曹 靜,王桂英,趙志軍,*
1 溫州大學(xué)生命與環(huán)境科學(xué)學(xué)院,溫州 325035 2 聊城大學(xué)農(nóng)學(xué)院,聊城 252059
?
環(huán)境溫度和繁殖經(jīng)歷對(duì)黑線倉(cāng)鼠哺乳期能量收支的影響
曹靜1,王桂英2,趙志軍1,*
1 溫州大學(xué)生命與環(huán)境科學(xué)學(xué)院,溫州325035 2 聊城大學(xué)農(nóng)學(xué)院,聊城252059
為探討環(huán)境溫度和繁殖經(jīng)歷對(duì)黑線倉(cāng)鼠哺乳期能量收支的影響,將連續(xù)3次繁殖的黑線倉(cāng)鼠暴露于溫度梯度降低的條件下(30—0℃,1℃/4d),使初次、第2和3次繁殖的動(dòng)物分別暴露于30—20℃、20—10℃、10—0C℃,測(cè)定了哺乳期能量收支。與初次繁殖的動(dòng)物相比,第3次繁殖組動(dòng)物的攝食量顯著增加,靜止代謝率、非顫抖性產(chǎn)熱、褐色脂肪組織細(xì)胞色素c氧化酶(COX)活性和血清T3水平顯著增加,而斷乳時(shí)胎仔重顯著降低。結(jié)果表明:(1)低溫下繁殖的黑線倉(cāng)鼠處于負(fù)能量平衡,在自身維持和哺育后代的能量分配之間存在權(quán)衡,低溫下產(chǎn)熱增加,繁殖輸出減少;(2)黑線倉(cāng)鼠可能感知環(huán)境溫度的變化,在連續(xù)降低溫度的條件下降低繁殖投資,符合“季節(jié)性投資假說(shuō)”的預(yù)測(cè)。
能量收支;繁殖;季節(jié)性投資;黑線倉(cāng)鼠;產(chǎn)熱
小型哺乳動(dòng)物的生存和繁殖受環(huán)境溫度的影響[1-4]。溫度降低會(huì)使動(dòng)物的能量需求增加,低溫下繁殖的動(dòng)物,能量需求會(huì)進(jìn)一步增加,母體在滿足后代生長(zhǎng)發(fā)育能量需求的同時(shí),還需額外的能量支出用于產(chǎn)熱,以維持恒定體溫[4-6]。
然而,環(huán)境溫度與繁殖之間的關(guān)系并非如此簡(jiǎn)單。許多季節(jié)性繁殖的動(dòng)物往往會(huì)選擇溫度較低的早春?jiǎn)?dòng)繁殖,在氣溫較高的盛夏停止繁殖[7]。原因在于,在春天出生的后代在冬季來(lái)臨之前有足夠的時(shí)間發(fā)育成熟,并能生產(chǎn)下一代,因此繁殖價(jià)值(reproductive value)較高。相反秋季出生的后代可能沒(méi)有足夠的時(shí)間在冬季來(lái)臨之前達(dá)到性成熟,因而繁殖價(jià)值降低[7- 8]。野生小型哺乳動(dòng)物也許能夠感受其繁殖價(jià)值的季節(jié)性變化,從而表現(xiàn)出選擇性的繁殖投資,即“季節(jié)性投資假說(shuō)(the seasonal investment hypothesis)[7- 9]。動(dòng)物如何感受環(huán)境條件的季節(jié)性變化,進(jìn)而決定其“季節(jié)性投資”,尚不清楚。環(huán)境溫度具有季節(jié)性變化的特點(diǎn)。有研究報(bào)道,溫度與動(dòng)物的繁殖投資存在負(fù)相關(guān)關(guān)系,比如溫暖條件下(30℃)布氏田鼠(Lasiopodomysbrandtii)[4,10]和MF1小鼠 (Musmusculus)[2-3]繁殖輸出低于寒冷條件下(5℃、8℃)繁殖的動(dòng)物。但動(dòng)物是否能夠感知環(huán)境溫度的變化,進(jìn)而決定其選擇性的繁殖投資,尚不明確。
黑線倉(cāng)鼠(Cricetulusbarabensis)廣泛分布于我國(guó)北方和中原地區(qū),是主要的農(nóng)田和草原嚙齒類物種之一。棲息地環(huán)境溫度具有顯著的季節(jié)性變化,以2009—2010年河北石家莊地區(qū)農(nóng)田為例,年平均溫度13.4℃,夏季氣溫較高(7月日均最高溫為33.3℃),冬季寒冷(1月日均最低溫為-6.5℃)(2009—2010年河北省氣象局發(fā)布數(shù)據(jù))。黑線倉(cāng)鼠的繁殖具有季節(jié)性,每年3—4月份開始繁殖,一年可產(chǎn)3—5胎[11]。該鼠種群數(shù)量呈現(xiàn)季節(jié)性波動(dòng),一般有兩次高峰,前峰在3—6月,后峰在10—11月。各季節(jié)的氣候因子,如氣溫、降水、食物等變化對(duì)種群數(shù)量的波動(dòng)具有重要影響,繁殖與種群數(shù)量動(dòng)態(tài)存在極為密切的關(guān)系[11]。室溫條件下該鼠的繁殖和生長(zhǎng)發(fā)育特征已有研究[12-15]。環(huán)境溫度是影響繁殖期能量收支的重要因子,與室溫條件下繁殖的動(dòng)物相比,低溫馴化(5℃)使產(chǎn)熱增加,但使哺乳末期幼體重量顯著降低[16]。故此,研究環(huán)境溫度的變化與黑線倉(cāng)鼠繁殖投資的關(guān)系將有助于深入理解小型哺乳動(dòng)物的繁殖策略,檢驗(yàn)“季節(jié)性投資假說(shuō)”。本研究將連續(xù)3次繁殖的黑線倉(cāng)鼠暴露于連續(xù)降低的溫度條件下(30—0℃),測(cè)定哺乳高峰期能量攝入、產(chǎn)熱和繁殖輸出。我們預(yù)測(cè)隨著環(huán)境溫度的降低,黑線倉(cāng)鼠的能量攝入增加,產(chǎn)熱增加,胎仔數(shù)和胎仔重降低。該鼠可能通過(guò)感受環(huán)境溫度的變化,決定其選擇性的“繁殖投資”。
1.1實(shí)驗(yàn)動(dòng)物
黑線倉(cāng)鼠于2008年捕于河北省深澤縣農(nóng)田(東經(jīng)115°13′,北緯38°12′),飼養(yǎng)于聊城大學(xué)實(shí)驗(yàn)動(dòng)物房,溫度為(21 ± 1)℃,光照為12L∶12D,喂以標(biāo)準(zhǔn)鼠飼料(北京科奧協(xié)力飼料有限公司生產(chǎn)),可自由飲水。用于實(shí)驗(yàn)的動(dòng)物來(lái)自室內(nèi)繁殖的后代。取2.5 — 3.5月齡健康雌性黑線倉(cāng)鼠135只(均為處女鼠),30℃ 條件下適應(yīng)4周,然后放入成年雄鼠,妊娠雌鼠分娩前分離雄鼠,共有62只雌鼠妊娠、分娩和哺乳,隨機(jī)選取12只測(cè)定能量收支等參數(shù),作為初次繁殖組(Lac 1,n=12),在放入雄鼠交配之日起,逐漸降低環(huán)境溫度(1℃/4d),使初次繁殖的母體及后代暴露于30—20℃。其余50只在斷乳2周后再與雄鼠配對(duì),39只雌鼠妊娠、分娩和哺乳,選取11只測(cè)定能量收支,作為二次繁殖組(Lac 2,n=11);逐漸降低環(huán)境溫度(1℃/4d),使第2次繁殖暴露于20—10℃。其余28只在斷乳2周后再與雄鼠配對(duì),12只雌鼠妊娠、分娩和哺乳,再選取6只作為第3次繁殖組(Lac 3,n=6),第3次繁殖暴露于10—0℃。所有繁殖組幼體均在哺乳期第17天斷乳。
1.2體重和攝食量
哺乳期第7天至斷乳,每日測(cè)定母體體重、窩胎仔數(shù)和胎仔重量。以添加飼料塊重量扣除次日剩余量和飼養(yǎng)籠內(nèi)殘?jiān)坑?jì)算每日攝食量。哺乳期第15—17天攝食量的平均值作為哺乳期最大持續(xù)攝食量。
1.3靜止代謝率(RMR)和非顫抖性產(chǎn)熱(NST)
斷乳后,以封閉式流體壓力呼吸計(jì)測(cè)定動(dòng)物的RMR[17]。RMR測(cè)定溫度為(29±1)℃(熱中性區(qū)溫度為27.5 —32.9℃)[18],水浴控溫(± 1℃)。測(cè)定前動(dòng)物饑餓3 h,在呼吸室內(nèi)適應(yīng)1 h,待動(dòng)物穩(wěn)定后,每隔5 min記錄1次,連續(xù)測(cè)定60 min。選取2個(gè)連續(xù)穩(wěn)定的最低值計(jì)算RMR(mL O2/h)。NST采用皮下注射去甲腎上腺素(NE)誘導(dǎo),根據(jù)NE(mg/kg)=6.6×Mb-0.458(g)[19]計(jì)算NE劑量,測(cè)定溫度為(25±1)℃[20],注射NE后連續(xù)測(cè)定60min,每隔5 min記錄1次,選取2個(gè)連續(xù)穩(wěn)定的最高值計(jì)算NST。RMR和NST均校正到標(biāo)準(zhǔn)狀態(tài)下(101.325kPa (1個(gè)大氣壓),0℃)。
1.4褐色脂肪組織(BAT)細(xì)胞色素 c 氧化酶(COX)活性
處死動(dòng)物后,快速分離肩胛部BAT置于液氮中,然后轉(zhuǎn)移至超低溫冰箱中貯存?zhèn)溆?。待所有樣品收完畢,提取BAT線粒體蛋白[21]。用分光光度計(jì)測(cè)定線粒體蛋白濃度,以牛血清蛋白作為標(biāo)準(zhǔn)蛋白。COX活性采用氧電極法(Oxytherm Electrode System,Hansatech公司)測(cè)定。反應(yīng)杯溫度30℃,反應(yīng)液體積2mL,其中包括20μL樣品、20μL細(xì)胞色素c和1.96mL基質(zhì)液[21]。
1.5甲狀腺激素(T3、T4)和催乳素
NST測(cè)定次日(9:00—11:00),斷頸處死動(dòng)物,取血,自然凝集2 h,離心(3500r/min)10min,吸血清于離心管中,保存于冰箱中(-20℃)備用。待所有樣品收完畢,用放射性免疫試劑盒測(cè)定血清T3、T4和催乳素含量(北京北方生物技術(shù)研究所),批內(nèi)和批間測(cè)定的變異系數(shù)分別小于10%。
1.6身體脂肪
去除內(nèi)臟各器官和消化道后記錄動(dòng)物胴體鮮重,然后置于烘箱中,60℃烘至恒重,記錄胴體干重(精確至0.001g)。以索式抽提法測(cè)定烘干胴體的體脂含量,表示為體脂重量占胴體干重的百分比[22]。
1.7統(tǒng)計(jì)分析
數(shù)據(jù)處理采用SPSS 13.0軟件包。哺乳期體重、攝食量、胎仔數(shù)和胎仔重的變化采用重復(fù)測(cè)量方差分析法(RM-ANOVA)進(jìn)行分析;初次、第2和3次繁殖組的體重、攝食量、T3、T4和催乳素、BAT COX活性、脂肪含量的組間差異以單因素方差分析法(one way-ANOVA)進(jìn)行分析。RMR和NST以協(xié)方差分析法(ANCONA)進(jìn)行分析(以體重為協(xié)變量)。攝食量、RMR、NST、胎子數(shù)、胎仔重之間的關(guān)系以偏相關(guān)分析法進(jìn)行統(tǒng)計(jì)分析(去除體重或胎仔數(shù)的影響)。數(shù)據(jù)全部表示為平均值±標(biāo)準(zhǔn)誤(Mean ± SE);P≤0.05表示差異顯著(雙尾檢驗(yàn)),P≤0.01表示差異極顯著。
2.1體重
初次、第2和3次繁殖的哺乳初期母體體重分別為(29.5±0.4)g、(30.8±0.4)g和(28.6±0.6)g,第3次繁殖組比第2次繁殖組低7.1%,組間差異顯著(第7天,F2,114=3.47,P<0.05,圖1)。哺乳期體重顯著降低,初次、第2和3次繁殖組斷乳時(shí)體重與哺乳初期相比分別降低了12.4%、12.3%和13.5%。斷乳時(shí)組間差異顯著,第3次繁殖組體重顯著低于第2次繁殖組(第17天,Lac 1, (25.9±0.4)g; Lac 2, (27.0±0.4)g; Lac 3, (24.8±0.6)g;F2,114=3.43,P<0.05,圖1)。
圖1 連續(xù)降溫和繁殖經(jīng)歷對(duì)黑線倉(cāng)鼠體重、攝食量、胎仔數(shù)和胎仔重的影響Fig.1 Body mass, food intake, litter size and litter mass in striped hamsters throughout three bouts of lactation after being exposed to the decreases in temperatureLac 1、2和3為初次繁殖、第2和3次繁殖;柱上不同字母表示差異顯著(P<0.05);**哺乳初期和末期差異極顯著(P<0.01)
2.2攝食量
哺乳初期,初次、第2和3次繁殖組的攝食量組間差異顯著,第3次繁殖組顯著高于初次和第2繁殖組(第7天,F(xiàn)2,114=30.80,P<0.01,Post hoc,P<0.05,圖1)。哺乳期攝食量顯著增加,初次、第2和3次繁殖組哺乳末期較初期分別增加了73.4%、59.9%和55.2%,組間差異顯著(第17天,F(xiàn)2,114=3.63,P<0.05)。哺乳高峰期最大持續(xù)攝食量分別為(12.9±0.2)g、(13.8±0.2)g和(14.9±0.4) g/d,第3次繁殖組比初次、第2次繁殖組分別高7.0%和14.0%,組間差異顯著(F2,114=9.35,P<0.01)。
2.3胎仔數(shù)和胎仔重
初次、第2和3次繁殖組的哺乳初期胎仔數(shù)分別為4.4±0.1、4.4±0.2和4.3±0.4,組間差異不顯著(第7天,F(xiàn)2,114=0.06,P>0.05,圖1)。哺乳期間胎仔數(shù)未出現(xiàn)顯著變化,斷乳時(shí)胎仔數(shù)間差異未達(dá)到顯著水平(第17天,F(xiàn)2,114=0.98,P>0.05)。哺乳初期胎仔重組間差異顯著,第3次繁殖組比初次、第2次繁殖組分別低15.1%和18.2%(第7天,F(xiàn)2,114=3.90,P<0.05,圖1)。哺乳期間胎仔重顯著增加,初次、第2和3次繁殖組哺乳末期胎仔重比哺乳初期分別增加了141.4%、115.6%和114.7%(第7—17天,Lac 1,F10,610=892.94,P<0.01; Lac 2,F10,420=417.09,P<0.01; Lac 3,F10,110=152.13,P<0.01)。斷乳時(shí),胎仔重分別為(41.8±1.0)g、(38.8±1.3)g和(31.6±2.2)g,第3次繁殖組比初次、第2次繁殖組分別低24.5%和18.6%,組間差異顯著(第17天,F(xiàn)2,114=8.09,P<0.01)。哺乳高峰期攝食量與斷乳時(shí)胎仔數(shù)(R2=0.16,P<0.01,圖2)和胎仔重(R2=0.11,P<0.05,圖2)顯著正相關(guān)。
圖2 連續(xù)降溫的條件下連續(xù)3次繁殖的黑線倉(cāng)鼠哺乳高峰期攝食量與胎仔數(shù)、胎仔重、靜止代謝率(RMR)和非顫抖性產(chǎn)熱(NST)的相關(guān)性Fig.2 Correlations between asymptotic food intake and litter size, litter mass, resting metabolic rate (RMR) and nonshivering thermogenesis (NST) in striped hamsters throughout three bouts of lactation after being exposed to the decreases in temperature
2.4RMR和NST
斷乳時(shí)RMR組間差異顯著,第2和3次繁殖組顯著高于初次繁殖組(F2,25=15.25,P<0.01,圖3)。NST組間也存在顯著差異,第2和3次繁殖組比初次繁殖組分別高24.1%和27.1%(F2,25=15.25,P<0.01,表1)。攝食量與RMR顯著正相關(guān)(R2=0.34,P<0.01,圖2),與NST的相關(guān)性也達(dá)到了顯著水平(R2=0.18,P<0.05,圖2)。
2.5BAT COX活性、T3、T4和催乳素
BAT組織總線粒體蛋白COX活性組間差異顯著,第3次繁殖組比初次和第2次繁殖組分別高139.7%和65.5%(F2,26=20.66,P<0.01,表1)。血清T3濃度組間差異顯著(F2,26=5.57,P<0.01,表1),第3次繁殖組的血清T3濃度比初次繁殖組高47.4%(post hoc,P<0.05),但第2次與初次繁殖組間差異未達(dá)到顯著水平(post hoc,P>0.05)。血清T4濃度組間差異不顯著,但第3次繁殖組T3/T4顯著高于初次和第2次繁殖組(表1),與初次繁殖組相比第2和3次繁殖組血清催乳素水平未出現(xiàn)顯著變化(表1)。
2.6胴體重和脂肪含量
初次繁殖、第2和3次繁殖組斷乳時(shí)體重組間差異不顯著(表1)。胴體濕重和干重組間也無(wú)顯著差異。第2、3次繁殖組的身體脂肪含量較初次繁殖組分別降低了12%和28%,但組間差異未達(dá)到顯著水平(P=0.07,表1)。
表1連續(xù)降溫和繁殖經(jīng)歷對(duì)黑線倉(cāng)鼠RMR、NST、BAT COX活性、血清T3、T4和催乳素濃度的影響
Table 1Effect of reproductive experiences on RMR, NST, BAT COX activity, concentrations of serum T3, T4and prolactin in striped hamsters after being exposed to the decreases in temperature
組別GroupLac1Lac2Lac3P靜止代謝率Restingmetabolicrate,RMR/(mLO2/h)97.1±1.9b107.4±2.6a115.8±3.6a**非顫抖性產(chǎn)熱Nonshiveringthermogenesis,NST/(mLO2/h)151.4±6.5b187.9±5.6a202.2±9.8a**胴體Carcass濕重Wetmass/g17.4±0.516.7±0.515.2±0.5ns干重Drymass/g6.6±0.26.4±0.36.1±0.2ns脂肪含量Bodyfatcontent/%27.8±2.224.4±1.820.1±2.1nsBATCOX活性BATCOXactivity(nmolmg-1min-1)75.4±7.978.2±5.594.7±5.2ns(nmol/min)23.8±2.9b34.5±3.1b57.1±4.6a**甲狀腺激素ThyroidhormoneT3/(ng/mL)1.07±0.07b1.23±0.10ab1.58±0.13a**T4/(ng/mL)38.2±1.836.7±2.431.3±2.8nsT3/T40.029±0.003b0.035±0.004b0.053±0.007a**催乳素Prolactin/(U/mL)168.6±7.7178.3±10.2182.3±13.9ns
BAT COX: 褐色脂肪組織細(xì)胞色素c氧化酶活性;Lac 1、2和3,初次繁殖、第2和3次繁殖;ns,差異不顯著,**P<0.01
小型哺乳動(dòng)物繁殖是一個(gè)復(fù)雜而耗能的過(guò)程,哺乳期是整個(gè)繁殖期能量需求最高的階段,動(dòng)物一般通過(guò)動(dòng)用身體的能量貯存和增加攝食量以滿足繁殖期增加的能量需求[15,23-24]??梢园l(fā)現(xiàn),哺乳期黑線倉(cāng)鼠攝食量顯著增加,體重顯著降低,這與以前的研究結(jié)果相似[15,25]。隨著環(huán)境溫度的降低,哺乳高峰期黑線倉(cāng)鼠的攝食量進(jìn)一步增加,在10—0℃條件下第3次繁殖組的最大持續(xù)攝食量比30—20℃下初次繁殖、20—10℃第2次繁殖組分別高7.0%和14.0%。Zhao也發(fā)現(xiàn),低溫下(5℃)初次繁殖的黑線倉(cāng)鼠攝食量比室溫(23℃)和暖溫下(30℃)繁殖的動(dòng)物高11.4%[16]。低溫暴露也使哺乳期布氏田鼠[4]、拉布拉多白足鼠(Peromyscusmaniculatus)[1]、MF1小鼠[2]攝食量進(jìn)一步增加。這些研究結(jié)果表明,小型哺乳動(dòng)物的哺乳期能量攝入受環(huán)境溫度的影響顯著。低溫下哺乳的動(dòng)物需要增加攝食量以應(yīng)對(duì)低溫與哺乳后代的雙重能量需求[1,2,4]。
研究發(fā)現(xiàn),隨著環(huán)境溫度的降低,黑線倉(cāng)鼠的繁殖輸出顯著減少,第3次繁殖(10—0℃)組的胎仔重比第2次繁殖(20—10℃)和初次繁殖組(30—20℃)分別降低24.5%和18.6%。Zhao研究發(fā)現(xiàn),室溫條件下連續(xù)4次繁殖的黑線倉(cāng)鼠哺乳期能量攝入和繁殖輸出未發(fā)生顯著變化[26],表明不同繁殖經(jīng)歷的黑線倉(cāng)鼠的繁殖能力相似。因此,低溫條件下第3次繁殖組繁殖輸出顯著降低的原因,可能與動(dòng)物自身的繁殖能力無(wú)關(guān),而主要受環(huán)境溫度的影響,即連續(xù)降低環(huán)境溫度可能是導(dǎo)致繁殖輸出顯著降低的主要原因。然而,Krol等發(fā)現(xiàn)暖溫(30℃)下繁殖的MF1小鼠的泌乳能量支出比室溫組(21℃)相比降低了48%,低溫(8℃)卻顯著增加了泌乳能量支出,與室溫組相比增加了73%,表明繁殖輸出與環(huán)境溫度呈負(fù)相關(guān)關(guān)系,暖溫抑制繁殖輸出,低溫暴露促進(jìn)繁殖輸出[3]。黑線倉(cāng)鼠一般會(huì)在早春?jiǎn)?dòng)繁殖在3—4月份進(jìn)入第一個(gè)繁殖高峰,經(jīng)過(guò)炎熱的夏季,第2次繁殖高峰一般在9月份[11]。因此在第2次繁殖期,動(dòng)物必然要經(jīng)歷環(huán)境溫度的下降過(guò)程[11,14, 27- 28]?!凹竟?jié)性投資假說(shuō)”認(rèn)為野生小型哺乳動(dòng)物能夠感受繁殖價(jià)值的季節(jié)性變化,繁殖的季節(jié)越早其繁殖價(jià)值越高,而晚出生的后代由于在冬季來(lái)臨之前沒(méi)有足夠的時(shí)間達(dá)到性成熟而繁育下一代,因而繁殖價(jià)值降低[7- 9]。研究表明,黑線倉(cāng)鼠可能感受到降低的環(huán)境溫度,從而減少繁殖輸出,與“季節(jié)性投資假說(shuō)”的預(yù)測(cè)一致。季節(jié)性繁殖的野生小型哺乳動(dòng)物或許能夠通過(guò)環(huán)境溫度的變化,感受時(shí)間的季節(jié)性,進(jìn)而調(diào)節(jié)對(duì)后代的繁殖投資。
低溫暴露使動(dòng)物的能量需求增加。發(fā)現(xiàn)隨著環(huán)境溫度的降低,黑線倉(cāng)鼠RMR和NST顯著增強(qiáng),第2和3次繁殖組NST比初次繁殖組分別高24.1%和27.1%。BAT COX活性和血清T3水平也顯著增加,表明低溫下繁殖的黑線倉(cāng)鼠產(chǎn)熱增加。與本研究相似,低溫暴露是初次繁殖的黑線倉(cāng)鼠哺乳高峰期產(chǎn)熱增加[16];低溫下繁殖的其他嚙齒類動(dòng)物與室溫或者暖溫下繁殖的動(dòng)物相比,代謝產(chǎn)熱增加,如布氏田鼠[4]、金色中倉(cāng)鼠(Mesocricetusauratus)[5]、MF1小鼠[2-3]。這些結(jié)果表明,小型哺乳動(dòng)物在繁殖期面臨低溫環(huán)境時(shí),需要額外的能量支出,用于產(chǎn)熱,從而維持恒定的體溫調(diào)節(jié),但這可能導(dǎo)致了用于哺乳后代的能量支出減少,繁殖輸出降低[16]。動(dòng)物自身維持的能量支出和繁殖輸出之間存在權(quán)衡[15,29]。盡管發(fā)現(xiàn)低溫下第3次繁殖的黑線倉(cāng)鼠進(jìn)一步增加攝食量,但似乎不足以彌補(bǔ)產(chǎn)熱的能量支出。在負(fù)能量平衡的條件下,降低繁殖輸出也許是動(dòng)物的一種適應(yīng)性調(diào)節(jié)的繁殖策略。黑線倉(cāng)鼠可能通過(guò)感受環(huán)境溫度的降低,增加代謝產(chǎn)熱,以維持體溫恒定;也可能通過(guò)溫度的變化,感受時(shí)間的季節(jié)性變化,在連續(xù)降低環(huán)境溫度的條件下降低繁殖投資。研究結(jié)果支持小型哺乳動(dòng)物繁殖的“季節(jié)性投資”假說(shuō)。
在環(huán)境溫度連續(xù)降低的條件下(30—0℃),黑線倉(cāng)鼠連續(xù)繁殖3代。哺乳期間攝食量、胎仔重顯著增加,體重顯著降低。哺乳高峰期攝食量、產(chǎn)熱、胎仔重受環(huán)境溫度的影響顯著。與暖溫下(30—20℃)下初次繁殖的動(dòng)物相比,低溫下(10—0℃)第3次繁殖組的攝食量顯著增加, RMR、NST、BAT COX活性和血清T3水平顯著增加,而斷乳時(shí)胎仔重顯著降低。結(jié)果表明,黑線倉(cāng)鼠面臨低溫與哺乳后代的雙重能量需求,低溫下繁殖的黑線倉(cāng)鼠處于負(fù)能量平衡,在自身維持和哺育后代的能量分配之間存在權(quán)衡,低溫下產(chǎn)熱增加,繁殖輸出減少;黑線倉(cāng)鼠可能感知環(huán)境溫度的變化,在連續(xù)降低溫度的條件下降低繁殖投資,符合“季節(jié)性投資假說(shuō)”的預(yù)測(cè)。
[1]Hammond K A, Kristan D M. Responses to lactation and cold exposure by deer mice (Peromyscusmaniculatus). Physiological and Biochemical Zoology, 2000, 73(5): 547- 556.
[2]Kròl(fā) E, Speakman J R. Limits to sustained energy intake VI. Energetics of lactation in laboratory mice at thermoneutrality. The Journal of Experimental Biology, 2003, 206(23): 4255- 4266.
[3]Kròl(fā) E, Speakman J R. Limits to sustained energy intake VII. Milk energy output in laboratory mice at thermoneutrality. The Journal of Experimental Biology, 2003, 206(23): 4267- 4281.
[4]Zhang X Y, Wang D H. Thermogenesis, food intake and serum leptin in cold-exposed lactating Brandt′s volesLasiopodomysbrandtii. The Journal of Experimental Biology, 2007, 210(3): 512- 521.
[5]Garton D W, Hsu M J, Harder J D. Environmental temperature and metabolic rates during gestation and lactation in golden hamsters (Mesocricetusauratus). Physiological Zoology, 1994, 67(2): 496- 514.
[6]Speakman J R. 小型嚙齒動(dòng)物的繁殖能量代價(jià). 獸類學(xué)報(bào), 2007, 27(1): 1- 13.
[7]Speakman J R, Król E. Limits to sustained energy intake IX: a review of hypotheses. Journal of Comparative Physiology B, 2005, 175(6): 375- 394.
[8]Lambin X, Yoccoz N G. Adaptive precocial reproduction in voles: reproductive costs and multivoltine life-history strategies in seasonal environments. Journal of Animal Ecology, 2001, 70(2): 191- 200.
[9]Koivula M, Koskela E, Mappes T, Oksanen T A. Cost of reproduction in the wild: manipulation of reproductive effort in the bank vole. Ecology, 2003, 84(2): 398- 405.
[10]Wu S H, Zhang L N, Speakman J R, Wang D H. Limits to sustained energy intake. XI. A test of the heat dissipation limitation hypothesis in lactating Brandt′s voles (Lasiopodomysbrandtii). The Journal of Experimental Biology, 2009, 212(21): 3455- 3465.
[11]張知彬, 王祖望. 農(nóng)業(yè)重要害鼠的生態(tài)學(xué)及控制對(duì)策. 北京: 海洋出版社, 1998.
[12]李玉春, 盧浩泉, 張學(xué)棟, 徐文生. 黑線倉(cāng)鼠的生長(zhǎng)指標(biāo)分析與年齡指標(biāo)確定. 獸類學(xué)報(bào), 1989, 9(1): 49- 55.
[13]楊玉平, 周延林, 張鵬利, 侯希賢, 董維惠. 黑線倉(cāng)鼠生長(zhǎng)發(fā)育的研究. 獸類學(xué)報(bào), 1996, 16(4): 309- 311.
[14]鮑偉東, 王德華, 王祖望, 周延林, 王利民. 內(nèi)蒙古庫(kù)布齊沙地和呼和浩特平原黑線倉(cāng)鼠種群繁殖特征的比較. 動(dòng)物學(xué)雜志, 2001, 36(1): 15- 18.
[15]趙志軍. 黑線倉(cāng)鼠繁殖輸出與基礎(chǔ)代謝率的關(guān)系. 獸類學(xué)報(bào), 2011, 31(1): 69- 78.
[16]Zhao Z J. Energy budget during lactation in striped hamsters at different ambient temperatures. The Journal of Experimental Biology, 2011, 214(2): 988- 995.
[17]Gorecki A. Kalabukhov-Skvortsov respirometer and resting metabolic rate measurement // Grodzinski W, ed. Methods for Ecological Energetics. Oxford: Blackwell Scientific, 1975: 309- 313.
[18]Zhao Z J, Cao J, Meng X L, Li Y B. Seasonal variations in metabolism and thermoregulation in the striped hamster (Cricetulusbarabensis). Journal of Thermal Biology, 2010, 35(1): 52- 57.
[19]Heldmaier G. Nonshivering thermogenesis and body size in mammals. Journal of Comparative Physiology A, 1971, 73(2): 222- 247.
[20]王建梅, 王德華. 不同去甲腎上腺素劑量下布氏田鼠非顫抖性產(chǎn)熱比較. 獸類學(xué)報(bào), 2006, 26(1): 84- 88.
[21]Zhao Z J, Wang D H. Short photoperiod enhances thermogenic capacity in Brandt′s voles. Physiology & Behavior, 2005, 85(2): 143- 149.
[22]Zhao Z J, Wang D H. Short photoperiod influences energy intake and serum leptin level in Brandt′s voles (Microtusbrandtii). Hormone and Behavior, 2006, 49(4): 463- 469.
[23]劉赫, 王德華, 王祖望. 小型哺乳動(dòng)物繁殖期的能量收支對(duì)策. 獸類學(xué)報(bào), 2001, 21(4): 301- 309.
[24]趙志軍, 遲慶生, 曹靜. 小型哺乳動(dòng)物的持續(xù)能量收支限制研究進(jìn)展. 動(dòng)物學(xué)雜志, 2009, 44(4): 155- 160.
[25]Zhao Z J, Chi Q S, Cao J. Limits to sustainable energy budget during lactation in the striped hamster (Cricetulusbarabensis) raising litters of different size. Zoology, 2010, 113(4): 235- 242.
[26]Zhao Z J. Energy budget during four successive bouts of lactation in striped hamsters exposed to decreases in ambient temperature. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2011, 160(2): 229- 236.
[27]侯希賢, 董維惠, 楊玉平, 周延林. 呼和浩特地區(qū)黑線倉(cāng)鼠種群動(dòng)態(tài)研究. 動(dòng)物學(xué)研究, 1993, 14 (2): 143- 149.
[28]姜運(yùn)良, 盧浩泉, 李玉春, 王玉山, 張學(xué)棟, 徐文生, 于之慶. 山東陽(yáng)谷縣黑線倉(cāng)鼠種群數(shù)量預(yù)測(cè)預(yù)報(bào). 獸類學(xué)報(bào), 1994, 14(3): 196- 202.
[29]趙志軍, 曹靜, 李路勝. 小鼠基礎(chǔ)代謝率與繁殖輸出和繁殖期末器官的關(guān)系. 動(dòng)物學(xué)雜志, 2010, 45(4): 39- 45.
Effect of consecutive decreases in temperature and reproductive experiences on energy budget during lactation in the striped hamster (Cricetulusbarabensis)
CAO Jing1, WANG Guiying2, ZHAO Zhijun1,*
1CollegeofLifeandEnvironmentalScience,WenzhouUniversity,Wenzhou325035,China2SchoolofLifeScience,LiaochengUniversity,Liaocheng252059,China
Effects of temperature and reproductive experiences on the energy budget of striped hamsters (Cricetulusbarabensis) during lactation were examined in this study. The hamsters were exposed to a gradual decrease in the ambient temperature, from 30℃ to 0℃ throughout three bouts of lactation. The temperature was decreased from 30℃ to 20℃ during the 1stlactation period, and similarly, from 20℃ to 10℃ and from 10℃ to 0℃ during the 2ndand 3rdlactation periods, respectively. For each bout, the energy intake and energy expenditure of female hamsters were measured during the peak lactation. Furthermore, resting metabolic rate (RMR) and nonshivering thermogenesis (NST) were quantified using an open-flow respirometry system, to indicate the rate of oxygen consumption. Cytochrome c oxidase (COX) activity of brown adipose tissue (BAT) was determined polarographically with oxygen electrode units. Serum thyroid hormone (tri-iodothyronine, T3and thyroxine, T4) and prolactin concentrations were determined using a radioimmunoassay method. Total body fat was extracted from the dried carcass by ether extraction in a Soxhlet extractor. Body mass of female hamsters decreased significantly during lactation, and body mass measurements between days 7 and 17 of lactation decreased by 12.4%, 12.3%, and 13.5% in the 1st, 2nd, and 3rdlactation groups, respectively. The sustained energy intake during the peak observed in the 3rdlactation group was significantly higher than that in the 1stand 2ndlactation groups. Litter sizes were 4.4 ± 0.1, 4.4 ± 0.2, and 4.3 ± 0.4 in the 1st, 2nd, and 3rdlactation groups, respectively, among which no statistically significant differences were observed. In contrast, significant differences in litter mass were observed among the three groups. Litter mass in the 1stand 2ndlactation groups decreased to a greater extent than in the 3rdlactation group by 15.1% and 18.2%, respectively, on day 7 of lactation, and by 24.5% and 18.6%, respectively, on day 17 of lactation. Significant correlations were observed among the sustained energy intake, litter size, and litter mass. RMR and NST were also significantly different among the three groups, with the females in the 2ndand 3rdlactation groups showing higher RMR and NST than those in the 1stlactation group. The sustained energy intake during peak lactation was positively correlated with RMR and NST. Neither wet nor dry carcass mass showed significant differences among the three lactation groups. Fat content in the 2ndand 3rdlactation groups decreased to a greater extent than that in the 1stlactation group, by 12% and 28%, respectively. BAT COX activity in the 1stand 2ndlactation groups increased to a greater extent than in the 3rdlactation group, by 139.7% and 65.5%, respectively. Serum T3concentrations were significantly higher in the 3rdlactation group than in the 1stlactation group, whereas the differences in T4concentration were not significant among the three groups. Serum prolactinconcentrations also did not show significant differences among the three groups. These results suggest a trade-off between the energy allocation to thermogenesis and offspring, in female hamsters under successive decreases in temperature. Cold exposure induces a significant increase in thermogenesis but a decrease in reproductive output. Furthermore, striped hamsters may perceive a decline in ambient temperature and consequently decrease reproductive output. The findings of the present study are consistent with the prediction of “the seasonal investment hypothesis.”
energy budget; reproduction; seasonal investment; striped hamster (Cricetulusbarabensis); thermogenesis
國(guó)家自然科學(xué)基金資助項(xiàng)目(31270458),溫州大學(xué)重點(diǎn)實(shí)驗(yàn)室開放項(xiàng)目(14SK51A, 14SK52A);浙江省中青年學(xué)科帶頭人學(xué)術(shù)攀登項(xiàng)目(pd2013374)
2015- 01- 16; 網(wǎng)絡(luò)出版日期:2015- 11- 17
Corresponding author.E-mail: zhao73@foxmail.com
10.5846/stxb201501160137
曹靜,王桂英,趙志軍.環(huán)境溫度和繁殖經(jīng)歷對(duì)黑線倉(cāng)鼠哺乳期能量收支的影響.生態(tài)學(xué)報(bào),2016,36(15):4824- 4831.
Cao J, Wang G Y, Zhao Z J.Effect of consecutive decreases in temperature and reproductive experiences on energy budget during lactation in the striped hamster (Cricetulusbarabensis) .Acta Ecologica Sinica,2016,36(15):4824- 4831.