一区二区三区黑人 | 青春草国产在线视频| 欧美精品人与动牲交sv欧美| 国产精品嫩草影院av在线观看| 久久国产精品大桥未久av| 午夜免费鲁丝| 日韩精品免费视频一区二区三区 | 秋霞伦理黄片| 人妻一区二区av| 久热这里只有精品99| 亚洲天堂av无毛| 好男人视频免费观看在线| 夜夜爽夜夜爽视频| a级毛片在线看网站| 久久ye,这里只有精品| 国产在线一区二区三区精| 交换朋友夫妻互换小说| av在线播放精品| 一区二区日韩欧美中文字幕 | 黑人猛操日本美女一级片| 蜜桃国产av成人99| 午夜福利在线观看免费完整高清在| 日韩成人av中文字幕在线观看| 国产色爽女视频免费观看| 国产精品成人在线| 国产精品久久久久成人av| 宅男免费午夜| 国产成人免费观看mmmm| 色婷婷久久久亚洲欧美| 一区二区日韩欧美中文字幕 | 美女xxoo啪啪120秒动态图| 国产成人欧美| 国产男女超爽视频在线观看| 五月玫瑰六月丁香| 亚洲国产色片| 国产午夜精品一二区理论片| 国产精品一国产av| av卡一久久| 国产亚洲精品第一综合不卡 | 亚洲国产色片| 国产不卡av网站在线观看| 国产精品秋霞免费鲁丝片| 丝袜脚勾引网站| 宅男免费午夜| 七月丁香在线播放| 99热这里只有是精品在线观看| 成人亚洲欧美一区二区av| 亚洲欧洲精品一区二区精品久久久 | 新久久久久国产一级毛片| 成人毛片60女人毛片免费| 天堂8中文在线网| 久久人人97超碰香蕉20202| 国产白丝娇喘喷水9色精品| 午夜激情久久久久久久| 国产精品蜜桃在线观看| 成人亚洲精品一区在线观看| 丰满乱子伦码专区| 国产在线一区二区三区精| 日韩制服丝袜自拍偷拍| 交换朋友夫妻互换小说| 国产成人a∨麻豆精品| 久久这里有精品视频免费| 成人国产麻豆网| 97精品久久久久久久久久精品| 99精国产麻豆久久婷婷| 美女xxoo啪啪120秒动态图| 久久久a久久爽久久v久久| 26uuu在线亚洲综合色| 亚洲人与动物交配视频| 五月开心婷婷网| 久久人人爽av亚洲精品天堂| 国产成人精品一,二区| 视频区图区小说| 国产69精品久久久久777片| 最近最新中文字幕大全免费视频 | 美女国产高潮福利片在线看| 精品人妻熟女毛片av久久网站| 国产一区二区在线观看日韩| 国产亚洲精品久久久com| 国产一区二区三区综合在线观看 | 久久久久久久亚洲中文字幕| 超色免费av| 老司机影院成人| 女性生殖器流出的白浆| 国产成人精品婷婷| 三级国产精品片| 国产一区二区激情短视频 | 99国产综合亚洲精品| 久久综合国产亚洲精品| 国产免费又黄又爽又色| 日韩精品有码人妻一区| 久久精品夜色国产| 熟女电影av网| 色视频在线一区二区三区| h视频一区二区三区| 日日撸夜夜添| 丝袜在线中文字幕| 一级片免费观看大全| 最近手机中文字幕大全| 国产欧美亚洲国产| 国产精品一区二区在线不卡| 久久国产精品男人的天堂亚洲 | 日本wwww免费看| 成人二区视频| 日韩人妻精品一区2区三区| 精品少妇内射三级| 插逼视频在线观看| 午夜老司机福利剧场| 免费看光身美女| 中国国产av一级| 日本欧美视频一区| 成人国产麻豆网| 久久久精品区二区三区| 精品熟女少妇av免费看| 国产精品久久久久久av不卡| 久久久欧美国产精品| 一本色道久久久久久精品综合| 欧美3d第一页| 母亲3免费完整高清在线观看 | 青春草亚洲视频在线观看| 精品一品国产午夜福利视频| 极品人妻少妇av视频| 欧美丝袜亚洲另类| 人成视频在线观看免费观看| 成人无遮挡网站| 国产免费现黄频在线看| 人人澡人人妻人| 夜夜爽夜夜爽视频| 我的女老师完整版在线观看| 飞空精品影院首页| 亚洲精品自拍成人| 欧美国产精品va在线观看不卡| 黑丝袜美女国产一区| 亚洲,一卡二卡三卡| 久久久久久久久久成人| 亚洲av电影在线观看一区二区三区| 国产亚洲av片在线观看秒播厂| 国产 一区精品| 欧美国产精品va在线观看不卡| 大陆偷拍与自拍| 亚洲成人手机| 亚洲成av片中文字幕在线观看 | 日本午夜av视频| a 毛片基地| 国产女主播在线喷水免费视频网站| 王馨瑶露胸无遮挡在线观看| 免费大片黄手机在线观看| 国产精品一区二区在线不卡| 久久久a久久爽久久v久久| 国产黄频视频在线观看| 日韩欧美精品免费久久| 考比视频在线观看| 精品一区二区免费观看| 韩国高清视频一区二区三区| 久久99一区二区三区| 久久 成人 亚洲| 久久久欧美国产精品| 又粗又硬又长又爽又黄的视频| 日本91视频免费播放| 最黄视频免费看| 99热全是精品| 精品人妻偷拍中文字幕| 精品一区二区三区视频在线| 日本免费在线观看一区| 久久青草综合色| 国产精品人妻久久久久久| 亚洲欧洲日产国产| 秋霞伦理黄片| 男女高潮啪啪啪动态图| 考比视频在线观看| 97在线视频观看| 成人综合一区亚洲| 午夜激情久久久久久久| 色哟哟·www| 精品亚洲成a人片在线观看| 亚洲美女视频黄频| 新久久久久国产一级毛片| 亚洲一级一片aⅴ在线观看| 午夜影院在线不卡| 日韩三级伦理在线观看| 免费少妇av软件| 精品久久国产蜜桃| 亚洲精华国产精华液的使用体验| 成人漫画全彩无遮挡| 午夜福利,免费看| 最近中文字幕高清免费大全6| 免费大片黄手机在线观看| 在线观看免费高清a一片| 国产高清不卡午夜福利| 日本欧美国产在线视频| 精品福利永久在线观看| 99热全是精品| 一区在线观看完整版| 中文字幕制服av| 亚洲美女视频黄频| 国产亚洲精品第一综合不卡 | 另类精品久久| 26uuu在线亚洲综合色| 久久久久久人人人人人| 少妇人妻 视频| 黑人巨大精品欧美一区二区蜜桃 | 日本91视频免费播放| 精品午夜福利在线看| h视频一区二区三区| 成人影院久久| 精品少妇黑人巨大在线播放| 国产成人a∨麻豆精品| 精品卡一卡二卡四卡免费| 亚洲久久久国产精品| 在线观看国产h片| 亚洲精华国产精华液的使用体验| 美女xxoo啪啪120秒动态图| 欧美日本中文国产一区发布| 91精品国产国语对白视频| 国产男女超爽视频在线观看| 日韩免费高清中文字幕av| 男的添女的下面高潮视频| 在线免费观看不下载黄p国产| 两性夫妻黄色片 | 久久女婷五月综合色啪小说| 啦啦啦中文免费视频观看日本| 国产免费现黄频在线看| 好男人视频免费观看在线| 久久久久久久久久久免费av| 卡戴珊不雅视频在线播放| 国产成人精品福利久久| 丰满迷人的少妇在线观看| 久久久欧美国产精品| 一级毛片电影观看| 久久久精品免费免费高清| 日韩av免费高清视频| 免费人成在线观看视频色| 精品午夜福利在线看| 在线观看一区二区三区激情| 一本—道久久a久久精品蜜桃钙片| 在线观看人妻少妇| 极品人妻少妇av视频| 久久精品国产亚洲av天美| www.色视频.com| 亚洲精品一区蜜桃| 人人妻人人澡人人看| 黑人巨大精品欧美一区二区蜜桃 | 成人二区视频| 男人操女人黄网站| 国产乱人偷精品视频| 精品午夜福利在线看| 国产不卡av网站在线观看| 国精品久久久久久国模美| 免费高清在线观看日韩| 国产老妇伦熟女老妇高清| 久久免费观看电影| 啦啦啦啦在线视频资源| 免费高清在线观看视频在线观看| 亚洲欧美日韩另类电影网站| 国产精品成人在线| 久久久久久人妻| 国产一区亚洲一区在线观看| 日韩欧美一区视频在线观看| 国产高清国产精品国产三级| 久久久久精品人妻al黑| 国产1区2区3区精品| 免费观看在线日韩|