• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust Resilient Guaranteed Cost Control for Singular Impulsive Switched Systems with Time-varying Delay*

    2016-11-02 02:49:22王慶芝宗廣燈
    廣西科學(xué) 2016年4期
    關(guān)鍵詞:工程院魯棒控制時滯

    王慶芝,宗廣燈

    (曲阜師范大學(xué)工程院,山東日照 276826)

    ?

    Robust Resilient Guaranteed Cost Control for Singular Impulsive Switched Systems with Time-varying Delay*

    王慶芝,宗廣燈

    (曲阜師范大學(xué)工程院,山東日照 276826)

    This paper focuses on the problem of robust resilient guaranteed cost control for a class of singular impulsive switched systems with time-varying delay.Based on the multiple Lyapunov functional technique,some sufficient criteria,ensuring the regularity,causality,and asymptotic stability,are obtained initially for the nominal and unforced systems.Then the resilient controller is designed such that the corresponding closed-loop system,for all admissible uncertainties,is regular,causal and asymptotically stable, and the cost function does not exceed a cost upper bound.Further,a minimization approach of the largest singular value of matrices and a convex optimization method are introduced to seek the optimal robust resilient guaranteed cost controller.All the conditions are cast into the form of linear matrix inequalities (LMIs) through ingenious processing.Finally,two examples are presented to illustrate the less conservativeness and the effectiveness of the proposed results.

    singular switched systems,impulsive switched systems,resilient guaranteed cost control,multiple Lyapunov technique,linear matrix inequalities (LMIs)

    0 Introduction

    Switched systems have attracted considerable attention in recent decades[1-7]which include a series of continuous-time or discrete-time subsystems and a switching rule that orchestrates the switching between subsystems.They can be found in various real-world systems such as transportation systems[8-9],electric power systems[10],communication networks[11-12],and chemical processes[13].However,singular phenomena often exist in practical processes modeled by switching systems such as robotics,economics,chemistry and power systems.We call this kind of systems as singular switched systems.The past decades have witnessed considerable research on analysis and synthesis of singular switched systems[14-15].In addition,impulses often take place in various applications modeled by switching systems,which makes it more intricate to analyze the property of impulsive switched systems.Recently,some theoretical results on impulsive switched systems are reported in literatures,respectively[16-21].

    In actually physical processes,due to some physical restriction such as resistance errors,A/D or D/A conversion,finite word length in digital systems and rounding off errors in numerical computation,it is impossible to implement controller precisely,and it is important to take the controller gain perturbations into account during the designing process of the controller.On the other hand,the relatively small fluctuation of controller parameters may lead to the performance degradation or even instability.The two aspects above inspire us to design a controller that should be able to tolerate some levels of controller parameter perturbations.This kind of controllers are usually called as “resilient controllers”.Therefore,it is extremely imperative to design a resilient controller,and at the same time, some techniques and approaches solving this problem have been proposed.In [22],the problem of non-fragile hybrid guaranteed cost control is addressed for a class of uncertain switched linear systems.An observer-based resilient controller is designed in [23] for singular time-delay systems.Up to now,just little attention has been paid to design a resilient guaranteed cost controller for singular impulsive switched systems with time-varying delay,which stimulates the authors’ research interests.

    Here,we mainly study the robust resilient guaranteed cost control problem for a class of singular impulsive switched systems with time-varying delay.The outstanding contributions lie in several aspects:Firstly,we consider the uncertainty,impulse,singularity and time delay in switched systems at the same time,which throw out the greater challenge for the authors;Secondly,for the singular impulsive switched systems with time-varying delay,the derived conclusions can apply to various systems such as singular switched systems,impulsive switched systems,and singular impulsive systems,which fully demonstrates the less conservativeness and the broader applicability;Thirdly,uncertainties exist not only in the system structure but also in the resilient controller,which make it more difficult to simplify and solve inequalities;Fourthly,we introduce a minimization approach of the largest singular value of matrices and a convex optimization method in this paper to seek the optimal robust resilient guaranteed cost controller;Finally,all the conditions are cast into linear matrix inequalities(LMIs),and two examples are provided to illustrate the effectiveness of the proposed results.

    Notations Throughout this paper,T denotes the transpose.Rnrepresents the n-dimensional Euclidean space.Z+is a positive integer set,C stands for complex domain.Matrix P>0(P≥0) means that P is positive definite (positive semi-definite),and I is identity matrix with appropriate dimensions.* stands for the symmetric part in a block symmetric matrix.

    1 Problem formulation and preliminaries

    Consider the following singular impulsive

    switched system with time-varying delay

    Δx(t)=(Cσ(t)+ΔCσ(t))x(t),t=tk,

    x(t)=φ(t),t∈[-τm,0],

    (1)

    (2)

    (3)

    Associated with system Σ(1),the cost function is given by

    (4)

    where S and R are positive definite weighted matrices.

    For system Σ(1),a resilient controller

    uσ(t)(t)=(Kσ(t)+ΔKσ(t))x(t),

    (5)

    is considered,where Ki,i∈M is a controller gain to be designed,and ΔKi,i∈M represents a additive controller gain variation which has the following form

    (6)

    where N3iand D3iare known real constant matrices,and F3i(t) describes the uncertainty of the controller gain.

    Definition 1[15]Consider the pair (E,Aσ(t)).

    1.For a given i∈M,the pair (E,Ai) is said to be regular if det(sE-Ai)≠0,s∈C.

    2.For a given i∈M,the pair (E,Ai) is said to be causal if it is regular and deg(det(sE-Ai))=rank(E).

    3.The pair (E,Aσ(t)) is said to be regular and causal if every pair (E,Ai) is regular and causal,i∈M.

    Definition 2[15]The system Σ(1)with ΔAi=0,ΔAτ i=0,ui(t)=0,i∈M is said to be regular and causal if the pair (E,Aσ(t)) is regular and causal.

    Remark 1 The existence and uniqueness of the solutions of systems Σ(1)with ΔAi=0,ΔAτ i=0,ui(t)=0 for each i∈M,can be ensured by regularity and causality.

    The main object of this paper is to construct a switching signal,design a robust resilient guaranteed cost controller and give an upper bound of the cost function for systems Σ(1).

    Lemma 1[24]Let Y=YT,H,E and F be real matrices of appropriate dimensions with FTF≤I.The following statements are equivalent

    a.Y+HFE+ETFTHT<0,

    Lemma 2[25]For matrix Q≥0, if there is a zero element qion the main diagonal line of Q, then the column and row which qilies on are both zero.

    2 Main results

    2.1 Stability analysis

    In this section,we initially establish stability conditions for the following system Σ(2).

    t≠tk,

    Δx(t)=Cσ(t)x(t),t=tk,

    x(t)=φ(t),t∈[-τm,0].

    Theorem 1 Consider system Σ(2).If,for any i∈M, there exist constants βij≥0(j∈M), matrices Qi>0,Xi≥0,Zi>0,Pi,Yisuch that

    (7)

    (8)

    (I+Cj)TPiE(I+Cj)-PjE≤0,i≠j,j∈M,

    (9)

    (10)

    then the system Σ(2)is regular,causal and asymptotically stable under a state-dependent switching signal

    σ(t)=argmin{xT(t)PiEx(t),i∈M}.

    (11)

    Vσ(t)(t)=xT(t)Pσ(t)Ex(t)+

    and design the switching signal (11).

    When t∈(tk,tk+1],suppose that the i-th subsystem is activated.Then one obtains

    (12)

    From (11) and the condition βij≥0,we get

    (13)

    In the following,we firstly prove that system Σ(2)is regular and causal.

    Corresponding to the blocks of matrix E,one denotes

    (14)

    Substituting (14) into (10),we obtain

    which implies from Lemma 2 that

    (15)

    From (7),there holds

    (16)

    From (8),we have

    (17)

    Bearing (13) and Qi>0,Xi≤0,Zi>0,τm>0 in mind,one gets from (17)

    (18)

    Subsequently,we will focus on our attention to asymptotical stability analysis.

    Δx(t)=Cσ(t)x(t),t=tk,

    x(t)=φ(t),t∈[-τm,0].

    (19)

    From (10),it is easy to derive

    which implies

    (20)

    Substituting (20) into (19) gives

    (21)

    Vj(tk)=xT(tk)PjEx(tk)+

    Cj)-PjE]x(tk).

    Remark 2 For the nominal and unforced form of the singular impulsive switched system with time-varying delay,this theorem designs the state-dependent switching signal,under which the given system is regular,causal,and asymptotically stable based on the multiple Lyapunov functional technique.Further,it should be observed that this result can also apply to various systems such as singular switched systems,impulsive switched systems and singular impulsive systems.For impulsive switched systems and singular impulsive systems,the following corollaries state the related conclusions,which can fully demonstrate the universality and practicability of the theorem.

    Corollary 1 Consider the following impulsive switched system with time delay

    Δx(t)=Cσ(t)x(t),t=tk,

    x(t)=φ(t),t∈[-h,0].

    If,for any i∈M,there exist constants βij≥0(j∈M),matrices Qi>0,Pi>0 such that

    (22)

    (I+Cj)TPi(I+Cj)-Pj≤0,i≠j,j∈M,

    then the system Σ″(2)is regular,causal and asymptotically stable under a state-dependent switching signal σ(t)=argmin{xT(t)Pix(t),i∈M}.

    Remark 3 Theorem 2 in paper [18] requires that the energy function decreases on the whole space Rn,that is,every subsystem is stable on the whole space Rn,while this corollary just requires that the energy function decreases on the corresponding area Ωi,which can stand out the merit of the result proposed in the paper.

    Corollary 2 Consider the following singular time-varying delay system

    x(t)=φ(t),t∈[-τm,0].

    If there exist matrices Q>0,X≥0,Z>0,P and Y such that

    PE=ETPT≥0,

    with Γ=PA+ATPT+Q+τmX+Y+YT+τmATZA,then systems Σ?(2)is regular,causal and asymptotically stable.

    Remark 4 Lemma 2 in literature [23] studies the constant time delay while this corollary presents the corresponding results for the time-varying delay.

    Corollary 3 Consider system Σ(2).If,for any i∈M,there exist constants βij≤0(j∈M),matrices Qi>0,Xi≥0,Zi>0,Pi,Yisatisfying (7),(8),(9),(10),then system Σ(2)is regular,causal and asymptotically stable under a switching signal

    (23)

    Remark 5 When βij≤0,this corollary designs a new state-dependent switching signal (23),which differs from Theorem 1.In a word,this corollary,together with Theorem 1,shows two different cases.

    2.2 Performance analysis

    Based on Theorem 1,we are now in the position to provide the sufficient conditions on the existence of a robust resilient guaranteed cost controller for system Σ(1).

    Theroem 2 Consider system Σ(1)with the cost function (4).If,for i∈M,there exist scalars βij≥0(j∈M),matrices Qi>0,Xi≥0,Zi>0,Pi,Yisatisfying (7),(10) and

    Γ2=

    (24)

    (I+Cj+ΔCj)TPiE(I+Cj+ΔCj)-PjE≤0,i≠j,j∈M,

    (25)

    where

    Ak i=Ai+BiKi,ΔAk i=ΔAi+BiΔKi,

    and a state-dependent switching signal (11),then controller (5) is a robust resilient guaranteed cost controller for system Σ(1)with the performance upper bound

    Proof When t∈(tk,tk+1],assume that the i-th subsystem is activated.Applying the controller (5) to systems Σ(1)results in the following closed-loop system

    Δx(t)=(Cj+ΔCj)x(t),t=tk,

    x(t)=φ(t),t∈[-τm,0].

    Based on Theorem 1 and R>0,S>0,it is easy to obtain that the closed-loop system Σ(3)is also regular,causal and asymptotically stable by replacing Ai,Aτ i,Cjwith Ak i+ΔAk i,Aτ i+ΔAτ i,Cj+ΔCj.In the next,we shall prove that there exists a positive scalar J*such that the value of the cost function (4) satisfies J≤J*.Similar to the proof of Theorem 1,when t∈(tk,tk+1],one has

    where

    Γ23=τm(Ak i+ΔAk i)TZi(Aτ i+ΔAτ i)-Yi+Pi(Aτ i+ΔAτ i),

    Γ24=τm(Aτ i+ΔAτ i)TZi(Aτ i+ΔAτ i)-(1-μ)Qi.

    From (24),we derive

    (26)

    which gives rise to

    Vσ(tρ+1)(tρ+1)]≤Vσ(0)(0)=J*.

    Therefore,by Definition 3,controller (5) is a robust resilient guaranteed cost controller for system Σ(1)with the performance upper bound J*.The proof is completed.

    Remark 6 Based on the Theorem 1,this theorem further analyzes the performance of the singular impulsive switched system with time-varying delay.It is necessary to point out that the controller designed in Theorem 2 is not only a guaranteed cost controller but also a resilient controller.In addition,there exist uncertainties in the system structure,which,together with uncertainties in resilient controller,make it more difficult to simplify inequalities.The corresponding process will be stated in detail.

    Remark 7 The paper [23] designs a robust resilient guaranteed cost controller for the uncertain singular time-delay system,but the main results in [23] fail to work when impulsive phenomena or switching behaviors occur.On the contrast, this theorem is feasible for the case that impulsive phenomena and switching behaviors take place at the same time.Obviously,Theorem 1 in literature [23] is the special case of this theorem,which shows that this conclusion has the broader application and less conservativeness.

    Remark 8 It should be observed that the paper [18] ignores uncertainties of impulses.Here,it is more meaningful to add the uncertain term ΔCσ(t)to the system matrix,which to some extent can reflect some uncertainties of impulsive phenomena.Besides,compared with the paper [18],the more complex systems are considered and the more information in Lyapunov functional are added in this theorem.

    Corollary 4 Consider system Σ(1)with the cost function (4).If,for i∈M,there exist scalars βij≤0(j∈M),matrices Qi>0,Xi≥0,Zi>0,Pi,Yisatisfying (7),(10),(24),(25),and a state-dependent switching signal satisfying (23),then controller (5) is a robust resilient guaranteed cost controller for system Σ(1)with the performance upper bound J*in the form of (26).

    2.3 The robust resilient guaranteed cost controller design

    In Theorem 2,uncertain terms ΔAi,ΔAτ i,ΔKi,ΔCjexist in conditions,which makes it impossible to solve inequalities.Therefore,how to remove uncertain terms is the key to overcome this problem.Here,by the LMIs technique,the feasible conditions solving a robust resilient guaranteed cost controller for systems Σ(1)are presented in Theorem 3.

    Theorem 3 Consider system Σ(1)with the cost function (4).If,for any i∈M,the following conditions hold

    a.there exist scalars βij≥0(j∈M),λi>0,i>0,ρj>0,matrices Qi>0,Xi≥0, Zi>0,Pi,Yi,Gisatisfying (7),(10) and

    (27)

    i≠j,j∈M,

    (28)

    where

    Γ32=PiAτ i-Yi,

    Λ12=

    b.there exists a state-dependent switching signal satisfying (11),then controller (5) is a robust resilient guaranteed cost controller for system Σ(1).Here,the controller gain is

    (29)

    and the performance upper bound J*can be given in the form of (26).

    Proof Using (27),(29),and Schur complement lemma,we obtain thatΓ3<0 is equivalent to

    (30)

    where

    Δ11=

    Ak i=Ai+BiKi,

    Δ12=

    Δ22=

    From (30),we can derive

    (31)

    where

    H1=

    Define

    After some manipulations,by Lemma 1,we get from (1),(2),(6)

    (32)

    Pi(Aτ i+ΔAτ i)-Yi. Obviously,we can see that (32) is equivalent to (24).From (28),by Schur complement lemma,one has

    (33)

    By Lemma 1,(3) and (33),we get

    (34)

    Remark 9 It is easy to see that various techniques are utilized to simplify inequalities of Theorem 2.Eventually,uncertain terms are successfully removed from conditions.Meanwhile,all the conditions are cast into LMIs for the given scalars βij,λi,which can be solved by the LMIs toolbox.

    Remark 10 We state briefly the solving sequence of inequalities of Theorem 3.

    Step 1 Calculate the Pi,Qi,Xi,Zi,Yiby (7),(10) and (27).

    Step 3 Verify the condition (28),and solve the controller gain by (29).

    Corollary 5 Consider system Σ(1)with the cost function (4).If,for any i∈M,the following conditions hold

    a.there exist scalars βij≤0(j∈M),λi>0,i>0,ρj>0,matrices Qi>0,Xi≥0,Zi>0,Pi,Yi,Gisatisfying (7),(10),(27),(28),

    b.there exists a state-dependent switching signal satisfying (23),then controller (5) is a robust resilient guaranteed cost controller for system Σ(1).Here,the controller gain is (29),and a performance upper bound J*can be given in the form of (26).

    2.4 The optimal robust resilient guaranteed cost controller design

    Theorem 3 factually presents a set of parameter representations of guaranteed cost controllers.From the expression of J*,the upper bound of the performance not only depends on the selection of guaranteed cost controllers but also matrices Qi,Zi.Therefore,it is imperative to optimize the values of matrices in order to achieve the minimal guaranteed cost of the corresponding closed-loop system.

    Theorem 4 For system Σ(1)with ΔCσ(t)=0,and the cost function (4),if the following optimization problem Ωopt

    minβij,λi,i,Pi,Qi,Zi,Xi,YiC1αi+C2βi+C3γis.t.

    (a)(7),(9),(10),(27),

    (b)βij≥0(j∈M),

    (c)λi>0,i>0,

    (35)

    (36)

    (37)

    (38)

    σmax(PiE)C1,

    Therefore,the minimization of C1αi+C2βi+C3γiimplies the minimization of the guaranteed cost J*.The optimal solution of problem Ωoptcan be derived from the convexity of the objective function and constraint conditions.This completes the proof.

    Remark 11 In order to obtain the optimal robust resilient guaranteed cost controller,a minimization approach of the largest singular value of matrices and a convex optimization method are introduced,which play an important role in the proof.In addition,Theorem 3 provides a feasible solution of solving a robust resilient guaranteed cost controller while this theorem further gives a optimal robust resilient guaranteed cost controller.To some extent,this theorem improves the conclusion of Theorem 3.

    3 Numerical examples

    Example 1 Consider the impulsive switched systems Σ″(2)with parameters given below

    For the given system,the linear matrix inequalities have not a feasible solution by Theorem 2 in [18].Therefore,we are unable to judge the stability of the above system and Theorem 2 in [18] fails to work.However,Corollary 1 in this paper can be worked well to check the stability of the given system.Choosing β12=-0.2,β21=-0.1,we can see that the nonlinear matrix inequality (22) becomes the linear matrix inequality which can be solved by LMIs toolbox as following

    Under the switching signal σ(t)=argmin{xT(t)Pix(t),i∈{1,2}},the given system is asymptotically stable from Fig.1,which can verify the feasibility of Corollary 1.In conclusion,both the theoretical analysis in Remark 3 and simulation result can show the fact that Corollary 1 has the wider application and the less conservativeness than the result in [18].

    Fig.1 The state trajectory x(t) of the given system

    S=R=I,

    N1i=N2i=N3i=D1i=D2i=D3i=0.1I,N5i=

    D5i=0,i=1,2,

    F1i=F2i=F3i=F5i=0.1sin(t)I,i=1,2,

    τ(t)=0.1sint.

    Choose τm=1,μ=0.1,λ1=λ2=0.01,and give the initial function φ(t)=[1 t 0]T.

    By Theorem 3,we can obtain

    a robust resilient guaranteed cost controller uσ(t)(t)=(Kσ(t)+ΔKσ(t))x(t) with

    and a performance upper bound J*=8.677 0.The above results derived from Theorem 3 just present a feasible solution.In the following,we aim at seeking the optimal controller and the optimal performance upper bound of systems Σ(1)by Theorem 4.By solving optimization problem Ωopt,one gets

    The switching signal is designed by

    (39)

    From Fig.2,under the switching signal (39),the closed-loop system is asymptotically stable,which can illustrate the correctness of Theorem 4.

    Fig.2 The state trajectory x(t) of the closed-loop system

    4 Conclusions

    In this paper,we have investigated the problem of the robust resilient guaranteed cost control for the uncertain impulsive switched singular system with time-varying delay.A robust resilient guaranteed cost controller and a state-dependent switching signal have been established,which guarantee that the closed-loop system is regular,causal,asymptotically stable,and satisfies a cost upper bound.Further,a minimization approach and a convex optimization method have been presented to seek the optimal robust resilient guaranteed cost controller.For the sake of the computation,all the conditions have been cast into LMIs,which can be easily solved by the LMIs toolbox.Finally,two examples have been provided to show the effectiveness of the main conclusions.

    [1] HESPANHA J P,MORSE A S.Stability of switched systems with average dwell-time[C]//Proceedings of the 38th IEEE Conference on Decision and Control Arizona,USA:IEEE,1999:2655-2660.DOI:10.1109/CDC.1999.831330.

    [2] LIBERZON D,MORSE A S.Basic problems in stability and design of switched systems[J].IEEE Control Systems Magazine,1999,19(5):59-70.

    [3] WANG R,ZHAO J.Non-fragile hybrid guaranteed cost control for a class of uncertain switched linear systems[J].Journal of Control Theory and Applications,2006,4(1):32-37.DOI:10.1007/s11768-006-5144-x.

    [4] WU Z G,SHI P,SU H Y, et al.Asynchronous l2-lfiltering for discrete-time stochastic markov jump systems with randomly occurred sensor nonlinearities[J].Automatica,2014,50(1):180-186.

    [5] YANG H,JIANG B,COCQUEMPOT V.A survey of results and perspectives on stabilization of switched nonlinear systems with unstable modes[J].Nonlinear Analysis:Hybrid systems,2014,13:45-60.

    [6] ZHANG H B,XIE D H,ZHANG H Y,et al.Stability analysis for discrete-time switched systems with unstable subsystems by a mode-dependent average dwell time approach[J].ISA Transactions,2014,53(4):1081-1086.

    [7] ZONG G D,HOU L L,WU Y Q.Robust l2-lguaranteed cost filtering for uncertain discrete-time switched system with mode-dependent time-varying delays[J].Circuits,Systems,and Signal Processing,2011,30(1):17-33.DOI:10.1007/s00034-010-9204-6.

    [8] VARAIYA P.Smart cars on smart roads:Problems of control[J].IEEE Transactions on Automatic Control,1993,38(2):195-207.

    [9] 王亦兵,韓曾晉,羅贊文.智能運輸系統(tǒng)初探[J].控制與決策,1997,12(S1):403-407.

    WANG Y B,HAN Z J,LUO Z W.An Opening study of intelligent transportation systems[J].Control and Decision,1997,12(S1):403-407.

    [10] QIN S Y,SONG Y H.The theory of hybrid control

    systems and its application perspective in electric power systems[C]//Proceedings of the 2001 International Conferences on Info-tech and Info-net. Beijing:IEEE,2001,4:85-94.DOI:10.1109/ICII.2001.983729.

    [11] HU S S,ZHU Q X.Stochastic optimal control and analysis of stability of networked control systems with long delay[J].Automatica,2003,39(11):1877-1884.

    [12] WU Z G,SHI P,SU H Y,et al.Stochastic synchronization of markovian jump neural networks with time-varying delay using sampled data[J].IEEE Transactions on Cybernetics,2013,43(6):1796-1806.DOI:10.1109/TSMCB.2012.2230441.

    [13] LENNARTSON B,TITTUS M,EGARDT B,et al.Hybrid systems in process control[J].IEEE Control Systems Magazine,1996,16(5):45-56.DOI:10.1109/37.537208.

    [14] LIN J X,FEI S M,WU Q.Reliable H∞filtering for discrete-time switched singular systems with time-varying delay[J].Circuits,System,and Signal Processing,2012,31(3):1191-1214.DOI:10.1007/s00034-011-9361-2.

    [15] MA S P,ZHANG C H,WU Z.Delay-dependent stability and H∞control for uncertain discrete switched singular systems with time-delay[J].Applied Mathematics and Computation,2008,206(1):413-424.

    [16] LIU X,ZHANG S M,DING X Y.Robust exponential stability of nonlinear impulsive switched systems with time-varying delays[J].Nonlinear Analysis:Modeling and Control,2012,17(2):210-222.

    [17] 毛北行,慕小武,卜春霞.不確定時滯脈沖切換系統(tǒng)的保性能控制[J].鄭州大學(xué)學(xué)報:理學(xué)版,2010,42(3):7-10.

    MAO B X,MU X W,BU C X.Guaranteed cost control problems for a class of impulsive switched system with time delay and uncertain parameters[J].J Zhengzhou Univ:Nat Sci Ed,2010,42(3):7-10.

    [18] XU H L,TEO K L,LIU X Z.Robust stability analysis of guaranteed cost control for impulsive switched systems[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2008,38(5):1419-1422.

    [19] XU H L,LIU X Z,TEO K L.A LMI approach to stability analysis and synthesis of impulsive switched systems with time delays[J].Nonlinear Analysis:Hybrid Systems,2008,2(1):38-50.

    [20] YANG C D,ZHU W.Stability analysis of impulsive

    switched systems with time delays[J].Mathematical and Computer Modelling,2009,50(7/8):1188-1194.

    [21] ZONG G D,XU S Y,WU Y Q.Robust H∞stabilization for uncertain switched impulsive control systems with state delay:An LMI approach[J].Nonlinear Analysis:Hybrid Systems,2008,2(4):1287-1300.

    [22] WANG R,ZHAO J.Non-fragile hybrid guaranteed

    cost control for a class of uncertain switched linear systems[J].Journal of Control Theory and Applications,2006,4(1):32-37.

    [23] LI L,JIA Y.Observer-based resilient l2-l∞control for singular time-delay systems[J].IET Control Theory & Applications,2009,3(10):1351-1362.DOI:10.1049/iet-cta.2008.0361.

    [24] XIE L H.Output feedback H∞control of systems with

    parameter uncertainty[J].International Journal of Control,1996,63(4):741-750.

    [25] ZHANG F Z.Matrix Theory:Basic Results and Techniques[M].New York:Springer-Verlag,1999.

    (責(zé)任編輯:米慧芝)

    2016-05-11

    王慶芝(1988-),女,主要從事切換系統(tǒng)、魯棒控制研究。

    http://www.cnki.net/kcms/detail/45.1206.G3.20160913.0948.014.html

    時變時滯奇異脈沖切換系統(tǒng)的魯棒彈性保成本控制

    WANG Qingzhi,ZONG Guangdeng**

    (School of Engineering,Qufu Normal University,Rizhao,Shandong,276826,China)

    針對一類具有時變時滯的奇異脈沖切換系統(tǒng),研究魯棒彈性保成本控制問題.首先,基于多Lyapunov泛函技術(shù),建立標(biāo)稱自由系統(tǒng)具有正則性、因果性及漸近穩(wěn)定性的充分條件.然后,給出一個彈性保性能控制器的設(shè)計方案,該方案能保證對所有容許的不確定性,閉環(huán)系統(tǒng)是正則的、因果的和漸近穩(wěn)定的,且成本函數(shù)不超過某個上界.并進一步運用矩陣最大奇異值的最小化方法和凸優(yōu)化方法,求解最優(yōu)魯棒彈性保成本控制器.所有的充分條件均巧妙地表示為線性矩陣不等式形式.最后,運用兩個仿真實例驗證本研究方法較少的保守性和有效性.

    奇異切換系統(tǒng) 脈沖切換系統(tǒng) 彈性保成本控制 多Lyapunov 技術(shù) 線性矩陣不等式

    TP273

    A

    1005-9164(2016)04-0354-12

    修回日期:2016-08-03

    *國家自然科學(xué)基金項目(61273123,61374004,61304059),新世紀(jì)優(yōu)秀人才支持計劃項目(NCET-13-0878),山東省高校優(yōu)秀科研創(chuàng)新團隊計劃項目和山東省泰山學(xué)者計劃項目資助。

    **通訊作者:宗廣燈(1976-),男,教授,主要從事網(wǎng)絡(luò)控制,切換系統(tǒng)和魯棒控制研究,E-mail:lovelyletian@gmail.com,zonggdeng@126.com。

    網(wǎng)絡(luò)優(yōu)先數(shù)字出版時間:2016-09-13 【DOI】10.13656/j.cnki.gxkx.20160913.007

    廣西科學(xué)Guangxi Sciences 2016,23(4):354~365

    猜你喜歡
    工程院魯棒控制時滯
    少先隊活動(2022年9期)2022-11-23 06:56:24
    華裔科學(xué)家董洪標(biāo)教授榮膺英國皇家工程院院士
    華人時刊(2022年23期)2022-09-24 23:12:28
    熱烈祝賀本刊編委孫立寧教授當(dāng)選 俄羅斯工程院外籍院士
    紡織業(yè)兩人入圍工程院院士增選第二輪
    帶有時滯項的復(fù)Ginzburg-Landau方程的拉回吸引子
    針對輸入時滯的橋式起重機魯棒控制
    漂浮基空間機械臂T-S模糊魯棒控制
    基于高階奇異值分解的LPV魯棒控制器設(shè)計
    基于干擾估計的高超聲速飛行器魯棒控制方法
    一階非線性時滯微分方程正周期解的存在性
    国产日韩欧美视频二区| 国产精品人妻久久久久久| 欧美日韩综合久久久久久| 午夜av观看不卡| 狂野欧美激情性xxxx在线观看| 一区二区三区乱码不卡18| 亚洲av不卡在线观看| 人妻一区二区av| 制服丝袜香蕉在线| 一边亲一边摸免费视频| a 毛片基地| 精品亚洲成a人片在线观看| 人妻一区二区av| 汤姆久久久久久久影院中文字幕| av一本久久久久| 老司机影院成人| 久久久久久久大尺度免费视频| 日日摸夜夜添夜夜添av毛片| 欧美精品一区二区免费开放| 国产亚洲最大av| 精品一区二区三区视频在线| 日韩欧美一区视频在线观看 | 国产精品欧美亚洲77777| 在线观看免费高清a一片| 丝袜在线中文字幕| www.av在线官网国产| 91aial.com中文字幕在线观看| 男女国产视频网站| 韩国高清视频一区二区三区| 国产一区二区三区综合在线观看 | 一级毛片黄色毛片免费观看视频| 爱豆传媒免费全集在线观看| 国产老妇伦熟女老妇高清| 丝袜喷水一区| 久久99一区二区三区| 女人精品久久久久毛片| 老司机亚洲免费影院| 少妇精品久久久久久久| 边亲边吃奶的免费视频| 中国国产av一级| 在线免费观看不下载黄p国产| 99热这里只有是精品50| 国产精品久久久久久久电影| 国产亚洲欧美精品永久| 亚洲精品第二区| 久久久精品免费免费高清| 欧美精品一区二区大全| 噜噜噜噜噜久久久久久91| 欧美精品亚洲一区二区| 熟女av电影| 亚洲av国产av综合av卡| 亚洲欧洲精品一区二区精品久久久 | 少妇被粗大猛烈的视频| 在线观看三级黄色| 下体分泌物呈黄色| 少妇的逼水好多| 久久免费观看电影| 91久久精品国产一区二区三区| 国产精品久久久久久精品电影小说| 免费少妇av软件| 人妻夜夜爽99麻豆av| 五月玫瑰六月丁香| 国产 精品1| h视频一区二区三区| 国产精品一区二区性色av| 国产欧美另类精品又又久久亚洲欧美| 老司机影院成人| 久久狼人影院| 男人舔奶头视频| 男女国产视频网站| 如何舔出高潮| 国产av精品麻豆| 草草在线视频免费看| 精品卡一卡二卡四卡免费| 99久久人妻综合| www.av在线官网国产| 又大又黄又爽视频免费| 国内精品宾馆在线| 一级爰片在线观看| 亚洲精品亚洲一区二区| 最近中文字幕高清免费大全6| 国产精品蜜桃在线观看| 成人免费观看视频高清| 亚洲自偷自拍三级| 国产精品99久久99久久久不卡 | 国产精品久久久久成人av| 久久久久久人妻| 性高湖久久久久久久久免费观看| 丰满人妻一区二区三区视频av| 国内揄拍国产精品人妻在线| 亚洲色图综合在线观看| 精品99又大又爽又粗少妇毛片| 国产精品一区二区三区四区免费观看| 我的女老师完整版在线观看| 国产 精品1| 18+在线观看网站| 一区二区三区精品91| 一级二级三级毛片免费看| 国产视频内射| 黄色日韩在线| 日韩av免费高清视频| 少妇人妻精品综合一区二区| 成年人免费黄色播放视频 | 中文乱码字字幕精品一区二区三区| 一个人免费看片子| freevideosex欧美| 毛片一级片免费看久久久久| 精品亚洲成a人片在线观看| 亚洲第一区二区三区不卡| 亚洲av福利一区| 久久精品夜色国产| 亚洲无线观看免费| 一区二区av电影网| 老司机影院成人| 亚洲人成网站在线观看播放| 欧美bdsm另类| 女性被躁到高潮视频| 午夜视频国产福利| 少妇被粗大猛烈的视频| 在线 av 中文字幕| 在线精品无人区一区二区三| 日本vs欧美在线观看视频 | 制服丝袜香蕉在线| 日韩成人av中文字幕在线观看| 三上悠亚av全集在线观看 | 在线免费观看不下载黄p国产| 亚洲无线观看免费| 久久精品国产自在天天线| 亚洲婷婷狠狠爱综合网| 少妇被粗大的猛进出69影院 | 欧美高清成人免费视频www| 91aial.com中文字幕在线观看| 午夜福利视频精品| 在线观看一区二区三区激情| 免费人妻精品一区二区三区视频| 精品卡一卡二卡四卡免费| 久久久久久久亚洲中文字幕| 久久99蜜桃精品久久| 91精品国产国语对白视频| 日本91视频免费播放| 天天操日日干夜夜撸| 中国国产av一级| 中文字幕免费在线视频6| 夜夜看夜夜爽夜夜摸| 国产精品免费大片| 精品99又大又爽又粗少妇毛片| 高清午夜精品一区二区三区| 欧美性感艳星| 久久久久久久亚洲中文字幕| 久久国产乱子免费精品| 日韩亚洲欧美综合| 九草在线视频观看| √禁漫天堂资源中文www| 建设人人有责人人尽责人人享有的| 女性生殖器流出的白浆| 一级a做视频免费观看| 丰满饥渴人妻一区二区三| 九草在线视频观看| 黑人猛操日本美女一级片| 如何舔出高潮| 制服丝袜香蕉在线| 啦啦啦视频在线资源免费观看| 又爽又黄a免费视频| 成人毛片60女人毛片免费| 久久午夜综合久久蜜桃| 久久久久久久亚洲中文字幕| 免费观看a级毛片全部| 国模一区二区三区四区视频| 久久av网站| 国产伦精品一区二区三区视频9| 中文乱码字字幕精品一区二区三区| 欧美老熟妇乱子伦牲交| 桃花免费在线播放| 婷婷色av中文字幕| 国产成人精品无人区| 在线观看国产h片| 亚洲不卡免费看| 三级国产精品欧美在线观看| 日日爽夜夜爽网站| 免费看不卡的av| 久久精品久久久久久噜噜老黄| 一本一本综合久久| 亚洲国产日韩一区二区| 欧美少妇被猛烈插入视频| 亚洲国产成人一精品久久久| 日韩一本色道免费dvd| 免费观看无遮挡的男女| av视频免费观看在线观看| 国产一区二区在线观看日韩| 99久久精品国产国产毛片| 在线播放无遮挡| 国产成人91sexporn| 国产 精品1| 欧美激情极品国产一区二区三区 | 成人黄色视频免费在线看| 夜夜骑夜夜射夜夜干| 国产又色又爽无遮挡免| 搡女人真爽免费视频火全软件| 老司机亚洲免费影院| 一个人看视频在线观看www免费| 成人国产av品久久久| 午夜激情福利司机影院| 全区人妻精品视频| 久久久精品94久久精品| 狠狠精品人妻久久久久久综合| 在线看a的网站| 青青草视频在线视频观看| tube8黄色片| 国产精品福利在线免费观看| 日日爽夜夜爽网站| 亚洲丝袜综合中文字幕| 亚洲国产精品专区欧美| 亚洲精品456在线播放app| 国产成人精品久久久久久| 综合色丁香网| 人妻 亚洲 视频| 亚洲怡红院男人天堂| 亚洲人与动物交配视频| 永久网站在线| 精品少妇内射三级| 精品少妇黑人巨大在线播放| 男女国产视频网站| 久久国产精品男人的天堂亚洲 | 欧美日韩综合久久久久久| 久久久久精品久久久久真实原创| 女性被躁到高潮视频| 午夜免费男女啪啪视频观看| 婷婷色麻豆天堂久久| 免费观看无遮挡的男女| 国产成人一区二区在线| 亚洲内射少妇av| 春色校园在线视频观看| 久久国产精品男人的天堂亚洲 | 日韩av不卡免费在线播放| 黄色怎么调成土黄色| 精品久久久噜噜| 美女主播在线视频| 日韩一区二区三区影片| 纵有疾风起免费观看全集完整版| videossex国产| 国产毛片在线视频| 国产精品欧美亚洲77777| 亚洲精品一区蜜桃| 69精品国产乱码久久久| 久久精品久久久久久久性| 日本黄大片高清| 免费观看无遮挡的男女| 内射极品少妇av片p| 久久久国产一区二区| 亚洲人成网站在线播| 日韩av在线免费看完整版不卡| 好男人视频免费观看在线| 熟女av电影| 欧美精品国产亚洲| 久久久a久久爽久久v久久| 精华霜和精华液先用哪个| 亚洲精品日本国产第一区| 少妇高潮的动态图| 精品少妇久久久久久888优播| 成人综合一区亚洲| 女人精品久久久久毛片| 久久精品国产a三级三级三级| 婷婷色麻豆天堂久久| 2021少妇久久久久久久久久久| 久久久久国产网址| 天堂8中文在线网| 精品一品国产午夜福利视频| 亚洲av福利一区| 亚洲图色成人| 欧美日韩在线观看h| 亚洲国产精品成人久久小说| 中文字幕人妻丝袜制服| 王馨瑶露胸无遮挡在线观看| 国产在线免费精品| 久久青草综合色| av视频免费观看在线观看| 各种免费的搞黄视频| 美女视频免费永久观看网站| 国产亚洲5aaaaa淫片| 2021少妇久久久久久久久久久| 五月开心婷婷网| 久久综合国产亚洲精品| 国产精品人妻久久久久久| 在线观看三级黄色| 亚洲av成人精品一区久久| 日韩伦理黄色片| 人妻系列 视频| 成人毛片60女人毛片免费| 性色avwww在线观看| 久久亚洲国产成人精品v| 亚洲国产欧美在线一区| 一级爰片在线观看| 黑人高潮一二区| 内地一区二区视频在线| 99热国产这里只有精品6| 免费在线观看成人毛片| 最新的欧美精品一区二区| 女性被躁到高潮视频| 国产av精品麻豆| 黄色毛片三级朝国网站 | 最近中文字幕高清免费大全6| 99久久精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 三上悠亚av全集在线观看 | videos熟女内射| 99热国产这里只有精品6| 啦啦啦啦在线视频资源| 蜜臀久久99精品久久宅男| 在线 av 中文字幕| 永久免费av网站大全| videossex国产| 大香蕉久久网| 青青草视频在线视频观看| 国产午夜精品一二区理论片| 男女边吃奶边做爰视频| 两个人免费观看高清视频 | 秋霞伦理黄片| 午夜激情久久久久久久| 夜夜爽夜夜爽视频| 一级片'在线观看视频| 又爽又黄a免费视频| 免费播放大片免费观看视频在线观看| 久久久久久人妻| 亚洲精品日韩av片在线观看| 如何舔出高潮| 国产精品无大码| 亚洲欧美日韩另类电影网站| 午夜日本视频在线| 亚洲国产精品成人久久小说| 国内少妇人妻偷人精品xxx网站| 一本一本综合久久| 我的老师免费观看完整版| 亚洲va在线va天堂va国产| 国产精品一区二区在线观看99| 日本爱情动作片www.在线观看| 人妻一区二区av| 久久影院123| 80岁老熟妇乱子伦牲交| 色哟哟·www| 国产色婷婷99| 高清av免费在线| 一级爰片在线观看| 国产国拍精品亚洲av在线观看| 日本91视频免费播放| 99热网站在线观看| 在线观看人妻少妇| 亚洲国产欧美在线一区| 精品视频人人做人人爽| 午夜久久久在线观看| 青春草视频在线免费观看| 亚洲av福利一区| 成人美女网站在线观看视频| 久久人人爽人人爽人人片va| 精品视频人人做人人爽| a级毛片免费高清观看在线播放| 精品视频人人做人人爽| 免费av中文字幕在线| 国产高清三级在线| 自拍欧美九色日韩亚洲蝌蚪91 | 青春草亚洲视频在线观看| 午夜免费男女啪啪视频观看| 一级二级三级毛片免费看| 中国美白少妇内射xxxbb| 国产亚洲最大av| 国产成人午夜福利电影在线观看| 18禁在线播放成人免费| 不卡视频在线观看欧美| 黄色毛片三级朝国网站 | 成年人午夜在线观看视频| 亚洲av日韩在线播放| 2021少妇久久久久久久久久久| 国产男女超爽视频在线观看| 欧美日韩国产mv在线观看视频| 色网站视频免费| 亚洲综合精品二区| 亚洲欧美精品自产自拍| 欧美日韩av久久| 久久久久久久久久久久大奶| 秋霞在线观看毛片| 街头女战士在线观看网站| 性色av一级| 日本与韩国留学比较| 国产亚洲一区二区精品| 美女主播在线视频| 伊人久久国产一区二区| 五月玫瑰六月丁香| 国产av一区二区精品久久| 2018国产大陆天天弄谢| 国产精品国产av在线观看| 日本猛色少妇xxxxx猛交久久| 日韩一区二区视频免费看| 国产精品免费大片| 日韩成人伦理影院| 久久久久久久精品精品| 色94色欧美一区二区| videossex国产| 国产av码专区亚洲av| 高清欧美精品videossex| 亚洲国产精品一区二区三区在线| 人妻少妇偷人精品九色| 亚洲av国产av综合av卡| 美女视频免费永久观看网站| 草草在线视频免费看| 涩涩av久久男人的天堂| 777米奇影视久久| 日韩视频在线欧美| 国产亚洲欧美精品永久| 国产日韩欧美亚洲二区| 亚洲精品日韩av片在线观看| 亚洲欧美日韩另类电影网站| 黄色配什么色好看| 两个人的视频大全免费| av黄色大香蕉| av.在线天堂| 在线观看免费高清a一片| 在线观看免费视频网站a站| 国产欧美另类精品又又久久亚洲欧美| 亚洲图色成人| 亚洲精品日韩av片在线观看| 国产中年淑女户外野战色| 成人毛片60女人毛片免费| 亚洲欧美清纯卡通| .国产精品久久| 亚洲欧美日韩卡通动漫| 亚洲精品一二三| 精品久久久久久电影网| 国产精品久久久久久久久免| 黄片无遮挡物在线观看| 亚洲欧美日韩另类电影网站| 亚洲av欧美aⅴ国产| 国产精品久久久久久精品电影小说| av天堂中文字幕网| 亚洲,一卡二卡三卡| 亚洲精品一二三| 日韩强制内射视频| 成年女人在线观看亚洲视频| 国产成人91sexporn| 熟妇人妻不卡中文字幕| 成人黄色视频免费在线看| 麻豆精品久久久久久蜜桃| 天堂中文最新版在线下载| 午夜老司机福利剧场| 亚洲国产日韩一区二区| 日韩成人av中文字幕在线观看| 97超碰精品成人国产| 久久久精品94久久精品| 一级爰片在线观看| 各种免费的搞黄视频| 在线亚洲精品国产二区图片欧美 | 在线播放无遮挡| 亚洲av福利一区| 国产日韩欧美亚洲二区| 欧美bdsm另类| 亚洲成人一二三区av| 亚洲av中文av极速乱| 日韩亚洲欧美综合| 精品国产露脸久久av麻豆| 毛片一级片免费看久久久久| 国产一区二区三区综合在线观看 | 少妇高潮的动态图| 少妇猛男粗大的猛烈进出视频| 全区人妻精品视频| 在线免费观看不下载黄p国产| 久久国产乱子免费精品| 老女人水多毛片| 午夜久久久在线观看| 伦精品一区二区三区| 卡戴珊不雅视频在线播放| 欧美日韩一区二区视频在线观看视频在线| 日韩 亚洲 欧美在线| 亚洲精品日韩av片在线观看| 日本91视频免费播放| 欧美少妇被猛烈插入视频| 伊人久久精品亚洲午夜| 高清欧美精品videossex| 亚洲精品乱码久久久久久按摩| 美女视频免费永久观看网站| 日韩大片免费观看网站| kizo精华| 亚洲高清免费不卡视频| 22中文网久久字幕| 久热久热在线精品观看| 一级毛片 在线播放| 亚洲丝袜综合中文字幕| av国产精品久久久久影院| 全区人妻精品视频| 国产日韩欧美视频二区| 亚洲伊人久久精品综合| 少妇被粗大的猛进出69影院 | 国产欧美日韩综合在线一区二区 | www.色视频.com| av专区在线播放| 久久综合国产亚洲精品| 国产熟女欧美一区二区| 亚洲精品成人av观看孕妇| 少妇被粗大猛烈的视频| 精品一区二区三卡| 欧美日韩视频高清一区二区三区二| .国产精品久久| 乱系列少妇在线播放| 观看av在线不卡| 精品亚洲成国产av| 成人影院久久| 国产男女超爽视频在线观看| 久久久久国产精品人妻一区二区| 亚洲天堂av无毛| 亚洲国产毛片av蜜桃av| 亚洲国产精品一区三区| 国产av码专区亚洲av| a 毛片基地| 亚洲精品日韩在线中文字幕| a级毛色黄片| 日本av免费视频播放| 中文字幕亚洲精品专区| 一区二区av电影网| 一级爰片在线观看| 欧美国产精品一级二级三级 | 国产精品欧美亚洲77777| 尾随美女入室| 美女xxoo啪啪120秒动态图| 国产欧美亚洲国产| 18禁在线无遮挡免费观看视频| 日本免费在线观看一区| 亚洲av免费高清在线观看| 永久网站在线| 亚洲欧美一区二区三区国产| 亚洲av中文av极速乱| a级毛色黄片| 日日啪夜夜撸| 丰满饥渴人妻一区二区三| 国产精品成人在线| 亚洲精品中文字幕在线视频 | 国产免费一区二区三区四区乱码| 99精国产麻豆久久婷婷| 国内精品宾馆在线| 国内少妇人妻偷人精品xxx网站| 亚洲精品成人av观看孕妇| 日本与韩国留学比较| 久热久热在线精品观看| 视频区图区小说| 高清在线视频一区二区三区| 黑人高潮一二区| h视频一区二区三区| 搡老乐熟女国产| 99re6热这里在线精品视频| 高清不卡的av网站| 久久久久久久久久人人人人人人| 插阴视频在线观看视频| 亚洲欧美精品自产自拍| 亚洲欧美一区二区三区国产| 自拍偷自拍亚洲精品老妇| 成人二区视频| 菩萨蛮人人尽说江南好唐韦庄| 在线观看人妻少妇| 国产成人精品婷婷| 久久久欧美国产精品| 国产国拍精品亚洲av在线观看| av不卡在线播放| 成人毛片60女人毛片免费| 日韩 亚洲 欧美在线| 亚洲精品乱码久久久久久按摩| 香蕉精品网在线| 国内揄拍国产精品人妻在线| 欧美97在线视频| 亚洲国产精品一区三区| 国产男女超爽视频在线观看| 精品一区二区三区视频在线| 亚洲精品,欧美精品| 黑人巨大精品欧美一区二区蜜桃 | 久久鲁丝午夜福利片| av卡一久久| 国产成人精品无人区| 国产中年淑女户外野战色| 少妇人妻一区二区三区视频| 三上悠亚av全集在线观看 | 亚洲av在线观看美女高潮| 中国三级夫妇交换| 欧美97在线视频| 在线观看国产h片| 国产在线视频一区二区| 亚洲成人手机| 肉色欧美久久久久久久蜜桃| 简卡轻食公司| 欧美精品一区二区免费开放| 自线自在国产av| 久久久久视频综合| 国产av一区二区精品久久| 午夜免费鲁丝| 最近中文字幕2019免费版| 成年人午夜在线观看视频| 久久99精品国语久久久| 熟妇人妻不卡中文字幕| 亚洲精品色激情综合| 另类亚洲欧美激情| 寂寞人妻少妇视频99o| 狂野欧美激情性bbbbbb| 久久国产乱子免费精品| 精品人妻一区二区三区麻豆| 成人特级av手机在线观看| 国产成人精品福利久久| 美女cb高潮喷水在线观看| 交换朋友夫妻互换小说| 久久99热6这里只有精品| 成人国产麻豆网| 欧美一级a爱片免费观看看| 在线观看国产h片| 久久久久久久久久久免费av| 老司机亚洲免费影院| av播播在线观看一区| 97在线人人人人妻| 国产亚洲欧美精品永久| 亚洲久久久国产精品| 99九九在线精品视频 | 黄色视频在线播放观看不卡| 91aial.com中文字幕在线观看|