• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Update Logic for Games with Angry Players*

    2016-10-31 01:50:49FanHuang
    邏輯學(xué)研究 2016年3期

    Fan Huang

    Institute of Logic and Cognition,Sun Yat-sen University

    wong.vanz@gmail.com

    Xuefeng Wen

    Institute of Logic and Cognition,Sun Yat-sen University

    wxflogic@gmail.com

    An Update Logic for Games with Angry Players*

    Fan Huang

    Institute of Logic and Cognition,Sun Yat-sen University

    wong.vanz@gmail.com

    Xuefeng Wen

    Institute of Logic and Cognition,Sun Yat-sen University

    wxflogic@gmail.com

    .Angry players in games often make aggressive decisions to minimize their opponents'payoffs even if they are fully aware that their actions are going against their personal interest.We model such behaviour pattern with angry update operators in modal logic.Instead of modifying the angry player's preference for update,we restrict her strategic accessibility relation so that only those actions leading to her opponent's lowest payoff are kept.We construct an axiomatic system for the logic and prove its soundness and weak completeness.Finally,we apply the logic to ultimatum games in which the responder is angry.

    1 Introduction

    This paper focuses on the emotion of anger,and develops a modal logic to characterise the effect of anger on human behaviour in sequential games.Human emotion isnotoftenseenasapropersubjectforlogicalstudy(foranexception,see[1]),mainly because most emotions have complex cause and unstable consequence.This paper thereby focuses on the emotion of anger,which is one of the most sustainedly investigated emotions(for a review,see[2]).Anger,unlike many other emotions such as envy or pride,has relatively stable behaviour pattern,especially in the context of games([11]).One famous example is the ultimatum game,where in response to unfair treatment,angry responders tent to reject proposals that they can certainly benefit from[7,8].Such aggressive behaviour is often treated as the consequence of anger([2]),which regardless of the angry players'own costs minimises their opponents' payoffs.We model this relatively stable consequence of anger in games using modal logic with update operators.

    When a player is angry and intends to minimise her opponents'payoff,she will do that even when she is fully aware that such choice may well be going against her own interest.This property of anger in games requires two sets of accessibilityrelations between possible states in our model of modal logic,one for players'preferences,and the other for players'strategic choice.These two sets of relations allow us to employ an angry update of models,which restricts the angry player's strategic choice while keeping her preference.Particularly,an angry player's strategic choice is so restricted after an angry update that only those strategies that give her opponent the lowest payoff survive,which means that all states that give the opponent a higher payoff is not reachable by the angry player's strategic action.

    Angry update changes players'choice in a different way from previous works of modal logic,in which players'preferences were overwritten(for an example,see[10]).First,since most actions are not strategically available after angry updates,the space for the angry player to manipulate the outcome by adopting other kinds of rationality(e.g.,by maximising the payoff of a coalition)is extremely restricted. Second,angry updates keep all the players'preference relations,which means that the model can be updated again in a reverse direction so that all the choices become available again.This robustness of preference guarantees that if a player is able to control her emotion of anger before making a decision,she will be able to act in a normal way.

    The rest of the paper is organised as follows.Section 2 gives a modal logic for modeling sequential games with anger.We first propose the semantics of our logic,modeling anger as update operators.Then we give its axiomatic system and prove the soundness and completeness of our logic with respect to its semantics.Section 3 shows what we can say by applying our logic to ultimatum games in which the responder is angry.Section 4 concludes the paper and suggests some future work.

    2 Modal Logic for Sequential Games with Anger

    First,we give the definition of sequential games.

    Definition 1 AsequentialgameisatupleG=(W,R,N,Pl,{ρi}i∈N,wroot),where

    1.W is the set of possible states in the game;

    2.R is a binary relation on W,and(W,R)is a directed,irreflexive,and nontransitive tree with wrootas the root;

    3.N is the set of players;

    4.Pl:W→N assigns to each action point one player,who makes decision at that point;and

    5.ρi:W→N assigns to player i a payoff at each possible state in W,for each i∈N.Specially,we require that for all w∈W and for all i∈N,min{ρi(u)|u∈R(w)}exists.

    In this definition,wrootdenotes the beginning of the game G,which links to all states in W in finite steps via different choices of different players.It should benoticed that R is not transitive in our model.It means that instead of the concept of strategy,which in the context of sequential games normally denotes a whole set of choices a player makes in a game,R only models players'particular actions at certain stages of the game.This deviation from the traditional setting is in line with our definition of payoffs.

    Anger is regarded as one of the visceral factors[6],which generate behaviour that is short-sighted and beyond control[5].According to[5],visceral factors narrow people's attention of time towards the present,which means that angry people,when makingdecisions,arelikelytoignorelongtermpayoffandinsteadfocusonthepayoff that is immediately reachable.To model angry players'short-sighted decisions,we needplayers'short-termpayoff.Unlikethetraditionaldefinitionofsequentialgames,where players are only assigned payoffs to possible outcomes[9],in our model players'payoffs are assigned to every node in the game tree.This definition of payoffs is in line with previous works in modal logic for games(for an example,see[4]).Our assumptionisthatwhenplayersaresoangrythattheybecomeshort-sighted,theyonly focus on their opponents'payoffs that can be minimised by their next decision.Since the target player's minimal payoff is angry player's reference,we specially require the existence of minimal payoff for all the players within every stage.

    Given a finite set of players Ag,a non-empty set of actions for all players Act=∪i∈AgActi,where Actiis the set of i's actions,and a countable set of atomic propositions At={p,q,r,...},the language LULA(At,Ag,Act)of our logic is generated by the following BNF:

    1.〈R〉φ reads“after one step of move,it is possible that φ is true”.

    2.〈R-1〉φ reads“φ is true in the previous step”.

    3.〈α〉φ reads“after choosing action α,φ is true”.

    4.〈α-1〉φ reads“before choosing action α,φ is true”.

    6.[Angry(α)]φ reads“when the player,who is making decision at the resulting state of α,is angry because of α,φ is true”.

    Definition 2 Given a sequential game G=(W,R,N,Pl,{ρi}i∈N,wroot),a model derived from G for LULAis MG=〈W,R,{Pi}i∈Ag,S,V〉,where

    2.S:Act→2Rmaps each action to a set of pairs in R,such that if α∈Acti,S(α)={(w1,w2)∈R|Pl(w1)=i};and

    3.V:At→?(W)is a valuation.

    We write R(w)for the set of all R-successors of w,i.e.,R(w)={w′∈W|Rww′}. Similarly,we write Pi(w)for the set of all Pi-successors of w,i.e.,Pi(w)={w′∈W|Piww′}.Note that if w′∈Pi(w)then there exits w0∈W such that w,w′∈R(w0).

    We denote by Msg the class of all models derived from all sequential games. For any model M=〈W,R,P,S,V〉in Msg,it is easy to see that for all w∈W,Piis asymmetric and its complement is transitive on R(w),i.e.,for all x,y,z∈R(w),?Pixy and?Piyz implies?Pixz.Moreover,(W,R)is a directed,irreflexive,and non-transitive tree,i.e.,

    1.there exists wroot∈W such that all other w∈W can be reached from wrootby finite steps of R;

    2.every w∈W except wroothas a unique R-predecessor;and

    3.R is acyclic.

    It can be verified that a model M=〈W,R,{Pi}i∈Ag,S,V〉satisfies the above properties if and only if it is a derived model from a sequential game.

    Definition 3 Given a model M=〈W,R,{Pi}i∈Ag,S,V〉in Msg,the truth conditions for LULAare defined as follows:

    Definition 4 In M=〈W,R,{Pi}i∈Ag,S,V〉,if the action α(α∈Actj)makes the player moving on its resulting state angry,then the model M updates to MAngry(α)=〈W,R′,{Pi}i∈Ag,S′,V〉,where R′and S′are defined as follows:

    The update of our model means that if Player j's action α makes the following player i angry,then Player i's action set is restricted.While Player i's action set remains the same for the historic choices before α,her anger restricts her action set just following α,and the left over actions are those most unwanted by Player j.

    Definition 5 We say that φ is valid in Msg,denoted?Msgφ,if for all M in Msg,for all w in M,M,w|=φ.

    Theorem 1 For α∈Actj,the following reduction axioms are valid.

    Proof 1. M,w |= [Angry(α)]p ?? MAngry(α),w |= p ?? w ∈ V (p) ??M,w|=p.

    2.M,w|=[Angry(α)]?φ??MAngry(α),w|=?φ??MAngry(α),w/|=φ??M,w/|=[Angry(α)]φ??M,w|=?[Angry(α)]φ.

    3.M,w|=[Angry(α)](φ∧ψ)??MAngry(α),w|=φ∧ψ??MAngry(α),w|=φ and MAngry(α),w|=ψ??M,w|=[Angry(α)]φ and M,w|=[Angry(α)]ψ??M,w|=[Angry(α)]φ∧[Angry(α)]ψ.

    4.M,w|=[Angry(α)]〈R〉φ??MAngry(α),w|=〈R〉φ??there is u∈W such that u∈R′(w),and MAngry(α),u|=φ.There are two cases here:

    ·M,w|=?〈α-1〉?,then we have an equivalent relation with:there exists u∈R(w),M,u|=[Angry(α)]φ??M,w|=?〈α-1〉?∧〈R〉[Angry(α)]φ;or

    5.M,w|=[Angry(α)]〈R-1〉φ??MAngry(α),w|=〈R-1〉φ??there is u∈W such that w∈R′(u),and MAngry(α),u|=φ.There are two cases here:

    ·M,u|=?〈α-1〉?,then we have an equivalent relation with:there exists u∈W,w∈R(u)and M,u|=[Angry(α)]φ??M,w|=〈R-1〉(?〈α-1〉?∧[Angry(α)]φ);or

    6&7.The proof for the reduction of[Angry(α)]〈β〉φ is similar to the proof for[Angry(α)]〈R〉φ,and the proof of[Angry(α)]〈β-1〉φ is similar to the proof for[Angry(α)]〈R-1〉φ.

    ·M,w0|=?〈α-1〉?,then we have an equivalent relation with:

    M,u|=[Angry(α)]φ??M,w|=〈R-1〉?〈α-1〉?∧〈i〉[Angry(α)]φ;

    It follows from Theorem 1 that every formula in LULAcan be reduced to a formula without update operators.

    Definition 6 The Update Logic of Anger,denoted ULA,is given by the following axiomatic system,in addition to the above reduction axioms:

    1.K and GEN(generalization)for all modalities,MP(modus ponens),and US(uniform substitution);

    Theorem 2 ULA is sound with respect to Msg,i.e.,for all φ∈LULA,?ULAφ implies?Msgφ.

    Proof It suffices to verify that all axioms of ULA are valid in Msg and all rules of ULA preserve validity.The only interesting cases are those axioms from item 2 to 7 above.Given any model M=〈W,R,P,S,V〉in Msg,since S is a mapping into R,it is easy to see that〈α〉p→〈R〉p and〈α-1〉p→〈R-1〉p are true in M. Since R-1is the converse of R,it is easy to see that both p→[R]〈R-1〉p,and p→[R-1]〈R〉p are valid.The validity of p→[α]〈α-1〉p and p→[α-1]〈α〉p is analogous.The fact that every w∈W has at most 1 R-predecessor guarantees the validity of〈R-1〉p→[R-1]p and〈α-1〉p→[α-1]p.

    To prove the completeness of ULA,we define the canonical model for ULA as follows.

    Definition 7 The canonical model for ULA is

    where

    1.Wcis the set of all maximal consistent sets(MCSs)of ULA;

    2.for all u,v∈Wc,v∈Rc(u)if for all φ,φ∈v implies〈R〉φ∈u;

    3.for all u,v∈Wc,u∈R-1,c(v)if for all φ,φ∈u implies〈R-1〉φ∈v;

    5.for all α∈Act and u,v∈Wc,(u,v)∈Sc(α)if for all φ,φ∈v implies〈α〉φ∈u;

    6.for all α∈Act and u,v∈Wc,(v,u)∈S-1,c(α)if for all φ,φ∈v implies〈α-1〉φ∈u;and

    7.Vc(p)={w∈Wc|p∈w}.

    Proposition 1 For all u,v in the canonical model Mc,we have v∈Rc(u)iff u∈R-1,c(v).

    Proof Suppose φ∈u,and v∈Rc(u).By the axiom p→[R]〈R-1〉p,we have[R]〈R-1〉φ∈u.By v∈Rc(u),it follows that〈R-1〉φ∈v,which in turn implies u∈R-1,c(v).The proof of the other direction is symmetric.□

    A similar proposition for the relationship between Scand S-1,ccan be proved analogously.

    Definition 8 A network is a tupple N=(N,R,{Pi}i∈Ag,S,ν),where

    4.ν is a labelling function mapping each point in N to a MCS.

    Definition 9 A network N=(N,R,{Pi}i∈Ag,S,ν)is coherent if:

    1.(N,R)forms a directed,irreflexive,and non-transitive tree;

    2.for all s,t∈N,t∈R(s)implies ν(t)∈Rc(ν(s));

    3.for all α∈Act and s,t∈N,(s,t)∈S(α)implies(ν(s),ν(t))∈Sc(α);

    (c)for all w∈N,Piis asymmetric on R(w),and for all x,y,z∈R(w),?Pixy and?Piyz implies?Pixz.

    For proving weak completeness of ULA,we define the saturation of a network for any formula φ∈LULA.For any φ∈LULA,let Sub(φ)be the set of all subformulas of φ.

    Definition10 Givenanyformulaφ0∈LULA,anetworkN=(N,R,{Pi}i∈Ag,S,ν)is saturated for φ0if:

    1.for all〈R〉φ∈Sub(φ0),if〈R〉φ∈ν(u),then there exists v∈N such that φ∈ν(v)and v∈R(u);

    2.for all〈R-1〉φ∈Sub(φ0),if〈R-1〉φ∈ν(u),then there exists v∈N such that φ∈ν(v)and u∈R(v);

    3.for all〈α〉φ∈Sub(φ0),if〈α〉φ∈ν(u),then there exists v∈N such that φ∈ν(v)and(u,v)∈S(α);

    4.for all〈α-1〉φ∈Sub(φ0),if〈α-1〉φ∈ν(u),then there exists v∈N such that φ∈ν(v)and(v,u)∈S(α);and

    A network is perfect for φ0,if it is both saturated for φ0and coherent.

    Definition 11 Given any network N=(N,R,{Pi}i∈Ag,S,ν),the induced model of N is MN=(N,R,P,S,VN),where for w∈N,

    Lemma 1(Truth Lemma)For any induced model MNof a perfect network N for φ0,for all φ∈Sub(φ0),we have:

    Proof We prove by induction on φ.

    2.The case when φ is?ψ or ψ1∧ψ2is trivial.

    For the last equivalence relation,the left to right direction is established by the coherence of N,and that N is saturated for φ0proves the right to left direction.

    Definition 12 For any network N=(N,R,P,S,ν),we say that N has a defect if at least one of the following cases is true:

    1.(S1-defects)there exists s∈N such that there exists〈R〉φ∈ν(s)but there does not exists t∈N such that t∈R(s)and φ∈ν(t);

    2.(S2-defects)there exists s∈N such that there exists〈R-1〉φ∈ν(s)but there does not exists t∈N such that s∈R(t)and φ∈ν(t);

    3.(S3-defects)there exists α∈Act and s∈N such that〈α〉φ∈ν(s)but there does not exists t∈N such that(s,t)∈S(α)and φ∈ν(t);

    4.(S4-defects)there exists α∈Act and s∈N such that〈α-1〉φ∈ν(s)but there does not exists t∈N such that(t,s)∈S(α)and φ∈ν(t);

    Lemma 2(Repair Lemma)For any defect of a finite coherent network N,there is a finite coherent extension N′lacking this defect.

    Since t/∈N,to show that(N′,R′)forms a directed,irreflexive,and non-transitive tree it is sufficient to show that there does not exists t′∈N such that s∈R(t′)and that t is the root of(N′,R′).Given that〈R-1〉φ∈ν(s),by the axiom〈R-1〉p→[R-1]p,we have[R-1]φ∈ν(s).It means that if there exists t′∈N such that s∈R(t′),then it must be φ∈ν(t′).But this is contradictory to the existence of the S2-defect.

    Since(N,R)is a tree and s∈N does not have a predecessor,it is easy to see that s is the root of(N,R).It means that s links to all nodes in N via R,and since t is the only point in N′that links to s via R′,t is the only point that links to all the points in N′via R′.Hence,t is the root of(N′,R′).Other conditions for coherence is trivial.

    With the axiom of〈α〉p→〈R〉φ,it is easy to show that ν(t)∈Rc(ν(s)).The proof of other coherence conditions is similar to that in S1-defects.

    With the axiom of〈α-1〉p→〈R-1〉φ,it is easy to show that ν(s)∈Rc(ν(t)).The proof of other coherence conditions is similar to the proof for repairing S2-defects.

    Proposition 2 shows that Σ∈Rc(ν′(w)),and the proof of other coherence conditions is similar to that in repairing S1-defects.□

    Theorem 3 ULA is weakly complete with respect to Msg,i.e.,for all φ∈LULA,?Msgφ implies?ULAφ.

    Proof Choose some set S={si|i∈N},and given any ULA-consistent formula φ0,enumerateallpotentialdefectsforφ0withSub(φ0)×S.ByLindenbaum'slemma we know that φ0can be extended to a maximal ULA-consistent set Σ+.Define N0=({s0},?,?,?,?,{(s0,Σ+)}),which is obviously finite and coherent.Suppose for n≥0,Nn=(Nn,Rn,Sn,{Pni}i∈Ag,Sn,νn)is finite and coherent,and D is the defectofNnthatisminimalinourenumeration.ByRepairLemma,thereexistsNn+1extending N lacks the defect of D.Let N=(N,R,{Pi}i∈Ag,S,ν)be defined as follows:

    Since Sub(φ0)is finite,we can have a perfect network for φ0within finite steps.Let MNbe the induced model of N,then MNis in Msg.By Truth Lemma,we have MN,s0|=φ0.□

    We are going to show that ULA is not strongly complete.

    Proposition 5ULA is not strongly complete with respect to Msg,i.e.,there exists a set of ULA-consistent formulas Γ such that there does not exist any M∈Msg,and any w∈M such that M,w|=Γ.

    Proof Consider Γ={φn|n∈ω,and φn=〈R-1〉φn-1,and φ0=?}.To show that Γ is consistent,it is sufficient to show that any finite subset Ψ of Γ is consistent.For any Ψ,there exists m∈ω such that Ψ?{φn|n≤m,and φn=〈R-1〉φn-1,and φ0=?}=Φ,and the consistency of Φ shows that Γ is consistent. Letbe the conjunction of all formulas in Φ.We are going to show that?is not valid,i.e.,there exists M∈Msg,and w∈M such that M,w|=.

    LetM=〈W,R,?,?,?〉,whereW={w1,...,wm},andR={(wn-1,wn)| n≤m}.It is easy to see that M∈Msg,and M,wm?.

    Now,suppose ULA is strongly complete with respect to Msg,i.e.,there exists M′∈Msg,and w∈M′such that M′,w|=Γ.But this is impossible,because by M′,w|=Γ,wecaninductivelydefineaninfiniteR-1pathstartingfromw.However,sinceM′∈Msg,theremustexistsarootinM′andthusM′cannotcontainaninfinite R-1path.Hence,ULA is not strongly complete with respect to Msg.□

    3 Application

    In this section,we apply our logic to the context of ultimatum games.We are going to show that if the responder is angry towards a proposal,then in most cases she will reject the proposal and both players will get nothing from the game,but there is also one case where the responder may accept the proposal.

    An ultimatum game is a two-player game where the proposer first gives a proposalonthesharingofacertainamountofmoney,thentheresponderdecideswhether to accept this proposal or not.A proposal contains a natural number n(n≤100),which indicates the percentage of money the proposer is sharing to the responder. If the responder accepts a proposal of n,she receives n%of the money while the proposer gets the rest(100-n)%.If the responder rejects a proposal,then both players receive nothing from the game.A graphic presentation of the ultimatum game is shown in Figure 1.

    Our modal language for the ultimatum game is L(At,Ag,Act),where At={pn|n∈[0,100]}∪{prej},Ag={Pro,Res},and Act={propose,n|n∈[0,100]}∪{acc,rej}.The primitive formulas pnis the payoff profile of((100-n)%,n%),and prejequals(0,0).The proposer and the responder of the game aredenoted by Pro and Res in Ag,respectively.The action of“propose,n”means the proposer proposes n%of share for the responder,and“acc”and“rej”refer to the responder's action of“accept”and“reject”,respectively.Then given any ultimatum game G=〈W,R,N,Pl,{ρi}i∈N,wroot〉,we can generate our model MG=〈W,R,{Pi}i∈Ag,S,V〉.

    Figure 1:Ultimatum Game Before Angry Update

    Figure 2:Ultimatum Game After Angry Update(n∈[0,99])

    Then,suppose the responder is angry towards a proposal of n%(0≤n<100). According to Definition 4,the angry update restricts the responder's action set according to the proposer's preference,and only the action leading to lowest payoffs for the proposer remains.Thus,in the case of 0≤n<100,the only action left after the angry update is“Reject”.Because M,wn|=[acc]⊥in Figure 2,we have M,wroot|=〈propose,n〉[Angry(propose,n)][acc]⊥.

    Summarising the above discussion,we have

    1.for n=0,M,wroot|=〈propose,n〉[Angry(propose,n)][acc]⊥,

    2.for 1≤n≤99,

    3.for n=100,

    4 Conclusion

    In this paper,we model angry players'short-sighted and irrational behaviour in sequential games by a modal logic with update operators.When a player gets angry towardsachoiceofanotherplayer,ourmodelupdatessothatonlythoseactionswitha most unwanted outcome of the targeted player remain available for the angry player. We construct an axiomatic system for the logic and prove its soundness and weak completeness.Finally,we apply the logic to ultimatum games in which the responder is angry.Since angry updates do not force an action in some cases,it would be interesting to see the combination of different kinds of rationalities[3]and preference updates[10]with angry updates in the future.

    References

    [1]C.Adam,A.Herzig and D.Longin,2009,“A logical formalization of the occ theory of emotions”,Synthese,168(2):201-248.

    [2]J.R.Averill,1982,Anger and aggression:An essay on emotion,New York:Springer.

    [3]J.Cui and X.Luo,2013,“A unified epistemic analysis of iterated elimination algorithmsfromregretviewpoint”,Logic,Rationality,andInteraction,pp.82-95,Springer.

    [4]P.Harrenstein,W.Van der Hoek,J.-J.Meyer and C.Witteveen,2003,“A modal characterization of nash equilibrium”,F(xiàn)undamenta Informaticae,57(2-4):281-321.

    [5]G.Loewenstein,1996,“Out of control:Visceral influences on behavior”,Organizational Behavior and Human Decision Processes,65(3):272-292.

    [6]G.Loewenstein,2000,“Emotions in economic theory and economic behavior”,The American Economic Review,90(2):426-432.

    [7]M.M.Pillutla and J.K.Murnighan,1996,“Unfairness,anger,and spite:Emotional rejections of ultimatum offers”,Organizational Behavior and Human Decision Processes,68(3):208-224.

    [8]A.G.Sanfey,J.K.Rilling,J.A.Aronson,L.E.Nystrom and J.D.Cohen,2003,“The neural basis of economic decision-making in the ultimatum game”,Science,300(5626):1755-1758.

    [9]R.Selten,1975,“Reexamination of the perfectness concept for equilibrium points in extensive games”,International Journal of Game Theory,4(1):25-55.

    [10]J.Van Benthem,2007,“Dynamic logic for belief revision”,Journal of Applied Nonclassical Logics,17(2):129-155.

    [11]G.A.Van Kleef,C.K.De Dreu and A.S.Manstead,2004,“The interpersonal effects ofangerandhappinessinnegotiations”,JournalofPersonalityandSocialPsychology,86(1):57.

    2016-05-12

    *The second author was supported by the Fundamental Research Funds for the Central Universities(No.13WKPY71).

    日韩av在线免费看完整版不卡| 免费一级毛片在线播放高清视频| 久久久色成人| 亚洲国产欧美人成| 亚洲av中文av极速乱| 日韩在线高清观看一区二区三区| 国产v大片淫在线免费观看| 少妇猛男粗大的猛烈进出视频 | 国产老妇伦熟女老妇高清| 成年女人永久免费观看视频| 只有这里有精品99| 国产成人freesex在线| 大又大粗又爽又黄少妇毛片口| 丰满少妇做爰视频| 中文精品一卡2卡3卡4更新| 91午夜精品亚洲一区二区三区| 国产免费男女视频| 亚洲美女搞黄在线观看| 国产精品嫩草影院av在线观看| 久久综合国产亚洲精品| 综合色av麻豆| 国产精品av视频在线免费观看| 2021天堂中文幕一二区在线观| 午夜日本视频在线| 亚洲av中文av极速乱| 蜜臀久久99精品久久宅男| 黄色一级大片看看| 又爽又黄a免费视频| 水蜜桃什么品种好| 亚洲高清免费不卡视频| 亚洲欧美中文字幕日韩二区| 亚洲av免费在线观看| 国产女主播在线喷水免费视频网站 | 午夜福利在线在线| 欧美激情久久久久久爽电影| 老师上课跳d突然被开到最大视频| 最近的中文字幕免费完整| 久久6这里有精品| 国产欧美另类精品又又久久亚洲欧美| 日韩av在线免费看完整版不卡| .国产精品久久| av专区在线播放| 中文字幕制服av| 在线免费十八禁| 精品免费久久久久久久清纯| 搡女人真爽免费视频火全软件| 午夜福利网站1000一区二区三区| 国产探花极品一区二区| 久久久精品大字幕| 亚洲人成网站在线播| 亚洲国产精品成人久久小说| 嫩草影院入口| 久久久久久大精品| 热99在线观看视频| 国产三级中文精品| 免费av不卡在线播放| 亚洲av中文字字幕乱码综合| 亚洲精品乱码久久久v下载方式| 国产乱来视频区| 禁无遮挡网站| 丝袜美腿在线中文| 综合色av麻豆| 五月玫瑰六月丁香| 精品久久久久久久久亚洲| 边亲边吃奶的免费视频| 亚洲经典国产精华液单| 赤兔流量卡办理| 精品久久久久久久久久久久久| 青春草国产在线视频| 春色校园在线视频观看| 超碰av人人做人人爽久久| 亚洲精品乱久久久久久| www日本黄色视频网| 日韩欧美 国产精品| 精品酒店卫生间| 亚洲无线观看免费| 免费人成在线观看视频色| 国产在线一区二区三区精 | 国产色婷婷99| 波多野结衣巨乳人妻| 国产探花极品一区二区| 九九在线视频观看精品| 成人毛片60女人毛片免费| 亚洲精品亚洲一区二区| 亚洲精品日韩av片在线观看| 日韩人妻高清精品专区| 国产高清不卡午夜福利| 精品少妇黑人巨大在线播放 | 天堂√8在线中文| 欧美性猛交╳xxx乱大交人| 91av网一区二区| 男的添女的下面高潮视频| 欧美最新免费一区二区三区| 亚洲,欧美,日韩| 国产激情偷乱视频一区二区| 久久人妻av系列| 中文字幕免费在线视频6| 水蜜桃什么品种好| 久久国内精品自在自线图片| 久久韩国三级中文字幕| 99九九线精品视频在线观看视频| 亚洲精品乱久久久久久| 九九久久精品国产亚洲av麻豆| 久久精品久久久久久噜噜老黄 | 国产91av在线免费观看| av黄色大香蕉| 久久人妻av系列| 成人一区二区视频在线观看| 日韩国内少妇激情av| 18+在线观看网站| 小蜜桃在线观看免费完整版高清| 美女被艹到高潮喷水动态| 国产一区有黄有色的免费视频 | 一级毛片久久久久久久久女| 有码 亚洲区| 国产欧美另类精品又又久久亚洲欧美| 99久久中文字幕三级久久日本| 国产精品久久久久久精品电影| 搡女人真爽免费视频火全软件| 91av网一区二区| 97人妻精品一区二区三区麻豆| 日产精品乱码卡一卡2卡三| 91午夜精品亚洲一区二区三区| 日韩欧美 国产精品| 国产午夜福利久久久久久| 国产免费福利视频在线观看| 亚洲中文字幕日韩| 婷婷色综合大香蕉| 美女xxoo啪啪120秒动态图| 1024手机看黄色片| 国产精品国产三级国产专区5o | 日本与韩国留学比较| АⅤ资源中文在线天堂| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品午夜福利在线看| www.色视频.com| 婷婷六月久久综合丁香| 日韩精品有码人妻一区| 3wmmmm亚洲av在线观看| 亚洲成人中文字幕在线播放| av在线观看视频网站免费| 日韩精品青青久久久久久| 精品人妻偷拍中文字幕| 男的添女的下面高潮视频| 1000部很黄的大片| 边亲边吃奶的免费视频| av在线蜜桃| 亚洲av成人精品一二三区| 久久久成人免费电影| 在线免费观看的www视频| 国产精品,欧美在线| 日韩欧美三级三区| 国产精品国产三级国产av玫瑰| 精品一区二区免费观看| 99久久精品热视频| 男人舔女人下体高潮全视频| 成人国产麻豆网| 最新中文字幕久久久久| 少妇被粗大猛烈的视频| 少妇被粗大猛烈的视频| 日本午夜av视频| 日韩精品有码人妻一区| 草草在线视频免费看| 国产精品av视频在线免费观看| 久久久成人免费电影| 国产成人免费观看mmmm| 亚洲美女视频黄频| 免费av毛片视频| 99热网站在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本猛色少妇xxxxx猛交久久| 国产亚洲91精品色在线| 色哟哟·www| 97在线视频观看| 欧美性猛交╳xxx乱大交人| 日韩成人av中文字幕在线观看| 国产高清有码在线观看视频| av卡一久久| 国语对白做爰xxxⅹ性视频网站| 日韩欧美精品免费久久| 99久久精品国产国产毛片| 欧美色视频一区免费| 午夜激情福利司机影院| 久久精品久久久久久久性| 久久久久久久国产电影| 精品人妻一区二区三区麻豆| 国产大屁股一区二区在线视频| 国产成人精品一,二区| 中文字幕久久专区| 免费无遮挡裸体视频| 亚洲国产精品sss在线观看| 久久久精品94久久精品| 精品欧美国产一区二区三| 99热这里只有精品一区| av在线亚洲专区| 男人舔奶头视频| 亚洲熟妇中文字幕五十中出| 国产精品1区2区在线观看.| 亚洲精品日韩av片在线观看| 男女国产视频网站| 18禁在线无遮挡免费观看视频| 麻豆精品久久久久久蜜桃| 一级爰片在线观看| 亚洲色图av天堂| 亚洲精品久久久久久婷婷小说 | 成人漫画全彩无遮挡| 大香蕉97超碰在线| 亚洲国产最新在线播放| 变态另类丝袜制服| 久久久久久久午夜电影| 国产精品精品国产色婷婷| 国产黄片视频在线免费观看| 一区二区三区乱码不卡18| 亚洲人与动物交配视频| 国产精品国产三级国产专区5o | 久久久午夜欧美精品| 午夜a级毛片| 亚洲精品乱久久久久久| 91久久精品国产一区二区三区| 免费大片18禁| 能在线免费看毛片的网站| 久久久久网色| 久久久国产成人精品二区| 国产在线一区二区三区精 | 夫妻性生交免费视频一级片| 91久久精品电影网| 亚洲成人中文字幕在线播放| 在线免费观看的www视频| 亚洲精品国产成人久久av| 成人午夜高清在线视频| 老司机影院成人| 久久99热6这里只有精品| 国产精品久久电影中文字幕| 免费观看精品视频网站| 国产伦在线观看视频一区| 波野结衣二区三区在线| 久久精品91蜜桃| 日产精品乱码卡一卡2卡三| 久久婷婷人人爽人人干人人爱| 国产男人的电影天堂91| 精品免费久久久久久久清纯| 男人的好看免费观看在线视频| 久久精品国产亚洲网站| 极品教师在线视频| videos熟女内射| 中文字幕av在线有码专区| 免费av不卡在线播放| 日韩一本色道免费dvd| 26uuu在线亚洲综合色| 国产高清视频在线观看网站| 嫩草影院精品99| 卡戴珊不雅视频在线播放| 午夜精品在线福利| 成人鲁丝片一二三区免费| 亚洲天堂国产精品一区在线| 国产精品人妻久久久久久| 精品久久久噜噜| 亚洲不卡免费看| 久久久久性生活片| 亚洲最大成人手机在线| 国产精品久久久久久av不卡| 九九热线精品视视频播放| 国产精品一及| 免费观看a级毛片全部| 欧美精品一区二区大全| 成人亚洲欧美一区二区av| 久久久久免费精品人妻一区二区| 午夜精品一区二区三区免费看| 晚上一个人看的免费电影| 亚洲成人久久爱视频| 国语对白做爰xxxⅹ性视频网站| 视频中文字幕在线观看| 国产亚洲精品久久久com| 在线免费十八禁| av国产久精品久网站免费入址| or卡值多少钱| 九九热线精品视视频播放| 搡女人真爽免费视频火全软件| 国内少妇人妻偷人精品xxx网站| 永久网站在线| 只有这里有精品99| 婷婷六月久久综合丁香| 丰满乱子伦码专区| 毛片一级片免费看久久久久| 熟女人妻精品中文字幕| 老司机福利观看| 可以在线观看毛片的网站| 大香蕉久久网| 国内精品美女久久久久久| 亚洲欧美日韩无卡精品| 日韩三级伦理在线观看| 美女xxoo啪啪120秒动态图| 能在线免费看毛片的网站| 国产乱来视频区| 久久人妻av系列| 欧美日韩国产亚洲二区| 亚洲第一区二区三区不卡| 国产极品天堂在线| 我的女老师完整版在线观看| 一夜夜www| 少妇人妻精品综合一区二区| 国产又黄又爽又无遮挡在线| 最近2019中文字幕mv第一页| 蜜桃亚洲精品一区二区三区| 成人一区二区视频在线观看| 国产白丝娇喘喷水9色精品| 波多野结衣高清无吗| av又黄又爽大尺度在线免费看 | 国产综合懂色| 三级国产精品欧美在线观看| 免费观看人在逋| 又爽又黄a免费视频| 熟女电影av网| 久久久久久大精品| 亚洲精品一区蜜桃| 欧美日韩综合久久久久久| 日韩大片免费观看网站 | 精品久久久久久久人妻蜜臀av| 自拍偷自拍亚洲精品老妇| 丝袜美腿在线中文| 又黄又爽又刺激的免费视频.| 亚洲精品自拍成人| 一个人观看的视频www高清免费观看| 成年av动漫网址| 国产精品一区二区性色av| 91在线精品国自产拍蜜月| 亚洲丝袜综合中文字幕| 久久亚洲精品不卡| 美女cb高潮喷水在线观看| 久久久久久久久久成人| 免费电影在线观看免费观看| 成年免费大片在线观看| 最近中文字幕2019免费版| 亚洲av男天堂| 一级av片app| 亚洲中文字幕一区二区三区有码在线看| 91久久精品国产一区二区三区| videos熟女内射| 人人妻人人澡欧美一区二区| 国内精品宾馆在线| 日韩国内少妇激情av| 亚洲欧洲日产国产| 中文字幕制服av| 波多野结衣高清无吗| 99九九线精品视频在线观看视频| 欧美高清性xxxxhd video| 久久精品91蜜桃| 亚洲av一区综合| 精品久久久久久久久久久久久| 久久精品人妻少妇| 久久久精品欧美日韩精品| 别揉我奶头 嗯啊视频| 男的添女的下面高潮视频| 国产高清有码在线观看视频| 亚洲久久久久久中文字幕| 亚洲在久久综合| 国产精品国产三级专区第一集| av又黄又爽大尺度在线免费看 | 午夜精品在线福利| 精品久久久久久成人av| 国产免费男女视频| 一区二区三区高清视频在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 汤姆久久久久久久影院中文字幕 | 国产大屁股一区二区在线视频| 伦精品一区二区三区| 日韩一本色道免费dvd| 中文精品一卡2卡3卡4更新| 插阴视频在线观看视频| 欧美成人午夜免费资源| 亚洲在久久综合| 久久99蜜桃精品久久| 欧美性感艳星| 乱码一卡2卡4卡精品| 久久久午夜欧美精品| 亚洲va在线va天堂va国产| 欧美日韩国产亚洲二区| 亚洲美女视频黄频| 一本一本综合久久| 97超碰精品成人国产| 精品久久久久久久久亚洲| 国产亚洲av嫩草精品影院| kizo精华| 搡女人真爽免费视频火全软件| 久久久色成人| 欧美日本视频| 亚洲美女视频黄频| 97热精品久久久久久| 成人美女网站在线观看视频| 欧美一区二区精品小视频在线| 欧美一区二区国产精品久久精品| 51国产日韩欧美| 秋霞伦理黄片| 午夜福利在线在线| 综合色丁香网| 国产单亲对白刺激| 国产探花极品一区二区| 亚洲成人中文字幕在线播放| 麻豆成人午夜福利视频| 亚洲人成网站高清观看| 国产午夜精品久久久久久一区二区三区| 天天躁日日操中文字幕| 日韩一区二区视频免费看| 亚洲精品日韩av片在线观看| 免费观看的影片在线观看| 麻豆成人av视频| 日日撸夜夜添| 好男人在线观看高清免费视频| kizo精华| 男女下面进入的视频免费午夜| 丰满少妇做爰视频| 亚洲丝袜综合中文字幕| 深夜a级毛片| 日韩高清综合在线| a级一级毛片免费在线观看| 亚洲精品日韩av片在线观看| av国产久精品久网站免费入址| 亚洲三级黄色毛片| 自拍偷自拍亚洲精品老妇| 男女视频在线观看网站免费| 国产日韩欧美在线精品| 蜜臀久久99精品久久宅男| 丝袜美腿在线中文| 天堂网av新在线| 欧美又色又爽又黄视频| 99久久无色码亚洲精品果冻| 午夜精品一区二区三区免费看| 色噜噜av男人的天堂激情| 国产老妇伦熟女老妇高清| 精品少妇黑人巨大在线播放 | 久久久久性生活片| 又黄又爽又刺激的免费视频.| 1000部很黄的大片| 听说在线观看完整版免费高清| 亚洲国产成人一精品久久久| 天天一区二区日本电影三级| 国产精品久久久久久精品电影| 亚洲成人精品中文字幕电影| 日日干狠狠操夜夜爽| 午夜久久久久精精品| 国产爱豆传媒在线观看| 我要看日韩黄色一级片| 99热这里只有精品一区| 永久网站在线| 国产亚洲最大av| 如何舔出高潮| 国产av码专区亚洲av| 一边摸一边抽搐一进一小说| 赤兔流量卡办理| 亚洲精品色激情综合| 欧美极品一区二区三区四区| 国产爱豆传媒在线观看| 国内精品宾馆在线| 亚洲中文字幕日韩| 午夜老司机福利剧场| 久久久久久久久久久免费av| 免费大片18禁| 中文字幕av在线有码专区| 九色成人免费人妻av| 丝袜喷水一区| www.色视频.com| 亚洲精品乱码久久久v下载方式| 美女大奶头视频| a级毛色黄片| 天天躁夜夜躁狠狠久久av| 国产老妇伦熟女老妇高清| 在线a可以看的网站| 免费大片18禁| 天堂av国产一区二区熟女人妻| 国产一区亚洲一区在线观看| 精品人妻一区二区三区麻豆| 99久久精品热视频| 亚洲人成网站在线播| 91av网一区二区| 国产精品国产三级国产专区5o | 国内精品宾馆在线| 99视频精品全部免费 在线| 97热精品久久久久久| 日韩亚洲欧美综合| 欧美另类亚洲清纯唯美| 亚洲精品日韩av片在线观看| 亚洲一区高清亚洲精品| 国产精品福利在线免费观看| 99热6这里只有精品| 男人舔奶头视频| 99热6这里只有精品| 神马国产精品三级电影在线观看| 久99久视频精品免费| 成年女人看的毛片在线观看| 免费观看的影片在线观看| 欧美日韩一区二区视频在线观看视频在线 | 水蜜桃什么品种好| 久久久久久九九精品二区国产| 国产精品嫩草影院av在线观看| 国产成人精品久久久久久| 男人和女人高潮做爰伦理| 亚洲第一区二区三区不卡| 久久国内精品自在自线图片| 成年女人看的毛片在线观看| 久久国内精品自在自线图片| 永久网站在线| 国产片特级美女逼逼视频| 边亲边吃奶的免费视频| 国产精品一区www在线观看| 精品人妻偷拍中文字幕| 国产美女午夜福利| 亚洲精品乱码久久久久久按摩| 国产精品一区www在线观看| 久久久亚洲精品成人影院| 三级毛片av免费| 国产亚洲5aaaaa淫片| 成人鲁丝片一二三区免费| 国产av在哪里看| 婷婷色av中文字幕| 欧美日本亚洲视频在线播放| 秋霞在线观看毛片| 久久99精品国语久久久| 狂野欧美白嫩少妇大欣赏| 永久免费av网站大全| 国产精品久久久久久精品电影小说 | 97超碰精品成人国产| 国产亚洲最大av| av在线亚洲专区| 偷拍熟女少妇极品色| 少妇熟女aⅴ在线视频| 一个人观看的视频www高清免费观看| 特级一级黄色大片| 深爱激情五月婷婷| 国产精品乱码一区二三区的特点| 一级二级三级毛片免费看| 久久精品熟女亚洲av麻豆精品 | 22中文网久久字幕| 日韩亚洲欧美综合| 国产午夜福利久久久久久| 亚洲四区av| 国产精品久久久久久久电影| 美女cb高潮喷水在线观看| 小说图片视频综合网站| 成人无遮挡网站| 夜夜看夜夜爽夜夜摸| 六月丁香七月| 一级黄色大片毛片| 春色校园在线视频观看| 夜夜看夜夜爽夜夜摸| 国内精品宾馆在线| 两个人的视频大全免费| 最近2019中文字幕mv第一页| 日日啪夜夜撸| 成人鲁丝片一二三区免费| 精华霜和精华液先用哪个| 亚洲久久久久久中文字幕| 亚洲国产精品专区欧美| 日本一本二区三区精品| 亚洲av成人av| 精品久久久久久久人妻蜜臀av| 我要看日韩黄色一级片| 伦精品一区二区三区| av在线播放精品| h日本视频在线播放| 一区二区三区乱码不卡18| 亚洲av日韩在线播放| 国产黄色视频一区二区在线观看 | 51国产日韩欧美| 免费看a级黄色片| 99久国产av精品| 黄片wwwwww| 男女那种视频在线观看| 亚洲av一区综合| 三级国产精品欧美在线观看| 中文字幕亚洲精品专区| 国产精品日韩av在线免费观看| 看十八女毛片水多多多| 一级黄片播放器| 日韩大片免费观看网站 | 亚洲国产欧美人成| .国产精品久久| 午夜激情欧美在线| 久久久久久久久大av| 国产亚洲精品av在线| 午夜福利视频1000在线观看| 免费观看a级毛片全部| 欧美潮喷喷水| 久久午夜福利片| 日日啪夜夜撸| 亚洲人成网站高清观看| 女人十人毛片免费观看3o分钟| 国产高潮美女av| 国产在线一区二区三区精 | 免费人成在线观看视频色| 一个人观看的视频www高清免费观看| 午夜日本视频在线| 最近最新中文字幕大全电影3| 校园人妻丝袜中文字幕| 久久久久久九九精品二区国产| 久久精品国产亚洲av天美| 亚洲最大成人av| 在线天堂最新版资源| 欧美成人免费av一区二区三区| 久久久精品94久久精品| 国产精品久久久久久久电影| 晚上一个人看的免费电影| 日韩成人av中文字幕在线观看| 国产精品综合久久久久久久免费| 免费黄网站久久成人精品| a级毛片免费高清观看在线播放| 国产av码专区亚洲av| 极品教师在线视频| 一级毛片电影观看 | 女人十人毛片免费观看3o分钟| 国产三级中文精品| 国产一区有黄有色的免费视频 | 99久久精品国产国产毛片| 久久精品国产自在天天线| 欧美高清成人免费视频www| 亚洲最大成人手机在线|