• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Corrected SPH methods for solving shallow-water equations*

    2016-10-18 05:36:35ShanqunCHEN陳善群BinLIAO廖斌TaoHUANG黃濤
    關(guān)鍵詞:黃濤

    Shan-qun CHEN (陳善群), Bin LIAO (廖斌), Tao HUANG (黃濤)

    College of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China,

    E-mail: chenshanqun@126.com

    ?

    Corrected SPH methods for solving shallow-water equations*

    Shan-qun CHEN (陳善群), Bin LIAO (廖斌), Tao HUANG (黃濤)

    College of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China,

    E-mail: chenshanqun@126.com

    The artificial viscosity in the traditional smoothed particle hydrodynamics (SPH) methodology concerns some empirical coefficients, which limits the capability of the SPH methodology. To overcome this disadvantage and further improve the accuracy of shock capturing, this paper introduces two other ways for numerical viscosity, which are the Lax-Friedrichs flux and the twoshock Riemann solver with MUSCL reconstruction to provide stability. Six SPH methods with different kinds of numerical viscosity are tested against the analytical solution for a 1-D dam break with a wet bed. The comparison shows that the Lax-Friedrichs flux with MUSCL reconstruction can capture the shock wave more accurate than other five methods. The Lax-Friedrichs flux and the artificial viscosity with MUSCL reconstruction are finally both applied to a 2-D dam-break test case in a L-shaped channel and the numerical results are compared with experimental data. It is concluded that this corrected SPH method can be used to solve shallow-water equations well.

    smoothed particle hydrodynamics (SPH) methodology, artificial viscosity, Lax-Friedrichs flux, two-shock Riemann solver, MUSCL reconstruction, shallow water equations

    Introduction

    The shallow-water equations (SWEs) are widely used for hydrodynamic simulations in coastal regions,bays, estuaries and lakes, to predict tsunamis, dam breaks, storm surges, floods and other natural disasters[1]. Due to the obvious nonlinearity of the SWEs, the analytical solutions can only be obtained in rare special circumstances, so numerical simulation methods are required in actual projects.

    The grid-based classical Euler methods are now widely applied to solve the SWEs, such as the finite difference method and the finite volume method. However, due to restrictions of grid, grid-based methods suffer many limitations in simulating multi-phase effects, most importantly, the debris flows in flood modeling. On the other hand, the particle method requires no grid, therefore, the grid distortion and reconstruction problems can be avoided, with a natural advantage in dealing with large deformation for free interface. This feature makes particle methods promising in solving the SWEs.

    The smoothed particle hydrodynamics(SPH) is a purely Lagrangian meshless method originally introduced to simulate astrophysical problems by Lucy[2]in 1997. The method was then applied to solve the Navier-Stokes equations, and it now becomes increasingly popular as a technique to study a range of applications, including wave breaking, impact-fracture problems, and bio-medical problems. The SWEs are based on the incompressible Navier-Stokes equations with the assumption of the hydrostatic pressure and the Boussinesq approximation, which provides a theoretical basis for the use of the SPH method in their solutions. Ata and Soula?mani[3]obtained some results in the wet bed test case by improving the formulation of the stabilization term. Rodriguez-Paz and Bonet[4]presented a SPH formulation for shallow water, based on the variational formulation, which can conserve boththe total mass and momentum. De Leffe et al.[5]solved the nonlinear SWEs by an SPH method and presented coastal flow simulations.

    In the process of solving SWEs by the SPH methods, virtual numerical oscillations are produced in the vicinity of the shock wave. Traditionally, an artificial viscosity was added to the SPH momentum equation to suppress the non-physical oscillation. Nevertheless, the artificial viscosity contains some empirical coefficients[6], which is different in different test cases and so the conventional SPH methods suffer some limitations in solving the SWEs.

    To improve the accuracy and the generality of the conventional SPH method in modeling the SWEs, this paper introduces two schemes of numerical viscosities in the SPH method, and also uses the MUSCL reconstruction to reduce the level of numerical viscosity. Then, the corrected SPH methods are employed to solve classic shallow-water test cases and the results are compared with exact solutions. Finally, the ability of the shock capturing of the corrected SPH methods is verified by a more complicated numerical experiments.

    1. SPH for shallow water

    1.1 Lagrangian formulation of SWEs

    The SWEs are the depth-integrated equations of mass and momentum conservations and are written in the Lagrangian form as

    Equations (1) are in the form the same as the Euler equations if we redefine the densityas the amount of fluid per unit of area in a 2-D domain; with this new definition of, it can be related to the depth of wateras

    1.2 Density evaluation

    The SPH approximation for the density of theparticleis

    In the shallow-water approximation, the fluid will follow the terrain and its projected 2-D density will expand or contract according to the height of the water column as shown by Eq.(2). A variable smoothing length is therefore needed in order to maintain the accuracy of the solution. In general,must vary according to[4]

    According to Eq.(5), the smoothing lengthof theparticle is related to the densityas

    Differentiating Eq.(4) and using the chain rule for the kernel leads to

    The derivative of the kernel function with respect tois obtained as

    Substituting Eqs.(8) and (9) andinto Eq.(7) leads to

    Converting the directional derivative of Eq.(11)into the derivative of the density, we have

    The aforementioned Eq.(6) is implicit because the densityis a function ofas in Eq.(4), a Newton-Raphson iteration is adopted to solve Eqs.(4)and (6).

    The root of Eq.(7) can be found by using the Newton-Raphson iterative formula

    The derivative of the residual is calculated by differentiating Eq.(13) and using the chain rule for the kernel function

    Substituting the derived results of Eq.(9) into the above equation and remembering that, we have

    Substituting Eq.(16) into Eq.(14) gives the final iterative formula for

    where

    The Newton-Raphson iterations can be conducted independently for each particle and will be stopped when. Then entering into the iteration process of particlesand until all particles are covered. Since now we focus on the problem of the poor ability in shock capturing in solving the SWEs and the accuracy requirements are not very important, we let the coefficient

    1.3 Momentum equation

    The Lagrangian equation of motion for a particle iis

    where the Lagrangian functionalis defined in terms of the kinetic energyand the potential energyasis a function of particle positions but not velocities. The kinetic energy for a system of particles can be calculated as the sum of the energies of all particles

    Fig.1 Flow with a free surface under the effect of gravity

    According to Newton’s second law, Eq.(19) is equivalent to

    Substituting the kinetic energyinto the inertial forcegives

    The total internal energy stored in the group of particles is

    Substituting the compression ratioand the pressureinto Eq.(25) for the equivalent transformation, the directional derivative ofis (see Ref.[7])

    Substituting the derivative of(Eq.(11)) in the above equation and rearranging the summations gives

    The comparison of Eq.(26) with Eq.(28) gives the internal force

    Substituting in Eq.(29) the pressureobtained by means of the hydrostatic law:, the final formulation foris

    By substituting Eqs.(23), (24) and (30) into (22)and taking into account also the effect of the friction source term, the particle accelerationcan be finally obtained as

    1.4 Time integration scheme

    To integrate in time the particle positions and velocities, we use the leap-frog time integration scheme[8]defined as:

    As an explicit method, the time step must satisfy a Courant-Friedrichs-Lewy (CFL) condition[9]. In the SPH, this condition is imposed with the smoothing length as a reference length

    2. Stabilizing treatments

    2.1 Numerical viscous improvement

    In the Von Neumann stability analysis system[10],the SPH method can be interpreted as a central finite difference scheme and some viscosity is needed to avoid numerical oscillations in the presence of shock waves. Therefore, Eq.(30) should be modified as follows

    In the original SPH formulation introduced by Monaghan[6],is an artificial viscosity activated when two particles are approaching. The main drawback of this formulation is that it needs to be tuned according to the necessary numerical viscosity, which is different in different test cases. In order to overcome this drawback, the paper introduces two modified schemes.

    (1) Lax-Friedrichs flux

    According to Ata and Soula?mani[3], the centred fluxin the Lax-Friedrichs flux is replaced as

    Fig.2 Initial condition of 1D dam break flow with wet bed

    After some algebraic operations, the following expression of the stabilizingis obtained

    Fig.3 Water depth for 1-D dam break with wet bed at time 0.05 s

    (2) Two-shock Riemann solvers

    The Riemann solvers are widely used in finite volume schemes for hyperbolic equations[11,12]and there were some attempts to introduce them in the SPH formalism[13]. Comparing these approaches with the artificial viscosity method, the advantage of the Riemann solvers is that no extra numerical dissipation is introduced.

    In this work we introduce the two-shock Riemann solver[14]into our Shallow Water models. The main idea is to consider each interaction between theandparticles as a Riemann problem and therefore to replace the pressuresin Eq.(29) with the resultant pressure

    where, according to the two-shock Riemann solver,are the left and right water depthsrepresent the normal velocities in the left and right statesandis an estimate of the water depth that can be obtained from some other direct Riemann Solvers.

    2.2 MUSCL-type reconstruction

    To reduce the level of the numerical viscosity and improve the accuracy of the numerical calculation,a monotone upwind-centred scheme for the conservation law (MUSCL) non-upwind procedure[15]is used to reconstruct a generic physical quantityin the left and right states of the Riemann problem

    The MUSCL reconstruction used on two amendments in above two sections is applied to reconstruct the velocitiesand the water depthsin theterm of the Lax-Friedrichs flux (see Eq.(36)), whereis replaced with, and in the two-shock Riemann solver (see Eq.(39)).

    3. Test cases

    The dam break flow can cause disasters in the downstream, which would propagate in rivers in the form of standing wave, and the wave crest would generate a sudden rise of water level along its path[16-18]. The SWEs are widely used to simulate the water level in dam break flows, which are difficult to capture exactly. Hence we choose two dam break cases to test the corrected SPH methods.

    3.1 1-D dam break flow with wet bed

    To verify the effect of the shock capturing capability by using the stabilization schemes in solving shallow water equations, a 1-D dam break case is considered in this section. The initial conditions are shown in Fig.2, where the water depthin the upstream part of the domainandin the downstream part of the domain. There are 150 particles scattered nonuniformly inside the domain according to the water depth. In the upstream part of the reservoir, we letin the six different simulations, for the particles placed downstream,is twice the initial particle spacing for the upstream part. In the test, no source terms are considered and the initial velocity is 0.

    Fig.4 Water depth for 1-D dam break with wet bed at time 0.05 s

    Figure 3 shows the comparison between the analytical solution and the SPH results obtained by using different kinds of numerical viscosity. The results in Figs.3(a), 3(c) and 3(e) show that the three kinds of numerical viscosity, the artificial viscosity, the Lax-Friedrichs flux and the two-shock Riemann solver can all capture the shock wave with a certain degree of accuracy, but the additional numerical viscosity can cause unnecessary oscillations with a significant deviation of the water line in corners. In order to improve the shock capturing ability, the reconstruction technique is required to introduce into the three kinds of numerical viscosity mentioned above to prevent from producing the rarefaction wave. The comparison isshown in Figs.3(a)-3(f). The results indicate that the viscosity terms with the MUSCL reconstruction in comparison to those without reconstruction can reproduce the sharper shock without introducing unnecessary oscillatios in the rarefaction wave. Finally, the comparison is shown in Figs.3(b), 3(d)and 3(f). The results show that the artificial viscosity and the twoshock Riemann solver with the MUSCL reconstruction both overpredict the water depth in the initial part of the rarefaction wave, but with the Lax-Friedrichs flux with reconstruction, more accurate results are obtained.

    Table 1non-dimensional norm of water depth error calculated for 1-D dam break with wet bed atconsidering 6 different stabilization terms

    Table 1non-dimensional norm of water depth error calculated for 1-D dam break with wet bed atconsidering 6 different stabilization terms

    x?AV  LF  TS  AV+MUSCL  LF+MUSCL  TS+MUSCL 0.0100 m  1.52×10-2 1.57×10-2 1.56×10-2 1.03×10-2 1.00×10-2 1.02×10-20.0050 m  9.29×10-3 9.81×10-3 9.81×10-3 6.01×10-3 5.88×10-3 6.01×10-30.0025 m  5.82×10-3 6.41×10-3 6.41×10-3 4.12×10-3 3.87×10-3 4.12×10-3

    Figure 4 shows the comparison of water levels between the exact solution and the three viscosity schemes with MUSCL reconstruction, as well as, the local amplification of the shock wave front. From 4(b)and 4(c), it is seen that the Lax-Friedrichs flux method is more accuate than other two in the positon of a sudden drop of the water level.

    In order to illustrate the shock capturing capability of the six terms, a convergence analysis is also performed by using three different initial particle spacings0.01 m, 0.005 m and 0.0025 m, respectively, theerror norm of the nondimensional water depth is defined as

    3.2 2-D dam-break flow in a L-shaped channel

    In order to validate the shock wave capturing ability of the Lax-Friedrichs flux with the MUSCL reconstruction, the case of a 2-D dam-break flow in a channel with abend[19]is taken for simulation.

    Fig.5 Geometry of the reservoir and L-shaped channel: plane and profile views and positions of the gauges of the experimental setup (m)

    The flow domain consists of a square reservoir and the L-shaped channel as shown in Fig.5. The upstream reservoir has dimensions of 2.39 m×2.44 m,the channel is rectangular, 0.495 m wide, the upstream reach is 3.92 m long and the downstream reach, behind thebend, is 2.92 m long. The bottom of the channel is flat and is 0.33 m higher than that of the reservoir. Initially, the water depth is 0.53 m high in the reservoir, which is separated by a gate from the channel and then the gate is suddenly opened to produce a dam-break situation. The water levels are recorded during the experiment in the reservoir and along the channel using 6 gauges, as shown in Fig.5. In the simulation, 2 450 particles are initially placed in the reservoir over an uniform Cartesian grid with size. The channel bed is initially dry, and its Manning?s friction coefficient is

    Fig.6 Water level profiles at typical times of 2-D L-shaped dam break with dry bed (m)

    Figure 6 shows some typical water-level profiles at different times in the process of dam break. At3.2 s, the front reaches the bend and a bore forms in the corner, at, the bore travels back to the reservoir, atit disappears, atbecause of the effect of the channel end wall, a bore forms again and travels upstream, at, the second bore disppears and at, the water flow becomes stable.

    The variation of the water depth with time by the SPH-SWEs presented in this paper is compared with the experimental data at different gauge positions as shown in Fig.7. The Lax-Friedrich flux with MUSCL reconstruction is applied for its good performance mentioned in the last section. Numerical results obtained from the SPH with the artificial viscosity are presented here for a comparison to those obtained by using the numerical viscosity. Gauge 1 is placed inside the reservoir near the channel, the good agreement of the experimental data with the numerical results means that the discharge entering the channel is correct. Gauges 2, 3, 4 are placed along the channel upstream of the bend, therefore, they can capture the abrupt water level elevations because of the reflected wave travelling to the reservoir. The numerical model can reproduce the water level at Gauges 2, 3 and 4, especially when at 16 s at Gauge 2, at 14 s at Gauge 3 and at 9 s at Gauge 4, where the great change of water level occurs. However, differences are witnessed at Gauge 5. The overall disagreement at Gauge 5 is due to the local head loss caused by thebend which is not taken into account in the numerical computation. At Gauge 6, a good agreement with the experimental data is evidenced. In general, all numerical results are in good agreement with the experimental data, except that the AV+MUSCL method slightly overpredicts the water level at Gauge 2. However, the computational time of the simulation with the LF+MUSCL method is less than that of the AV+MUSCL method by about 1 000 s.

    4. Conclusion

    In the traditional SPH method, the artificial viscosity is added to the SPH momentum equation foreliminate the non-physical oscillation generated in the vicinity of the shock wave. Nevertheless, the artificial viscosity formulation needs to be tuned according to the necessary numerical viscosity, which is different in different test cases. To improve the accuracy and the generality of the conventional SPH method, this paper introduces two numerical viscosities, which are the two-shock Riemann solver and the Lax-Friedrichs flux. In order to reduce the numerical oscillation in the computational processes, the MUSCL reconstruction is used to reconstruct the velocity and the water depths in the artificial viscosity, the two-shock Riemann solver and the Lax-Friedrichs flux. These improved SPH methods are tested against the analytical solution for the 1-D dam break with wet bed. The results show that the shock waves are simulated accurately by schemes of the numerical viscosity with reconstruction procedures for stability and the best results are obtained by using the Lax-Friedrichs flux with MUSCL reconstruction. Finally, the Lax-Friedrichs flux and the artificial viscosity with MUSCL reconstruction are both applied to the case of a 2-D dam-break flow in a channel with a L-shaped bend. Both methods make good predictions as compared with experimental measurements, but the number of iterations necessary to converge with the LF+MUSCL is less than that for the AV+MUSCL, thus the first method is more efficient. In conclusion, the corrected SPH method can solve shallow water problems with improved accuracy and generality.

    Fig.7 Water levels recorded by gauges from G1 to G6

    Acknowledgement

    This work was supported by the opening fund of key Laboratory of Mechanics, Anhui Polytechnic University (Grant No. 201602).

    References

    [1] ZHAO Zhang-yi. Numerical simulation and application of a Runge-Kutta discontinuous Galerkin scheme for one-dimension shallow water equations[D]. Master Thesis, Tianjin, China: Tianjin University, 2010(in Chinese).

    [2] LUCY L. A numerical approach to the testing of fusion process[J]. Joural of Astronomical, 1977, 8(12): 1013-1024.

    [3] ATA R., SOULA?MANI A. A stabilized SPH method for inviscid shallow water flows[J]. International Journal for Numerical Methods in Fluids,2004, 47(2): 139-159.

    [4] RODRIGUEZ-PAZ M., BONET J. A corrected smooth particle hydrodynamics formulation of the shallow-water equations[J]. Computers and Structures, 2005, 83(17-18): 1396-1410.

    [5] De LEFFE M., Le TOUZé D. and ALESSANDRINI B. Coastal flow simulations using an SPH formulation modeling the nonLinear shallow water equations[C]. Proceedings of the 3th ERCOFTAC SPHERIC workshop on SPH applications. Lausanne, Switzerland, 2008, 48-54.

    [6] MONAGHAN J. J. Smoothed particle hydrodynamics and its diverse applications[J]. Annual Review Fluid Mechanics, 2012, 44: 323-346.

    [7] BONET J., KULASEGARAM S. Correction and stabilisation of smooth particle hydrodynamics with application in metal forming[J]. International Journal for Numerical Methods in Engineering, 2000, 47(6): 1189-1214.

    [8] CHEN Shan-qun, LIAO Bin. Numerical simulation of free surface flows based on SPS-SPH Method[J]. Journal of Ship Mechanics, 2013, 17(9): 969-981.

    [9] De MOURA C. A., KUBRUSLY C. S. The Courant-Friedrichs-Lewy (CFL) condition[M]. New York, USA: Springer Science+Business Media, 2013.

    [10] YUSTE S. B., ACEDO L. An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations[J]. SIAM Journal on Numerical Analysis, 2005, 42(5): 1862-1874.

    [11] INUTSUKA S.-I. Reformulation of smoothed particle hydrodynamics with Riemann solver[J]. Journal of Computational Physics, 2002, 179(1): 238-267.

    [12] CHA S. H., WHITWORTH A. P. Implementations and tests of Godunov-type particle hydrodynamics[J]. Monthly Notice of the Royal Astronomical Society, 2003, 340(1): 73-90.

    [13] TRICCO T. S., PRICE D. J.Constrained hyperbolic divergence cleaning for Smoothed Particle Magnetohydrodynamics[J]. Journal of Computational Physics, 2012,231(21): 7214-7236.

    [14] TORO E. F. Direct Riemann solvers for the time-dependent Euler equations[J]. Shock Waves, 1995, 5(1-2): 75-80.

    [15] EDWARDS M. G. The dominant wave-capturing flux: A finite-volume scheme without decomposition for systems of hyperbolic conservation laws[J]. Journal of Computational Physics, 2006, 218(1): 275-294.

    [16] WU Qiao-rui, TAN Ming-yi and XING Jing-tang. An improved moving particle semi-implicit method for dam break simulation[J]. Journal of Ship Mechanics, 2014,18(9): 1044-1054.

    [17] YUAN Yue, RONG Gui-wen and DAI Hui-chao et al. Simulation of dam-break flow over partially deformed bed based on 2D FEVM-SWEs model[J]. Chinese Journal of Hydrodynamics, 2015, 30(5): 549-555(in Chinese).

    [18] ZHANG Ming-liang, XU Yuan-yuan and QIAO Yang et al. Numerical simulation of flow and bed morphology in the case of dam break floods with vegetation effect[J]. Journal of Hydrodynamics, 2016, 28(1): 23-32.

    [19] SOARES-FRAZAO S., SILLEN S. and ZECH Y. Dambreak flow through sharp bends: physical model and 2D Boltzmann model validation[C]. Proceedings of the CADAM Meeting. Wallingford, UK, 1998.

    May 30, 2014, Revised October 14, 2014)

    * Project supported by the National Natural Science Foundation of China (Grant No. 51175001), the Natural Science Foundation of Anhui Province (Grant No. 1508085QE100) and the Higher Education of Anhui Provincial Scientific Research Project Funds (Grant No. TSKJ2015B03)

    Biography: Shan-qun CHEN (1981-), Female, Ph. D.,

    Associate Professor

    Bin LIAO,

    E-mail: liaobinfluid@126.com

    猜你喜歡
    黃濤
    小保安闖《封神》:親媽粉必須擁有姓名
    斑馬線上的猶豫
    Comparative study of pulsed breakdown processes and mechanisms in self-triggered four-electrode pre-ionized switches
    A low-jitter self-triggered spark-discharge pre-ionization switch: primary research on its breakdown characteristics and working mechanisms
    A calculation model for breakdown time delay and jitter of gas switches under hundred-nanosecond pulses and its application in a self-triggered pre-ionized switch
    黃濤:用雙手“剪”出幸福人生
    黃濤 設(shè)計作品選
    我校黃濤書記在2019中國(西安)世界職業(yè)教育大會做主旨發(fā)言
    法官情人曾記否,那蓋了章的離婚保證書
    以男友名義拯救你!愛到深處不娶不嫁
    欧美精品国产亚洲| 国产69精品久久久久777片| 亚洲在线观看片| 白带黄色成豆腐渣| 国产av在哪里看| 黑人高潮一二区| 国模一区二区三区四区视频| 乱码一卡2卡4卡精品| 国产成人freesex在线| 欧美一区二区精品小视频在线| 99久久中文字幕三级久久日本| 日韩av在线大香蕉| 成年av动漫网址| 精品少妇黑人巨大在线播放 | 蜜臀久久99精品久久宅男| 亚洲18禁久久av| 一区二区三区免费毛片| 99久久人妻综合| www.av在线官网国产| 91aial.com中文字幕在线观看| av在线天堂中文字幕| 亚洲人与动物交配视频| 看片在线看免费视频| 亚洲欧美精品自产自拍| 亚洲国产欧美在线一区| 亚洲欧美清纯卡通| 人人妻人人看人人澡| 寂寞人妻少妇视频99o| 国产精品一及| 99久久精品国产国产毛片| 99久久人妻综合| 网址你懂的国产日韩在线| eeuss影院久久| 综合色丁香网| 中文字幕免费在线视频6| av在线亚洲专区| 亚洲精品久久久久久婷婷小说 | 青青草视频在线视频观看| 人体艺术视频欧美日本| 99久久中文字幕三级久久日本| 久久午夜福利片| 欧洲精品卡2卡3卡4卡5卡区| 一级黄色大片毛片| 国产伦精品一区二区三区视频9| 日日干狠狠操夜夜爽| 久久草成人影院| 欧美日韩国产亚洲二区| av在线观看视频网站免费| 综合色av麻豆| 国产69精品久久久久777片| 国产伦一二天堂av在线观看| 91av网一区二区| 综合色丁香网| 国内久久婷婷六月综合欲色啪| 国产黄片美女视频| 97超视频在线观看视频| 少妇人妻精品综合一区二区 | 自拍偷自拍亚洲精品老妇| a级毛片免费高清观看在线播放| 少妇人妻精品综合一区二区 | 国产成人精品婷婷| 简卡轻食公司| 国产精品不卡视频一区二区| 哪个播放器可以免费观看大片| 我要看日韩黄色一级片| 晚上一个人看的免费电影| 伊人久久精品亚洲午夜| 久久婷婷人人爽人人干人人爱| 少妇猛男粗大的猛烈进出视频 | 九九热线精品视视频播放| 午夜爱爱视频在线播放| 赤兔流量卡办理| 男的添女的下面高潮视频| 中文精品一卡2卡3卡4更新| 国产精品久久视频播放| 啦啦啦观看免费观看视频高清| 三级国产精品欧美在线观看| 激情 狠狠 欧美| 欧美色欧美亚洲另类二区| 91狼人影院| 国产精品无大码| 日本免费a在线| 如何舔出高潮| 日本黄色视频三级网站网址| 亚洲熟妇中文字幕五十中出| 一个人观看的视频www高清免费观看| 国产美女午夜福利| 成年女人看的毛片在线观看| 久久久久久九九精品二区国产| 亚洲美女视频黄频| 国产黄色小视频在线观看| 99热这里只有是精品在线观看| 亚洲三级黄色毛片| 在线观看66精品国产| 哪个播放器可以免费观看大片| 欧美一区二区亚洲| 久久99热6这里只有精品| 赤兔流量卡办理| 我的老师免费观看完整版| 亚洲av男天堂| 国产成人a∨麻豆精品| 欧美成人免费av一区二区三区| 少妇的逼水好多| 国产熟女欧美一区二区| 少妇丰满av| 国产精品爽爽va在线观看网站| 一本久久中文字幕| 欧美成人精品欧美一级黄| 久久久欧美国产精品| 久久精品人妻少妇| 九色成人免费人妻av| 插阴视频在线观看视频| 如何舔出高潮| 99热精品在线国产| 国产亚洲精品久久久久久毛片| 男女做爰动态图高潮gif福利片| 一级二级三级毛片免费看| 在线免费十八禁| 久久精品国产亚洲av天美| 在线国产一区二区在线| 女同久久另类99精品国产91| 国产精品福利在线免费观看| 哪里可以看免费的av片| 狠狠狠狠99中文字幕| 少妇人妻精品综合一区二区 | 深夜精品福利| 嫩草影院精品99| 国产69精品久久久久777片| a级一级毛片免费在线观看| 亚洲成人av在线免费| 久久精品人妻少妇| 亚洲一级一片aⅴ在线观看| 久久精品影院6| 亚洲精品自拍成人| 搡女人真爽免费视频火全软件| 久久久精品94久久精品| 午夜老司机福利剧场| 国产日本99.免费观看| 成年av动漫网址| 伦精品一区二区三区| 国产一区二区在线观看日韩| 国产亚洲精品久久久com| 成人午夜精彩视频在线观看| 黄片无遮挡物在线观看| 久久久久九九精品影院| 波多野结衣巨乳人妻| 18禁黄网站禁片免费观看直播| 国产成人a∨麻豆精品| 老女人水多毛片| 永久网站在线| 成人午夜高清在线视频| 国产成人精品一,二区 | 欧美丝袜亚洲另类| 欧美区成人在线视频| 又粗又硬又长又爽又黄的视频 | 免费看光身美女| 久久久久久伊人网av| 在现免费观看毛片| 久久鲁丝午夜福利片| 在线免费观看的www视频| 乱系列少妇在线播放| 熟妇人妻久久中文字幕3abv| 哪里可以看免费的av片| 婷婷色av中文字幕| 99久久久亚洲精品蜜臀av| 免费观看人在逋| av黄色大香蕉| 久久99精品国语久久久| 男插女下体视频免费在线播放| av专区在线播放| 国产午夜精品久久久久久一区二区三区| 免费人成视频x8x8入口观看| kizo精华| 国产精品国产三级国产av玫瑰| 51国产日韩欧美| 亚洲最大成人中文| 成人特级av手机在线观看| 中文字幕制服av| 午夜福利在线观看免费完整高清在 | 日本欧美国产在线视频| 色综合色国产| 欧美一区二区国产精品久久精品| 亚洲国产精品久久男人天堂| 国产三级在线视频| 亚洲精品国产av成人精品| 亚洲人成网站在线观看播放| 国产精品一及| 国产精品伦人一区二区| 精品人妻偷拍中文字幕| 亚洲七黄色美女视频| 亚洲在线观看片| 亚洲欧美日韩无卡精品| 国产黄色视频一区二区在线观看 | 男人舔女人下体高潮全视频| 精品无人区乱码1区二区| 黄色日韩在线| 美女xxoo啪啪120秒动态图| 一本精品99久久精品77| 看非洲黑人一级黄片| 一本一本综合久久| 欧美最新免费一区二区三区| 久久综合国产亚洲精品| 国产欧美日韩精品一区二区| 国产成人91sexporn| 国产麻豆成人av免费视频| 国内精品一区二区在线观看| 舔av片在线| 亚洲第一电影网av| av免费观看日本| 在现免费观看毛片| 在线观看66精品国产| 国产精品爽爽va在线观看网站| 午夜精品国产一区二区电影 | 最近中文字幕高清免费大全6| 国产亚洲av片在线观看秒播厂 | 亚洲三级黄色毛片| 99热网站在线观看| 日本撒尿小便嘘嘘汇集6| 中文亚洲av片在线观看爽| 欧美性猛交╳xxx乱大交人| 亚洲人成网站在线播| 国内精品美女久久久久久| 国产高清有码在线观看视频| 亚洲成av人片在线播放无| 九九久久精品国产亚洲av麻豆| 在线免费十八禁| 岛国毛片在线播放| 18禁在线播放成人免费| 成人欧美大片| 亚洲av.av天堂| 国产中年淑女户外野战色| 人人妻人人澡人人爽人人夜夜 | 蜜臀久久99精品久久宅男| 亚洲国产精品成人综合色| 小蜜桃在线观看免费完整版高清| 久久中文看片网| 欧美色欧美亚洲另类二区| av.在线天堂| 免费观看人在逋| 国产成人精品一,二区 | kizo精华| 九色成人免费人妻av| 熟女人妻精品中文字幕| 欧美变态另类bdsm刘玥| 久久精品人妻少妇| 色哟哟·www| 国产老妇伦熟女老妇高清| 久久人妻av系列| 在线天堂最新版资源| 日韩欧美三级三区| 午夜福利视频1000在线观看| 国产精品永久免费网站| 变态另类成人亚洲欧美熟女| av免费在线看不卡| 亚洲四区av| 国产激情偷乱视频一区二区| 22中文网久久字幕| 成年女人永久免费观看视频| 国产日本99.免费观看| 国产成人freesex在线| 婷婷六月久久综合丁香| 禁无遮挡网站| 精品久久久久久久人妻蜜臀av| 午夜免费男女啪啪视频观看| 99久久精品热视频| 麻豆精品久久久久久蜜桃| 在线天堂最新版资源| 校园人妻丝袜中文字幕| 久久亚洲国产成人精品v| av免费在线看不卡| 亚洲美女搞黄在线观看| 亚洲国产精品sss在线观看| 午夜爱爱视频在线播放| 日本-黄色视频高清免费观看| 我要搜黄色片| 在线播放无遮挡| 99热网站在线观看| 国产91av在线免费观看| 久久人人精品亚洲av| 成人性生交大片免费视频hd| 在线天堂最新版资源| 亚洲七黄色美女视频| 国产精品人妻久久久久久| 在线免费观看的www视频| 中文字幕免费在线视频6| 男人舔奶头视频| 国产精华一区二区三区| av福利片在线观看| 欧美在线一区亚洲| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久午夜电影| 99热精品在线国产| 久久人人爽人人爽人人片va| 日本一本二区三区精品| 日韩欧美三级三区| 精品人妻一区二区三区麻豆| 国产高清激情床上av| 成年免费大片在线观看| 午夜福利在线在线| 热99re8久久精品国产| 亚洲第一区二区三区不卡| 免费人成视频x8x8入口观看| 色综合色国产| 一区二区三区四区激情视频 | 性插视频无遮挡在线免费观看| 国产伦一二天堂av在线观看| 国产精品女同一区二区软件| 91精品一卡2卡3卡4卡| 有码 亚洲区| 国产 一区 欧美 日韩| 免费观看a级毛片全部| 最近的中文字幕免费完整| 久久精品91蜜桃| 99久久无色码亚洲精品果冻| 久久久久久久久久久免费av| 国产高清有码在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 观看美女的网站| 波多野结衣巨乳人妻| 天堂√8在线中文| 亚洲第一电影网av| 久久婷婷人人爽人人干人人爱| 精品日产1卡2卡| 神马国产精品三级电影在线观看| 久久精品夜色国产| 男女啪啪激烈高潮av片| 中文字幕精品亚洲无线码一区| 我的老师免费观看完整版| 日韩欧美精品免费久久| 熟女电影av网| 午夜免费激情av| 一个人看的www免费观看视频| 18禁在线播放成人免费| 欧美+日韩+精品| 久久久精品94久久精品| 国产在线男女| 中文字幕熟女人妻在线| 91精品一卡2卡3卡4卡| 欧美性猛交黑人性爽| 日韩大尺度精品在线看网址| 波多野结衣高清作品| 国产亚洲av片在线观看秒播厂 | 99视频精品全部免费 在线| 免费搜索国产男女视频| 国语自产精品视频在线第100页| 日韩成人av中文字幕在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲精品国产成人久久av| 亚洲丝袜综合中文字幕| 亚洲av成人av| 啦啦啦韩国在线观看视频| 日韩欧美三级三区| 精品久久久久久久久久免费视频| 精品午夜福利在线看| 老师上课跳d突然被开到最大视频| 国产精品av视频在线免费观看| 久久精品久久久久久久性| 悠悠久久av| 久久午夜亚洲精品久久| 亚洲人成网站在线播放欧美日韩| 久久6这里有精品| 国产精品不卡视频一区二区| av在线天堂中文字幕| 日韩成人伦理影院| 综合色av麻豆| 国产精品人妻久久久久久| 国产视频首页在线观看| 看黄色毛片网站| 九色成人免费人妻av| 啦啦啦观看免费观看视频高清| 亚洲熟妇中文字幕五十中出| 黄色欧美视频在线观看| 国产成人福利小说| a级一级毛片免费在线观看| 国产精品日韩av在线免费观看| 日本一本二区三区精品| 欧美精品国产亚洲| 美女被艹到高潮喷水动态| 亚洲精品色激情综合| 国产又黄又爽又无遮挡在线| 亚洲精品色激情综合| 成人综合一区亚洲| 国产国拍精品亚洲av在线观看| 99精品在免费线老司机午夜| 成年女人永久免费观看视频| 久久亚洲国产成人精品v| 久久久精品欧美日韩精品| 18+在线观看网站| 激情 狠狠 欧美| 国产精品人妻久久久久久| 最近视频中文字幕2019在线8| 赤兔流量卡办理| 丰满乱子伦码专区| 色5月婷婷丁香| 一级二级三级毛片免费看| 成人永久免费在线观看视频| 日日干狠狠操夜夜爽| 成年版毛片免费区| 97热精品久久久久久| 亚洲人成网站在线播放欧美日韩| 亚洲av免费高清在线观看| 国产成人精品久久久久久| 99久国产av精品国产电影| 12—13女人毛片做爰片一| 乱系列少妇在线播放| 亚洲精品日韩在线中文字幕 | 男女做爰动态图高潮gif福利片| 日本在线视频免费播放| 国产私拍福利视频在线观看| 99精品在免费线老司机午夜| 久久久久久大精品| 国产伦一二天堂av在线观看| 女人十人毛片免费观看3o分钟| 伦理电影大哥的女人| 亚洲国产精品成人综合色| 三级男女做爰猛烈吃奶摸视频| 日韩高清综合在线| 两个人的视频大全免费| 少妇人妻精品综合一区二区 | 成人av在线播放网站| 欧美精品一区二区大全| 一本久久中文字幕| 久久久久国产网址| 激情 狠狠 欧美| 观看免费一级毛片| 亚洲激情五月婷婷啪啪| 午夜福利视频1000在线观看| 日韩在线高清观看一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 99热全是精品| 国产一级毛片七仙女欲春2| 黄色视频,在线免费观看| 啦啦啦观看免费观看视频高清| 精品国产三级普通话版| 青春草国产在线视频 | 久久久久久国产a免费观看| 男女那种视频在线观看| 最新中文字幕久久久久| 韩国av在线不卡| 女同久久另类99精品国产91| 亚洲国产精品成人综合色| 国产伦一二天堂av在线观看| 一级毛片久久久久久久久女| 成年版毛片免费区| 午夜精品在线福利| 天天躁夜夜躁狠狠久久av| 国产精品一二三区在线看| 美女大奶头视频| 亚洲真实伦在线观看| 婷婷色av中文字幕| 久久婷婷人人爽人人干人人爱| 99热这里只有是精品50| 淫秽高清视频在线观看| 99久久九九国产精品国产免费| 日韩欧美精品免费久久| 在线观看av片永久免费下载| 又爽又黄无遮挡网站| 在线观看一区二区三区| 欧美一级a爱片免费观看看| 黑人高潮一二区| 小蜜桃在线观看免费完整版高清| 搡老妇女老女人老熟妇| 亚洲中文字幕日韩| 欧美xxxx性猛交bbbb| 色尼玛亚洲综合影院| 免费av毛片视频| 欧美最黄视频在线播放免费| 深爱激情五月婷婷| 日本成人三级电影网站| 好男人在线观看高清免费视频| 日本五十路高清| 特大巨黑吊av在线直播| 色吧在线观看| 亚洲人成网站在线观看播放| 91久久精品国产一区二区成人| 在线天堂最新版资源| 国产成人aa在线观看| 亚洲乱码一区二区免费版| 国产精品伦人一区二区| 国产精品国产三级国产av玫瑰| 日韩一区二区视频免费看| 校园人妻丝袜中文字幕| 国产亚洲精品久久久久久毛片| 国产黄色视频一区二区在线观看 | av在线播放精品| 亚洲人成网站在线播放欧美日韩| 国产美女午夜福利| 最新中文字幕久久久久| 日韩大尺度精品在线看网址| 综合色丁香网| 99视频精品全部免费 在线| 国产麻豆成人av免费视频| 成人三级黄色视频| 十八禁国产超污无遮挡网站| 国产一区二区三区在线臀色熟女| 岛国毛片在线播放| 麻豆国产av国片精品| 自拍偷自拍亚洲精品老妇| 国内久久婷婷六月综合欲色啪| 国产成人精品婷婷| 日本熟妇午夜| 给我免费播放毛片高清在线观看| 亚洲欧美精品专区久久| 精品人妻一区二区三区麻豆| 国产视频首页在线观看| 国产黄片美女视频| 午夜爱爱视频在线播放| 在线观看一区二区三区| 国产探花在线观看一区二区| 亚洲av第一区精品v没综合| 国产精品久久久久久久电影| 欧美色欧美亚洲另类二区| 热99在线观看视频| 国产在线男女| 一个人观看的视频www高清免费观看| 1000部很黄的大片| 嘟嘟电影网在线观看| 国产精品,欧美在线| 波多野结衣巨乳人妻| 卡戴珊不雅视频在线播放| 国内精品美女久久久久久| 麻豆av噜噜一区二区三区| 99热网站在线观看| 国产成人午夜福利电影在线观看| 六月丁香七月| 久久精品人妻少妇| 久久久久久久久久久丰满| 国产精品三级大全| 亚洲av二区三区四区| 国产美女午夜福利| 九九久久精品国产亚洲av麻豆| 波多野结衣巨乳人妻| 美女内射精品一级片tv| 在线观看av片永久免费下载| 亚洲图色成人| a级毛片免费高清观看在线播放| 一个人看的www免费观看视频| av女优亚洲男人天堂| 欧美日韩精品成人综合77777| 国产精品麻豆人妻色哟哟久久 | 国产精品爽爽va在线观看网站| 成年版毛片免费区| 非洲黑人性xxxx精品又粗又长| 久久这里只有精品中国| 天堂av国产一区二区熟女人妻| 亚洲国产精品成人综合色| 天天躁夜夜躁狠狠久久av| 99热这里只有精品一区| 亚洲精品国产成人久久av| 亚洲av二区三区四区| 精品无人区乱码1区二区| 久久这里只有精品中国| 日韩在线高清观看一区二区三区| 成人无遮挡网站| 国产三级在线视频| 又黄又爽又刺激的免费视频.| 深爱激情五月婷婷| 欧美三级亚洲精品| 中出人妻视频一区二区| 天堂√8在线中文| 老熟妇乱子伦视频在线观看| 日韩 亚洲 欧美在线| 在线观看一区二区三区| 在线国产一区二区在线| 一级毛片我不卡| 久久99蜜桃精品久久| 日本一本二区三区精品| 久久6这里有精品| 国产精品综合久久久久久久免费| 九九爱精品视频在线观看| 中文字幕熟女人妻在线| 国产亚洲精品久久久久久毛片| 又爽又黄无遮挡网站| 亚洲国产欧洲综合997久久,| 伦理电影大哥的女人| 国产黄色视频一区二区在线观看 | 国产亚洲精品久久久com| 精品人妻视频免费看| 精品久久久久久久久久免费视频| 久久6这里有精品| 久久热精品热| 亚洲第一电影网av| 我要搜黄色片| 麻豆久久精品国产亚洲av| 欧美高清性xxxxhd video| 色综合站精品国产| 三级男女做爰猛烈吃奶摸视频| 人妻系列 视频| 在线免费观看的www视频| 一个人看视频在线观看www免费| 成人性生交大片免费视频hd| 婷婷六月久久综合丁香| 国产成人一区二区在线| 午夜精品在线福利| 久久亚洲精品不卡| 91狼人影院| 亚洲欧美日韩高清专用| 3wmmmm亚洲av在线观看| 日韩一区二区视频免费看| 99riav亚洲国产免费| 精品人妻视频免费看| 天堂av国产一区二区熟女人妻| 国模一区二区三区四区视频| 成人三级黄色视频| 国产精品野战在线观看| 欧美xxxx黑人xx丫x性爽| 最好的美女福利视频网| 成人一区二区视频在线观看| 最后的刺客免费高清国语| 黄片无遮挡物在线观看| 日韩视频在线欧美| 嫩草影院入口| 亚洲欧美精品专区久久| 99久久精品一区二区三区| 亚洲欧美清纯卡通|