• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    化學(xué)氣相沉積工藝在石墨烯表面生長碳納米管

    2016-10-31 09:12:39趙建國邢寶巖潘啟亮李作鵬劉占軍
    新型炭材料 2016年1期
    關(guān)鍵詞:碳納米管氣相太原

    趙建國, 邢寶巖, 楊 輝, 潘啟亮, 李作鵬, 劉占軍

    (1.山西大同大學(xué) 炭材料研究所,山西 大同037009;2.太原理工大學(xué) 材料科學(xué)與工程學(xué)院,山西 太原030024;3.中國科學(xué)院山西煤炭化學(xué)研究所 炭材料重點實驗室,山西 太原030001)

    ?

    化學(xué)氣相沉積工藝在石墨烯表面生長碳納米管

    趙建國1,2,邢寶巖1,2,楊輝1,潘啟亮1,2,李作鵬1,劉占軍3

    (1.山西大同大學(xué) 炭材料研究所,山西 大同037009;2.太原理工大學(xué) 材料科學(xué)與工程學(xué)院,山西 太原030024;3.中國科學(xué)院山西煤炭化學(xué)研究所 炭材料重點實驗室,山西 太原030001)

    將硝酸鎳溶液與氧化石墨烯溶膠混合后冷凍干燥,然后通過真空熱還原得到負(fù)載過渡金屬催化劑的石墨烯粉末。以天然氣為碳源,在1 000 ℃下采用化學(xué)氣相沉積工藝,在石墨烯表面和邊緣生長碳納米管,碳納米管將孤立的石墨烯片層結(jié)構(gòu)有效地聯(lián)接起來,組成空間互聯(lián)網(wǎng)絡(luò)結(jié)構(gòu),從而構(gòu)建了電子、熱能和載荷有效傳輸?shù)耐ǖ馈?/p>

    石墨烯; 碳納米管; 化學(xué)氣相沉積

    1 Introduction

    Graphene, one atomic layer thickness (0.335 nm), is a kind of novel two-dimensional atomic crystal with sp2hybridized carbon atoms arranged in honeycomb lattice like the single atomic layer of graphite. Graphene is the ideal two-dimensional nanomaterial at present, and is the basic unit to build zero-dimensional fullerenes, one-dimensional carbon nanotubes (CNTs) and three-dimensional graphite materials[1-3]. The connection between the carbon atoms in graphene is very flexible, and hence, when there is external mechanical force, the atomic plane is bended but carbon atoms do not have to rearrange to accommodate external force. This stable structure gives rise to the excellent flexibility of graphene[4]. The electron of graphene can travel in the orbit without being scattered off course by lattice imperfections and foreign atoms. The velocity of electron reaches 1/300 of the light speed, which is 100 times faster than that of the silicon chips in the computer. Therefore, graphene when made as tiny transistors, can significantly increase the CPU speed of a computer, and when made as cable, can greatly improve its conductivity and strength compared with the traditional copper and aluminum. Because the thermal conduction mechanism of graphite material is based on electrons, graphene also has a high thermal conductivity up to 5 300 W·m-1·K-1, which is three times as much as that of diamond and graphite, and 25 times as much as that of traditional silver, copper and aluminum[5]. Therefore, it also has an attractive prospect in the application as a high thermal conducting material. Graphene has the highest strength, even harder than diamonds, and 100 times higher than the strength of the best steel in the world[6]. Graphite is rich in the resources on the earth, meanwhile graphene has the highest strength, the best electrical and thermal conductivity, so it enjoys fascinating development prospects in the future. Currently, there are many methods for the preparation of graphene. The oxidation-reduction method, in which graphite is oxidized to graphite oxide[7-11]that is dispersed in liquid phase for further processing, is easy to operate and control and suitable for mass production. So it is the main preparation method for graphene. But the disadvantage of this method is that the crystal size of graphene is small and the excellent properties of graphene can not be retained. A number of previous works have reported chemical vapor deposition (CVD) growth of CNTs on graphene. A 3D pillared vertically-aligned CNT (VACNT)-graphene architecture with a controllable nanotube length was demonstrated, which has a high specific capacitance and remarkable rate capability[12]. Microsupercapacitors based on 3D graphene/CNT carpets were fabricated in-situ on nickel electrodes[13]. A method to bond graphene and single-walled CNTs seamlessly during the growth stage was disclosed[14]. The metal-graphene-CNT structure was used to directly fabricate field-emitter devices and double-layer capacitors[15]. A simple and scalable method to fabricate 3D few-layer graphene-multi-walled CNT hybrids on metal foam foils (nickel foam) via a one-step ambient pressure CVD was described[16]. 3D graphene-CNT hybrids were synthesized by a two-step CVD method, which can be used as novel 3D electrochemical electrodes for sensing applications[17]. A hybrid system with VACNTs grown on reduced graphene films was reported[18]. In this paper, we investigated the reduction methods of graphene oxide to graphene and the effect of concentration of catalyst on the growth of nanotubes on the surface and edge of graphene lamellae structure. The CNTs overcomes the defect on the small size of graphene, then the isolated graphene lamellae structure can be connected together effectively to form a spatial network structure by the CNTs, seting up the effective transmission channel for electrons, thermal energy and load.

    2 Experimental

    The graphene oxide was synthesized according to the modified Hummers method[7]. A mixture of a transition metal salt solution and the graphene oxide solution was frozen at 80 ℃, then dried in a vacuum freeze-drying machine (Beijing Bo N2000 company). The apparatus for CVD experiment was an electrical furnace equipped with a horizontal quartz tube 50 mm in diameter, 1 000 mm in length, and 150 mm long in reaction zone in the middle shown in Fig.1. The dried powder was uniformly dispersed at the the bottom of a quartz boat that was put into the reaction zone the CVD furnace, heated up to 300 ℃ within 2 h under vacuum, and kept the vacuum condition at this temperature for 1 h. The vacuum valve was closed, and the high purity argon was filled slowly. The furnace was heated up to 1 000 ℃ within 4 h under the protection of the high purity argon. Then methane was introduced into the furnace as the carbon source and the CVD reaction took place for 30 min. The flow rate of methane was controlled at about 10 cm3/min, and argon 60 cm3/min. Finally, the methane and power were turned off to let the furnace cool down to room temperature under the protection of argon. The samples were analyzed by a TESCAN MAIA3 LMH 6700F scanning electron microscope (SEM). The powder samples were compressed into pellets by an infrared tablet compression machine with thicknesses of around several hundred micrometres and bulk densities of around 1.0 g·cm-3. The electrical conductivity was measured by a standard four-probe resistivity measurement system with an SZ85 digital multimeter (Suzhou Telecommunication Factory, China). In order to eliminate contact resistance, and each sample pellet was cut into rectangular shape and measured three times to obtain an average value.

    Fig. 1 Schematic diagram of the horizontal CVD furnace.

    3 Results and discussion

    3.1Effect of high temperature treatment on morphology of graphene oxide

    The graphene oxide, which is prepared by the improved Hummers method, has a very large surface area. There are a large number of adsorbed water molecules on its surface since the graphene oxide powder is prepared by vacuum freezing drying method. Also the graphene oxide powder contains hydroxyl, carboxyl, carbonyl groups and other rich oxygen-containing functional groups. Graphene synthesized by reducing the graphene oxide with hydrazine hydrate and vacuum freezing drying method, still adsorbs a large amount of water molecules on its surface and contains a small amount of oxygen-containing functional groups. The graphene oxide has large pores due to the rich hydroxyl, carboxyl and carbonyl functional groups on its surface and large water adsorption, which is reflected as in Fig.2a. Fig.2b is the SEM image of the graphene oxide sample heated to 1 000 ℃ within 5 h under the protection of argon, which shows that the pore size is reduced significantly. This could be ascribed to the fact that removal of the oxygen-containing functional groups of the graphene oxide at high temperature eliminates the polar interaction among layers of graphene oxide, giving rise to collapse of large pores.

    Fig.3a is the morphology of the graphene obtained by hydrazine reduction. As shown in Fig.3a, pore size of graphene is still very large as the result of large water adsorption and a small amount of oxygen-containing functional groups. Fig.3b is the SEM image of the reduced graphene heated to 1 000 ℃ within 5 h under the protection of argon. It can be seen from the Fig.3b that the pore size of the graphene is reduced by the high temperature treatment that removes the oxygen-containing functional groups[19-21]. The reason for the reduction of pore size is similar to heat-treated graphene oxide.

    Fig. 2 SEM morphologies of (a) graphene oxide and (b) the sample after high temperature treatment.

    Fig. 3 SEM morphologies of (a) the hydrazine-reduced graphene and (b) the sample after high temperature treatment.

    Based on the analysis above, we changed the original experimental conditions. The as-prepared graphene oxide powder was uniformly dispersed at the bottom of the quartz boat and put into the horizontal CVD furnace as shown in Fig.1. The furnace was slowly heated up to 300 ℃ within 3 h under vacuum, and continued to vacuum at this temperature for 1 h, then the vacuum valve was closed and the power was turned off to let the furnace cool down to room temperature. A small amount of thermally-reduced sample was removed for detection, and the remaining sample still was put again into the horizontal CVD furnace and heated to 1 000 ℃ within 4 h under the protection of high purity argon. Methane was introduced into the furnace as the carbon source and the CVD reaction took place for 30 min. Fig.4 is the SEM image of the thermally-reduced sample. As shown in Fig.4, the thermally-reduced sample has a large pore size and thin pore wall. Water molecules and oxygen-containing functional groups of the graphene oxide are gradually removed, and finely reduced graphene is obtained due to the slowing heating up and vacuum condition.

    Fig. 4 SEM morphologies of (a) the thermally-reduced graphene and (b) the the sample after high temperature treatment.

    Fig. 5 SEM images of CNTs grown on graphene.Graphene oxide immersed in (a) 0.005 mol/L of [Ni2+]; (b) 0.01 mol/L of [Ni2+] and (c) 0.02 mol/L of [Ni2+].

    3.2Effect of catalyst concentration on CNT growth

    It is widely believed that carbon atom clusters formed by adsorption and decomposition of hydrocarbon compounds on the catalyst surface play critical roles in the growth mechanism of CNTs, and the carbon atom clusters diffuse through metal particle phase to the other side of catalyst surface, which deposit on this side, forming CNTs. Therefore, the particle size and particle concentration of the catalysts are the main factors that play important roles in CNT growth. The edge and surface of graphene are the active adsorption sites CNT and the specific surface area of graphene is up to 2 630 m2/g theoretically. Nickel nitrate solution was first mixed with graphene oxide that contains rich oxygen-containing functional groups, most of the Ni element were adsorbed on the edge of the graphene oxide other than the surface of the graphene, so we can see from Fig.5 that most of the CNTs grew on the edge of the graphene. Fig.5a, b, c are the SEM morphologies of samples after CNT growth by CVD with the Ni(NO3)2concentrations of 0.005, 0.01 and 0.02 mol/L, respectively. As revealed in Fig.5, the CNT density on the surface and edge of graphene increases with the Ni(NO3)2concentration. When the concentration of Ni(NO3)2in the solution is small as shown in Fig.5a, the concentration of Ni particle loaded on graphene is low, so the CNTs grew sparsely. While the concentration of Ni(NO3)2in the solution is high as shown in Fig.5c, the density of CNTs grown on graphene is increased significantly.

    3.3Effect of CNTs grown on graphene on the electrical conductivity

    Table 1 lists the electrical conductivity of the graphene after the vacuum thermal reduction and the graphene with CNTs grown on its surface and edge. From the experimental results, it is found that the conductivity of the graphene increases after CNTs growing on its surface, which is ascribe to the fact that CNTs connect the isolated graphene lamellae effectively to form a spatial network structure that acts as electron transmission channels. We can also see from Fig.5, the SEM image of the samples, the CNTs grown on the edge or the surface of graphene effectively connect the isolated lamellae graphene together. The experimental data in Table 1 also shows that the conductivity increases with the Ni(NO3)2concentration. And the reason is that the higher is the concentration of Ni(NO3)2in solution, the larger the density of CNTs on graphene, and the better the connection of the lamellae structure of the graphene by CNTs, the higher is the conductivity.

    Table 1 Electrical conductivity of the samples.

    4 Conclusions

    Using methane as the carbon source, CNTs were grown on the surface and edge of the graphene by CVD at 1 000 ℃. The isolated graphene lamellae can be connected effectively by CNTs to form a spatial network structure CNTs that provides the effective electron transmission channels.

    [1]Matthew J A, Vincent C T, Richard B K. Honeycomb carbon: A review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145.

    [2]Rao C N, Sood A K, Subrahmanyam K S, et al. Graphene: The new two-dimensional nanomaterial[J]. Angewandte Chemie-International Edition, 2009, 48(42): 7752-7777.

    [3]Geim K. Graphene: Status and prospects[J]. Science, 2009, 324(5934): 1530-1534.

    [4]Chen J H, Jang C, Xiao S D, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2[J]. Nature Nanotechnology, 2008, 3(4): 206-209.

    [5]Alexander A B, Suchismita G, Bao W Z, et al. Superior thermal conductivity of single-layer grapheme[J]. Nano Letters, 2008, 8(3): 902-907.

    [6]Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer grapheme[J]. Science, 2008, 321(5887): 385-388.

    [7]Park SJ, Ruoff R S. Chemical methods for the production of graphenes[J]. Nature nanotechnology, 2009, 4(4):217-224.

    [8]Li D , Kaner R B. Graphene-based materials[J]. Science, 2008, 320 (5880): 1170-1171.

    [9]Dikin D A, Tankovich S S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448 (7152) : 457-460.

    [10]Chen C M, Yang Q H, Yang Y G, et al. Self-assembled free-standing graphite oxide membrane[J]. Advanced Materials, 2009, 21(29): 3007-3011.

    [11]Wu Z S, Ren W C, Gao L B, et al. Synthesis of high-quality graphene with a pre-determined number of layers[J]. Carbon, 2009, 47(2): 493-499.

    [12]Du F, Yu D S, Dai L M, et al. Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance[J]. Chemistry of Materials, 2011, 23(21): 4810-4816.

    [13]Lin J, Zhang C G, Yan Z, et al. 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance[J]. Nano lett, 2012, 13(1): 72-78.

    [14]Zhu Y, Li L, Zhang C G, et al. A seamless three-dimensional carbon nanotube graphene hybrid material[J]. Nature communications, 2012, 3(1): 1225-1228.

    [15]Yan Z, Ma L L, Zhu Y, et al. Three-dimensional metal-graphene-nanotube multifunctional hybrid materials[J]. ACS Nano, 2013, 7 (1): 58-64.

    [16]Wang W, Guo S R, Penchev M, et al. Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors[J]. Nano Energy, 2013, 2(2): 294-303.

    [17]Dong X C, Ma Y W, Zhu G Y, et al. Synthesis of graphene-carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing[J]. J Mater Chem, 2012, 22(33): 17044-17048.

    [18]Lee D H, Kim J E, Han T H, et al. Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant grapheme films[J]. Advanced Materials, 2010, 22(11): 1247-1252.

    [19]Krishnamoorthy K, Veerapandian M, Yun K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon, 2013, 53(1): 38-49.

    [20]Yang D X, Velamakanni A, Bozoklu G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy[J]. Carbon, 2009, 47(1): 145-152.

    [21]Gao X F, Jang J, Nagase S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design[J]. The Journal of Physical Chemistry C, 2009, 114(2): 832-842.

    Growth of carbon nanotubes on graphene by chemical vapor deposition

    ZHAO Jian-guo1,2,XING Bao-yan1,2,YANG Hui1,PAN Qi-liang1,2,LI Zuo-peng1,LIU Zhan-jun3

    (1.InstituteofCarbonMaterialsScience,ShanxiDatongUniversity,Datong037009,China;2.SchoolofMaterialsScience,TaiyuanUniversityofTechnology,Taiyuan030024,China;3.KeylaboratoryofCarbonMaterials,InstituteofCoalChemistry,ChineseAcademyofSciences,Taiyuan030001,China)

    Graphite oxide powder impregnated with an Ni(NO3)2solution was freeze-dried, thermally-reduced at 300 ℃ and then chemical-vapor deposition at 1 000 ℃ was used to grow carbon nanotubes (CNTs) on graphene using methane as the carbon source. The morphology and electrical conductivities of the graphite oxide, reduced graphene and CNT-graphene hybrids were characterized. Results indicate that the density of CNTs on the graphene and the electrical conductivity of the hybrids increase with increasing Ni(NO3)2concentration in the solution. Isolated graphene lamellae were connected by CNTs, giving rise to a 3D conducting network that provided conducting channels for electron transport.

    Graphene; Carbon nanotubes; Chemical vapor deposition

    date: 2015-11-30;Reviseddate: 2016-01-08

    National Natural Science Foundation of China (51072105, 21073113); Program for New Century Excellent Talents in University (NCET-11-1033); Natural Science Foundation of Shanxi Province of China (2011011023-2); Youth of Top-notch Innovative Talents in Colleges and Universities in Shanxi province; Leading Talent Emerging Industry in Shanxi Province; Key Programs for Science and Technology Development of Datong (201315, 201422-1, 201422-6).

    LIU Zhan-jun, Professor. E-mail:zjliu@sohu.com

    1007-8827(2016)01-0031-06

    TQ127.1+1

    A

    國家自然科學(xué)基金(51072105, 21073113);教育部新世紀(jì)優(yōu)秀人才支持計劃(NCET-11-1033);山西省基礎(chǔ)研究計劃項目(2011011023-2);山西省高等學(xué)校中青年拔尖創(chuàng)新人才支持計劃;山西省新興產(chǎn)業(yè)領(lǐng)軍人才支持計劃;大同市科技攻關(guān)項目(201315, 201422-1, 201422-6).

    劉占軍,研究員. E-mail: zjliu@sohu.com

    10.1016/S1872-5805(16)60002-1

    English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    猜你喜歡
    碳納米管氣相太原
    太原清廉地圖
    氣相過渡金屬鈦-碳鏈團(tuán)簇的研究
    除夜太原寒甚
    新型釩基催化劑催化降解氣相二噁英
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    聚賴氨酸/多壁碳納米管修飾電極測定大米中的鉛
    預(yù)縮聚反應(yīng)器氣相管“鼓泡”的成因探討
    拓?fù)淙毕輰rmchair型小管徑多壁碳納米管輸運性質(zhì)的影響
    氣相防銹技術(shù)在電器設(shè)備防腐中的應(yīng)用
    功能化多壁碳納米管對L02細(xì)胞的作用
    久久久久网色| 日本午夜av视频| 久久精品久久久久久噜噜老黄| 国产一区二区三区av在线| 欧美精品一区二区免费开放| 亚洲精品视频女| 久久热精品热| 91aial.com中文字幕在线观看| 免费观看在线日韩| 男女无遮挡免费网站观看| 在线观看人妻少妇| videos熟女内射| 丝袜喷水一区| videos熟女内射| 亚洲国产精品国产精品| 成年av动漫网址| 狂野欧美白嫩少妇大欣赏| 久久人人爽人人片av| 色视频www国产| 如何舔出高潮| videos熟女内射| 一个人免费看片子| 国产精品麻豆人妻色哟哟久久| 在线观看一区二区三区激情| 国产免费又黄又爽又色| 欧美97在线视频| 国产免费又黄又爽又色| 人人妻人人看人人澡| 亚洲最大成人中文| 国产熟女欧美一区二区| 亚洲精华国产精华液的使用体验| 国产在线男女| 国产精品99久久久久久久久| 大陆偷拍与自拍| 亚洲av日韩在线播放| av免费观看日本| 色哟哟·www| 国产精品熟女久久久久浪| 又黄又爽又刺激的免费视频.| 黄色日韩在线| 97超视频在线观看视频| 亚洲va在线va天堂va国产| 国产久久久一区二区三区| 国产成人精品福利久久| www.色视频.com| av卡一久久| 中文字幕亚洲精品专区| 看免费成人av毛片| 久久久久久伊人网av| 97热精品久久久久久| 亚洲不卡免费看| 国产精品一区二区三区四区免费观看| 99久久精品热视频| 99久久精品国产国产毛片| 一个人免费看片子| 久久热精品热| 亚洲精品国产成人久久av| 日韩 亚洲 欧美在线| 亚洲丝袜综合中文字幕| 22中文网久久字幕| 91久久精品国产一区二区三区| 水蜜桃什么品种好| 日日摸夜夜添夜夜添av毛片| 亚洲精品,欧美精品| 青春草亚洲视频在线观看| 久久精品夜色国产| 久久亚洲国产成人精品v| 欧美亚洲 丝袜 人妻 在线| 久久久精品94久久精品| 国产亚洲一区二区精品| 国产精品.久久久| 免费播放大片免费观看视频在线观看| 六月丁香七月| 又爽又黄a免费视频| 人体艺术视频欧美日本| 日韩三级伦理在线观看| 亚洲人与动物交配视频| 日韩国内少妇激情av| 少妇人妻一区二区三区视频| 国产精品久久久久久av不卡| av黄色大香蕉| 成年美女黄网站色视频大全免费 | 亚洲av欧美aⅴ国产| 高清av免费在线| 亚洲人与动物交配视频| 免费大片黄手机在线观看| 黄片wwwwww| 国产免费视频播放在线视频| 观看免费一级毛片| freevideosex欧美| 91久久精品国产一区二区成人| 中文字幕免费在线视频6| 大香蕉久久网| 各种免费的搞黄视频| 大香蕉97超碰在线| 日日摸夜夜添夜夜添av毛片| 欧美bdsm另类| 插阴视频在线观看视频| 国产av一区二区精品久久 | 97热精品久久久久久| 又黄又爽又刺激的免费视频.| av在线蜜桃| 有码 亚洲区| 国产精品99久久99久久久不卡 | 久久国产精品男人的天堂亚洲 | 女的被弄到高潮叫床怎么办| 亚洲色图av天堂| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩国产mv在线观看视频 | 18禁在线播放成人免费| 国产久久久一区二区三区| 亚洲电影在线观看av| xxx大片免费视频| 狂野欧美白嫩少妇大欣赏| 尾随美女入室| 美女国产视频在线观看| 国产精品熟女久久久久浪| 欧美变态另类bdsm刘玥| 久久精品国产自在天天线| 精品久久久久久久末码| a级一级毛片免费在线观看| 久久99精品国语久久久| av国产久精品久网站免费入址| av在线老鸭窝| av在线观看视频网站免费| 日本爱情动作片www.在线观看| 99热这里只有精品一区| 高清黄色对白视频在线免费看 | 高清毛片免费看| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品乱久久久久久| 国产中年淑女户外野战色| 不卡视频在线观看欧美| 一级片'在线观看视频| 免费在线观看成人毛片| av天堂中文字幕网| 激情五月婷婷亚洲| 欧美日韩亚洲高清精品| 亚洲第一区二区三区不卡| 麻豆国产97在线/欧美| 99热这里只有是精品在线观看| 国产精品一区二区三区四区免费观看| 日本猛色少妇xxxxx猛交久久| 亚洲欧美中文字幕日韩二区| 伦精品一区二区三区| 国内揄拍国产精品人妻在线| 国内精品宾馆在线| 久久毛片免费看一区二区三区| 街头女战士在线观看网站| 免费观看无遮挡的男女| 99久久精品一区二区三区| 亚洲av中文av极速乱| 黄色怎么调成土黄色| 内地一区二区视频在线| 久久精品人妻少妇| 午夜老司机福利剧场| 午夜免费观看性视频| 日本av免费视频播放| 天天躁日日操中文字幕| a级一级毛片免费在线观看| 国产真实伦视频高清在线观看| 欧美xxxx黑人xx丫x性爽| h视频一区二区三区| 黄片无遮挡物在线观看| 国产亚洲精品久久久com| 久热这里只有精品99| 日本av免费视频播放| 最后的刺客免费高清国语| 人妻 亚洲 视频| 一区二区三区精品91| 国产成人免费无遮挡视频| 国产日韩欧美在线精品| 欧美精品一区二区免费开放| 国产片特级美女逼逼视频| 中国美白少妇内射xxxbb| 最新中文字幕久久久久| 国产黄色视频一区二区在线观看| 大陆偷拍与自拍| 97在线视频观看| 特大巨黑吊av在线直播| 成人毛片a级毛片在线播放| 成人漫画全彩无遮挡| 丝瓜视频免费看黄片| 免费观看av网站的网址| 日本爱情动作片www.在线观看| 丝袜喷水一区| 久久99蜜桃精品久久| 亚洲高清免费不卡视频| 联通29元200g的流量卡| 1000部很黄的大片| 午夜激情久久久久久久| 国产成人免费无遮挡视频| 国产av码专区亚洲av| 亚洲av成人精品一二三区| 中文字幕精品免费在线观看视频 | 欧美人与善性xxx| 国产亚洲5aaaaa淫片| 久久ye,这里只有精品| 青春草国产在线视频| 日韩,欧美,国产一区二区三区| 久久久成人免费电影| 人人妻人人添人人爽欧美一区卜 | 尾随美女入室| 国产精品福利在线免费观看| 欧美一区二区亚洲| 在线亚洲精品国产二区图片欧美 | 少妇人妻精品综合一区二区| 亚洲人成网站在线观看播放| 亚洲欧美日韩无卡精品| 亚洲精品久久午夜乱码| 国产v大片淫在线免费观看| 国产又色又爽无遮挡免| 国产免费福利视频在线观看| 国产精品欧美亚洲77777| 丝袜脚勾引网站| 亚洲精华国产精华液的使用体验| 免费高清在线观看视频在线观看| 亚洲精品色激情综合| 啦啦啦视频在线资源免费观看| 久久久久性生活片| 久久久精品免费免费高清| 99视频精品全部免费 在线| 美女国产视频在线观看| 卡戴珊不雅视频在线播放| 国产中年淑女户外野战色| 国产伦在线观看视频一区| 日日啪夜夜撸| 有码 亚洲区| 99久国产av精品国产电影| 欧美97在线视频| 高清黄色对白视频在线免费看 | 亚洲av电影在线观看一区二区三区| 韩国高清视频一区二区三区| 欧美高清成人免费视频www| 欧美亚洲 丝袜 人妻 在线| 精品久久久精品久久久| 岛国毛片在线播放| 我要看日韩黄色一级片| 在线观看一区二区三区激情| 亚洲国产精品专区欧美| 亚洲精品456在线播放app| 亚洲第一区二区三区不卡| 一区二区三区四区激情视频| 欧美高清成人免费视频www| 亚洲一级一片aⅴ在线观看| 久热久热在线精品观看| 在线看a的网站| 久久韩国三级中文字幕| 人妻 亚洲 视频| 制服丝袜香蕉在线| 欧美 日韩 精品 国产| 美女中出高潮动态图| 22中文网久久字幕| 噜噜噜噜噜久久久久久91| 狂野欧美白嫩少妇大欣赏| 免费看光身美女| 久久久午夜欧美精品| 男女边吃奶边做爰视频| 久久久久网色| 又爽又黄a免费视频| 国产一区二区三区综合在线观看 | 精品亚洲成a人片在线观看 | 国产亚洲91精品色在线| 亚洲国产精品成人久久小说| 国产淫语在线视频| 你懂的网址亚洲精品在线观看| 只有这里有精品99| 国产精品免费大片| 国内精品宾馆在线| 小蜜桃在线观看免费完整版高清| 亚洲av国产av综合av卡| 国产精品一区二区在线不卡| 精品一区二区三区视频在线| 人妻 亚洲 视频| 亚洲精品久久久久久婷婷小说| 视频中文字幕在线观看| 亚洲美女搞黄在线观看| 久久久久国产网址| 在线观看免费日韩欧美大片 | 亚洲av成人精品一区久久| 欧美日韩综合久久久久久| 亚洲美女视频黄频| 午夜福利影视在线免费观看| 欧美 日韩 精品 国产| 亚洲人成网站在线观看播放| 91午夜精品亚洲一区二区三区| 黑人猛操日本美女一级片| 国产精品一区www在线观看| h视频一区二区三区| 国产精品国产三级专区第一集| 成人影院久久| 免费看av在线观看网站| 成人免费观看视频高清| 亚洲美女视频黄频| 中文字幕精品免费在线观看视频 | 永久网站在线| 国产精品免费大片| 成年免费大片在线观看| 久久久久国产网址| 日日撸夜夜添| 麻豆成人午夜福利视频| 色5月婷婷丁香| 在线观看一区二区三区| 国产老妇伦熟女老妇高清| 最近中文字幕2019免费版| 亚洲aⅴ乱码一区二区在线播放| 中文资源天堂在线| 国产精品三级大全| a级一级毛片免费在线观看| xxx大片免费视频| 极品少妇高潮喷水抽搐| 少妇被粗大猛烈的视频| 嘟嘟电影网在线观看| 这个男人来自地球电影免费观看 | 丰满少妇做爰视频| 国产黄片美女视频| 久久韩国三级中文字幕| 亚洲经典国产精华液单| 一区二区三区免费毛片| 国产av精品麻豆| 最近中文字幕高清免费大全6| 蜜桃在线观看..| 精品午夜福利在线看| 亚洲精品一区蜜桃| www.色视频.com| 中文字幕免费在线视频6| 亚洲熟女精品中文字幕| 如何舔出高潮| 又大又黄又爽视频免费| 中文字幕免费在线视频6| 亚洲精品日韩av片在线观看| 国产精品蜜桃在线观看| 久久国产乱子免费精品| 久热久热在线精品观看| 3wmmmm亚洲av在线观看| 成年av动漫网址| 欧美日韩精品成人综合77777| 建设人人有责人人尽责人人享有的 | 网址你懂的国产日韩在线| 青青草视频在线视频观看| kizo精华| 一级二级三级毛片免费看| 欧美高清成人免费视频www| 黑人猛操日本美女一级片| 久久精品熟女亚洲av麻豆精品| 中国三级夫妇交换| tube8黄色片| 国产精品一及| 国产日韩欧美在线精品| 少妇的逼好多水| 联通29元200g的流量卡| 97在线视频观看| 99久久精品一区二区三区| 国产男女内射视频| 午夜视频国产福利| 亚洲av电影在线观看一区二区三区| 午夜免费男女啪啪视频观看| 国产精品爽爽va在线观看网站| 久热这里只有精品99| 有码 亚洲区| 秋霞伦理黄片| 伦理电影免费视频| 人妻一区二区av| 久久久久人妻精品一区果冻| 伦精品一区二区三区| 在线观看美女被高潮喷水网站| 国产伦理片在线播放av一区| 久久综合国产亚洲精品| 看免费成人av毛片| 大片免费播放器 马上看| 人人妻人人澡人人爽人人夜夜| 人人妻人人添人人爽欧美一区卜 | 欧美少妇被猛烈插入视频| 黄色欧美视频在线观看| 亚洲内射少妇av| 秋霞伦理黄片| 国产精品精品国产色婷婷| 蜜桃在线观看..| 久久影院123| 人人妻人人爽人人添夜夜欢视频 | 一本久久精品| 日韩国内少妇激情av| 亚洲色图综合在线观看| 夫妻性生交免费视频一级片| 亚洲va在线va天堂va国产| 你懂的网址亚洲精品在线观看| 夜夜骑夜夜射夜夜干| 日本-黄色视频高清免费观看| 亚洲欧美清纯卡通| 两个人的视频大全免费| 一级黄片播放器| 亚洲精品,欧美精品| 热re99久久精品国产66热6| 国产真实伦视频高清在线观看| 国产精品久久久久久久久免| 精品国产三级普通话版| 免费黄频网站在线观看国产| 各种免费的搞黄视频| 精品一区二区三卡| 国产高清国产精品国产三级 | 能在线免费看毛片的网站| 高清午夜精品一区二区三区| 中文乱码字字幕精品一区二区三区| 国产免费一级a男人的天堂| 丝袜脚勾引网站| 午夜日本视频在线| 久热久热在线精品观看| 少妇人妻久久综合中文| 欧美高清性xxxxhd video| 九九久久精品国产亚洲av麻豆| 99热这里只有精品一区| 国产一区二区三区av在线| 久久久久国产精品人妻一区二区| 亚洲中文av在线| av免费在线看不卡| 欧美3d第一页| 三级国产精品欧美在线观看| 精品少妇久久久久久888优播| 久久国产精品大桥未久av | 亚洲av成人精品一二三区| 国产黄色视频一区二区在线观看| 色网站视频免费| av国产精品久久久久影院| 九九爱精品视频在线观看| 亚洲av国产av综合av卡| 亚洲国产最新在线播放| 亚洲在久久综合| 久久久久视频综合| 午夜精品国产一区二区电影| 久久99蜜桃精品久久| 欧美xxxx性猛交bbbb| 欧美激情国产日韩精品一区| 久久久国产一区二区| 久久久久久久大尺度免费视频| 婷婷色麻豆天堂久久| 一区二区三区免费毛片| 一个人看视频在线观看www免费| 日韩不卡一区二区三区视频在线| 在线亚洲精品国产二区图片欧美 | 欧美 日韩 精品 国产| 大话2 男鬼变身卡| 欧美国产精品一级二级三级 | h视频一区二区三区| 大码成人一级视频| 中文字幕人妻熟人妻熟丝袜美| 精品国产乱码久久久久久小说| 久久人人爽人人片av| 永久免费av网站大全| 一本一本综合久久| 亚洲国产高清在线一区二区三| 日韩欧美精品免费久久| 久久亚洲国产成人精品v| 久久久午夜欧美精品| 国产精品熟女久久久久浪| 亚洲色图av天堂| 青春草亚洲视频在线观看| 国产色爽女视频免费观看| 久久99蜜桃精品久久| a 毛片基地| 精品酒店卫生间| 日本爱情动作片www.在线观看| 人妻 亚洲 视频| 日韩中文字幕视频在线看片 | 日韩中字成人| 日本欧美国产在线视频| 日韩在线高清观看一区二区三区| 国产男人的电影天堂91| 新久久久久国产一级毛片| 日韩人妻高清精品专区| 国产精品熟女久久久久浪| 国产探花极品一区二区| 一级毛片久久久久久久久女| 欧美高清成人免费视频www| 欧美国产精品一级二级三级 | 亚洲欧美日韩东京热| 最后的刺客免费高清国语| 久久热精品热| 纯流量卡能插随身wifi吗| 九九久久精品国产亚洲av麻豆| 日韩视频在线欧美| 日韩成人av中文字幕在线观看| 亚洲成人av在线免费| 黄色视频在线播放观看不卡| 久久国产乱子免费精品| 又黄又爽又刺激的免费视频.| 精品一区在线观看国产| 九草在线视频观看| 亚洲精品日本国产第一区| 亚洲av中文av极速乱| 国产91av在线免费观看| 国产一区亚洲一区在线观看| 国产成人一区二区在线| 欧美成人a在线观看| 永久网站在线| 亚洲av综合色区一区| 国产精品一及| 中国美白少妇内射xxxbb| 亚洲高清免费不卡视频| 日韩av不卡免费在线播放| 亚洲av不卡在线观看| 国产精品人妻久久久影院| 人妻一区二区av| 日韩欧美精品免费久久| 2022亚洲国产成人精品| 久久精品国产亚洲av天美| 欧美精品国产亚洲| 亚洲最大成人中文| 成年人午夜在线观看视频| 免费人妻精品一区二区三区视频| 直男gayav资源| 欧美另类一区| 国产精品一区二区在线观看99| 我要看黄色一级片免费的| 国产黄频视频在线观看| 老女人水多毛片| 在线观看国产h片| 亚洲人成网站在线观看播放| 国产淫语在线视频| 国产国拍精品亚洲av在线观看| 亚洲久久久国产精品| 美女cb高潮喷水在线观看| 亚洲av中文av极速乱| 国产久久久一区二区三区| 精品久久国产蜜桃| 伦理电影大哥的女人| 久久久色成人| 日本av免费视频播放| 国产精品麻豆人妻色哟哟久久| 偷拍熟女少妇极品色| 你懂的网址亚洲精品在线观看| 久久精品国产亚洲网站| 国产成人免费观看mmmm| 日本欧美视频一区| 免费久久久久久久精品成人欧美视频 | 18禁裸乳无遮挡动漫免费视频| 久久久久久久亚洲中文字幕| 久久久久视频综合| 免费少妇av软件| 亚洲国产欧美人成| 久久亚洲国产成人精品v| 深爱激情五月婷婷| 国产伦在线观看视频一区| 观看美女的网站| www.av在线官网国产| 女人十人毛片免费观看3o分钟| 精品酒店卫生间| 亚洲国产最新在线播放| av.在线天堂| 男人和女人高潮做爰伦理| 亚洲精品自拍成人| 亚洲精品中文字幕在线视频 | 精品一区二区三卡| 一级毛片 在线播放| 黄色欧美视频在线观看| 国产亚洲最大av| 国产成人freesex在线| 18禁在线无遮挡免费观看视频| 国产男女超爽视频在线观看| 欧美xxxx黑人xx丫x性爽| 三级国产精品欧美在线观看| 亚洲欧美日韩另类电影网站 | 精品午夜福利在线看| 日韩欧美一区视频在线观看 | 舔av片在线| 男人添女人高潮全过程视频| 国产成人91sexporn| 久久久久久久久久久丰满| 99久久精品热视频| 国产大屁股一区二区在线视频| 一级片'在线观看视频| 亚洲精华国产精华液的使用体验| 综合色丁香网| 亚洲经典国产精华液单| 日韩免费高清中文字幕av| 成人毛片a级毛片在线播放| 久久久久性生活片| 国产一区二区在线观看日韩| 精品久久久久久久末码| 熟女电影av网| 亚洲国产色片| 成人毛片a级毛片在线播放| 色视频www国产| 精品久久久久久电影网| 亚洲三级黄色毛片| 成人18禁高潮啪啪吃奶动态图 | 校园人妻丝袜中文字幕| 久久女婷五月综合色啪小说| 国产片特级美女逼逼视频| 蜜臀久久99精品久久宅男| 如何舔出高潮| 亚州av有码| 久久久精品免费免费高清| 午夜免费鲁丝| 插逼视频在线观看| 在线免费观看不下载黄p国产| 美女主播在线视频| 少妇精品久久久久久久| 美女xxoo啪啪120秒动态图| 国产av码专区亚洲av| 99热这里只有是精品在线观看| 菩萨蛮人人尽说江南好唐韦庄| 青春草视频在线免费观看| 视频中文字幕在线观看| 亚洲色图av天堂| 亚洲四区av| 只有这里有精品99| 少妇精品久久久久久久| 久久国产亚洲av麻豆专区| 免费人妻精品一区二区三区视频| 欧美97在线视频| 国产免费一区二区三区四区乱码| 深夜a级毛片| 少妇的逼水好多| 亚洲四区av| 日韩制服骚丝袜av|