• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SCALE-TYPE STABILITY FOR NEURAL NETWORKS WITH UNBOUNDED TIME-VARYING DELAYS??

    2016-10-14 02:40:49LiangboChenZhenkunHuang
    Annals of Applied Mathematics 2016年3期

    Liangbo Chen,Zhenkun Huang

    (School of Science,Jimei University,F(xiàn)ujian 361021,PR China)

    ?

    SCALE-TYPE STABILITY FOR NEURAL NETWORKS WITH UNBOUNDED TIME-VARYING DELAYS??

    Liangbo Chen,Zhenkun Huang?

    (School of Science,Jimei University,F(xiàn)ujian 361021,PR China)

    Abstract

    This paper studies scale-type stability for neural networks with unbounded time-varying delays and Lipschitz continuous activation functions.Several sufficient conditions for the global exponential stability and global asymptotic stability of such neural networks on time scales are derived.The new results can extend the existing relevant stability results in the previous literatures to cover some general neural networks.

    global asymptotic stability;global exponential stability;neural networks;on time scales

    2000 Mathematics Subject Classification 92B20

    1 Introduction

    Consider a general class of neural networks with unbounded time-varying delays on time scales:

    where xi(t)corresponds to the state of the ith unit at time t∈T,fj(xj)and gj(xj)are the activation functions of the jth unit,ci>0 represents the rate with which the ith unit will reset its potential to the resting state in isolation when disconnected from the network,τij(t)corresponds to the transmission delay which satisfies τij(t)≥0,aijand bijdenote the strength of the jth neuron on ith unit at time t and t-τij(t),i,j∈N,where N={1,2,···,n}.In this paper,we make some basic assumptions:

    1)fi(0)=gi(0)=0;

    2)There exist constants li>0,ki>0 such that for any r1,r2,r3,r4∈R

    For any t0≥0,the initial condition of the neural network model(1.1)is assumed to be

    In stability analysis of neural networks,the qualitative properties primarily concerned are the uniqueness,global stability,robust stability,and absolute stability of their equilibria.In[6]and[8],global asymptotic and exponential stability were given for neural networks without time delays.The case of constant time delay was also studied in[2,7].In[3,9],the authors discussed the case of bounded time-varying delay.In addition,the authors in[4]described the case of unbounded time-varying delay,that gave several sufficient conditions for the global exponential stability.In[10],several algebraic criterions for stability were obtained by constructing proper Lyapunov functions and employing Young inequality.

    Recently,people have paid attention to the neural network models on time scales,and some of them have got some important results,such as[11-23].In[12],by using the contraction mapping theorem and Gronwall's inequality on time scales,the authors established some sufficient conditions on the existence and exponential stability of periodic solutions of a class of stochastic neural networks on time scales.In[14,16,18],the authors paid attention to the periodic solutions of a class of neural networks delays on time scales.Based on contraction principle and Gronwall-Bellmans inequality,some new results for the existence and exponential stability of almost periodic solution of a general type of delay neural networks with impulsive effects were established in[15].The problem on the global exponential stability of neural networks on time scales was considered in[13,22,23].In[17,19-21],global exponential stability of networks with time-varying delays on time scales were considered.

    In this paper,we consider a general neural network model on time scales.By using different methods,several sufficient conditions for the global asymptotic sta-bility and the global exponential stability of(1.1)are obtained.These results are new and different from the existing ones.

    2 Preliminaries

    In this section,we first introduce some basic definitions of dynamic equations on time scales.

    A time scale is an arbitrary nonempty closed subset of the real numbers.In this paper,T denotes an arbitrary time scale.

    Definition 2.1 The forward and backward jump operators respectively are σ:T→T and ρ:T→T such that σ(t)=inf{s∈T:s>t},ρ(t)=sup{s∈T:s<t}. And the graininessμ:T→R+is defined byμ(t):=σ(t)-t.Obviously,μ(t)=0 if T=R,whileμ(t)=1 if T=Z.

    A point t∈T is said to be left(right)-dense if ρ(t)=t(σ(t)=t);A point t∈T is said to be left(right)-scattered if ρ(t)<t(σ(t)>t).If T has a left-scattered maximum o then we let Tκ:=T/{o},otherwise Tκ:=T.

    Definition 2.2 Let f:T→R and t∈Tκ.fΔ(t)is said to be the Δ-derivative of f(t)if and only if for any ?>0,there is a neighborhood Ξ of t such that

    D+fΔ(t)is said to be the Dini derivative of f(t)if given ?>0,there exists a right neighborhoodof t such that

    Definition 2.3 A function f:T→R is called rd-continuous if it is continuous in right-dense points and the left-sided limits exist in left-dense points,while f is called regressive if 1+μ(t)f(t)0.

    Denote R by the set of all regressive and rd-continuous functions,if f∈R and 1+μ(t)f(t)>0,then we write f∈R+.Let p∈R,the exponential function is defined by

    with the cylinder transformation

    If p∈R,fix t0∈T.Then ep(·,t0)is a solution of the initial value problem

    on time scale T.

    Lemma 2.1 If p∈R,then

    (i)e0(t,s)≡1 and ep(t,t)≡1;

    (ii)ep(σ(t),s)=eσp(t,s)=(1+μ(t)p(t))ep(t,s);

    (iii)ep(t,s)ep(s,r)=ep(t,r);

    (iv)ep(t,s)eq(t,s)=ep⊕q(t,s);

    (v)ep(t,s)==e?p(s,t);

    Definition 2.4(1.1)is said to be global asymptotically stable(GAS),if it is locally stable in the sense of Lyapunov and is globally attractive.In addition,(1.1)is said to be globally exponentially stable(GES),if there exist constants α>0,β>0 such that the solutions x(t)of(1.1)with any initial condition(1.2)satisfies

    3 Main Results

    Theorem 3.1 If there exist ωi>0 and ηi∈Crdwith 0<1+μ(t)ηi(t)<1 and

    such that

    then(1.1)is GAS.If there exist γ>0,β>0 such that for any i∈N,eηi(t,t0)≤γeβ(t0,t),then(1.1)is GES.

    Proof Let

    It follows from(1.1)that

    Let

    For t∈Tκ,denote

    where εi∈Crdand 0<1+μ(t)εi(t)<1,i∈N.Let

    Then we assert that ?i(t)≤0,for any t∈[t0,+∞)T.Otherwise,due to ?i(t)≤0 for t∈(-∞,t0]T,there exist a subset N⊥N and a first time t1≥t0such that

    From(3.2),one has

    Since ?m(t1)≥0,we get that zm(t1)≥v(t0)eεm⊕ηm(t1,t0).Hence there must exist κ>0 such that

    which leads to

    From the fact 1+μ(t)ηj(t)∈(0,1),for any t∈[t0,+∞)T,we get ξμ(t)(ηj(t))≤ηj(t)and hence

    Together with(3.1),one has

    which contradicts(3.3).Hence,for any t≥t0and i∈N,

    that is,(1.1)is GAS.If there exist γ>0,β>0 such that eηi(t,t0)≤γeβ(t0,t),then(1.1)is GES.The proof is complete.

    Remark 3.1 The assumption 0<1+μ(t)ηi(t)<1 is a necessary condition for the global exponential stability of(1)on time scales.Otherwise,if 1+μ(t)ηi(t)≥1 and v(t0)>0,we can get v(t0)eηi(t,t0)→∞when t→∞,then(1)is not globally exponentially stable.

    In the following discussion,we denote τij(t)=τ(t),for all i,j∈N.By the method different from Theorem 1.1,we also can get the general global stability analysis of neural networks as follows.

    Theorem 3.2 Let

    where ω>0 is a positive constant,i∈N.If

    where λ(t)=M22eM21(t-τ(t),σ(t))and 0<1+μ(t)M21<1,then(1.1)is GAS. If there exist γ>0,β>0 such that

    then(1.1)is GES.

    hence

    Define an auxillatory function

    then it follows from M22≥0 and y(t)≥0 that ξ(t)is a monotone increasing function and

    By(3.6)and 0<1+μ(t)M21<1,we know y(t)≤ξ(t)for any t∈T.Hence y(t-τ(t))≤ξ(t-τ(t))≤ξ(t)which leads to

    It follows from(3.7)that

    Then we can get

    and

    where t∈[t0,+∞)T.The proof is complete.

    Remark 3.2 The assumption 0<1+μ(t)M21<1 is necessary for the global exponential stability of(1.1)on time scales.Whenis a nonsingular M-matrix,M21<0 where δij=1,i=j;δij=0,ij.

    Using a different Lyapunov function from that in Theorem 3.2,we have following theorems.

    Theorem 3.3 For any ωi>0,oij,pij,qij,rij∈R(i,j∈N),let

    then(1.1)is GES.

    It follows from(1.1)that

    and

    Hence,we can get

    The remaining proof is similar to the last part of that of Theorem 3.2.

    4 Examples

    In this section,we will give two numerical examples to illustrate Theorems 3.1 and 3.2.From the definition of V(t)in Theorems 3.2 and 3.3,we can also give a similar example to check Theorem 3.3.But we omit here.

    Example 4.1 Consider

    where g(x(t))= (1-exp{-x(t)})/(1+exp{-x(t)}).For any t≥ t0> 1,let ω1=ω2=1,η1(t)=η2(t)=ε1(t)=ε2(t)=-1/t,l1=l2=k1=k2=1.

    (1)Let T=R and τ11(t)=t/2,τ12(t)=2t/3,τ21(t)=3t/4,τ22(t)=4t/5,when t→+∞,from Theorem 3.1 we can get the following formula

    and

    then(4.1)is GAS.

    (2)Let T=Z and τ11(t)=1,τ12(t)=2t,τ21(t)=2t+1,τ22(t)=3t-2,when t→+∞,from Theorem 3.1 we can get the following formula

    and

    then(4.1)is GAS.

    Moreover,according to Theorem 3.1,it's easy to check that(4.1)is also GAS. But Theorems 3.2 and 3.3 cannot be used to ascertain the stability of(4.1).

    Figure 1:(a)The global exponential stability of solution of(4.1)on R.(b)The global exponential stability of solution of(4.1)on Z.

    Example 4.2 Consider

    where t∈T,f(x(t))=(|x(t)+1|-|x(t)-1|)/2 and

    for n∈Z.Obviously,l1=l2=k1=k2=1.Take ω1=ω2,then P21=-1,P22= 1,μ(t)=1/4,when t→+∞,then

    Since for any t>0,

    it follows from Theorem 3.2 that(4.2)is GAS.However,the stability of(4.2)can not be determined by Theorem 3.1.

    Figure 2:The globally exponential stability of solution of(4.2)on

    5 Conclusion Remarks

    In this paper,scale-type stability on time scales for neural networks with both general global stability and global exponential stable with unbounded time-varying delays is investigated.We would like to point out that it is possible to apply our main results to some neural networks,such as neural networks with time-varying delays[3,6,9],neural networks with unbounded time-varying delays[4].

    References

    [1]M.Bohner and A.Peterson,Dynamic Equations on Time Scales:An introduction with Applications,Boston,2001.

    [2]P.V.D.Driessche and X.Zou,Global attractivity in delayed Hopfield neural network models,SIAM.J.Appl.Math,58(1998),1878-1890.

    [3]C.Hou and J.Qian,Stability analysis for neural dynamics with time varying delays,IEEE Trans.Neural Netw.,9(1998),221-223.

    [4]Z.Zeng and J.Wang,Global asymptotic stability and global exponential stability of neural networks with unbounded time-varying delays,IEEE Trans.Express Briefs,52(2005),168-173.

    [5]M.Bohner and A.Peterson,Advances in Dynamic Equations on Time Scales,Boston,2003.

    [6]S.Arik,Global asymptotic stability of a class of dynamical neural networks,IEEE Trans.Circuits Syst.I,F(xiàn)undam.Theory Appl.,47(2000),568-571.

    [7]J.Cao and Q.Li,On the exponential stability and periodic solutions of delayed cellular neural networks,J.Math.Anal.Appl.,252(2000),50-64.

    [8]X.Liang and J.Wang,Absolute exponential stability of neural networks with a general class of activation functions,IEEE Trans.Circuits Syst.I,F(xiàn)undam.Theory Appl.,47(2000),1258-1263.

    [9]Z.Zeng and J.Wang,and X.Liao,Global exponential stability of a general class of recurrent neural networks with time-varying delays,IEEE Trans.Circuits Syst.I,F(xiàn)undam.Theory Appl.,50(2003),1353-1358.

    [10]Z.Tu,J.Jian,B.Wang,Positive invariant sets and global exponential attractive sets of a class of neural networks with unbounded time-delays,Communications in Nonlinear Science and Numerical Simulation,16(2011),3738-3745.

    [11]S.Hilger,Analysis on measure chains-A unified approach to continuous and discrete calculus,Results Math,18(1990),18-56.

    [12]L.Yang and Y.Li,Existence and exponential stability of periodic solution for stochastic Hopfield neural networks on time scales,Neurocomputing,167(2015),543-550.

    [13]Q.Song,and Z.Zhao,Stability criterion of complex-valued neural networks with both leakage delay and time-varying delays on time scales,Neurocomputing,171(2016),179-184.

    [14]H.Zhou and Z.Zhou,Almost periodic solutions for neutral type BAM neural networks with distributed leakage delays on time scales,Neurocomputing,157(2015),223-230.

    [15]C.Wang and R.P.Agarwal,Almost periodic dynamics for impulsive delay neural networks of a general type on almost periodic time scales,Communications in Nonlinear Science and Numerical Simulation,36(2016),238-251.

    [16]B.Du and Y.Liu,Almost periodic solution for a neutral-type neural networks with distributed leakage delays on time scales,Neurocomputing,173(2016),921-929.

    [17]W.Gong and J.Liang,Matrix measure method for global exponential stability of complex-valued recurrent neural networks with time-varying delays,Neural Networks,70(2015),81-89.

    [18]T.Liang and Y.Yang,Existence and global exponential stability of almost periodic solutions to Cohen-Grossberg neural networks with distributed delays on time scales,Neurocomputing,123(2014),207-215.

    [19]C.Xu and Q.Zhang,Existence and global exponential stability of anti-periodic solutions of high-order bidirectional associative memory(BAM)networks with time-varying delays on time scales,Journal of Computational Science,8(2015),48-61.

    [20]Y.Liu and Y.Yang,Existence and global exponential stability of anti-periodic solutions for competitive neural networks with delays in the leakage terms on time scales,Neurocomputing,133(2014),471-482.

    [21]B.Zhou and Q.Song,Global exponential stability of neural networks with discrete and distributed delays and general activation functions on time scales,Neurocomputing,74(2011),3142-3150.

    [22]L.Li and S.Hong,Exponential stability for set dynamic equations on time scales,Journal of Computational and Applied Mathematics,235(2011),4916-4924.

    [23]Z.Zhang and K.Liu,Existence and global exponential stability of a periodic solution to interval general bidirectional associative memory(BAM)neural networks with multiple delays on time scales,Neural Networks,24(2011),427-439.

    (edited by Liangwei Huang)

    ?This research was supported by National Natural Science Foundation of China under Grant 61573005 and 11361010,the Foundation for Young Professors of Jimei University and the Foundation of Fujian Higher Education(JA11154,JA11144).

    ?Manuscript received April 21,2016;Revised June 7,2016

    ?Corresponding author.E-mail:hzk974226@jmu.edu.cn

    日韩中字成人| 少妇人妻一区二区三区视频| 人妻一区二区av| 久久久a久久爽久久v久久| 黄色欧美视频在线观看| 亚洲欧美一区二区三区黑人 | 欧美丝袜亚洲另类| 另类亚洲欧美激情| 亚洲电影在线观看av| 欧美日韩视频精品一区| 久久99热这里只频精品6学生| 黄色视频在线播放观看不卡| 国产欧美日韩精品一区二区| 欧美精品人与动牲交sv欧美| 九色成人免费人妻av| 亚洲高清免费不卡视频| 亚洲人成网站在线播| 国产成人一区二区在线| 国产真实伦视频高清在线观看| 九色成人免费人妻av| 2021少妇久久久久久久久久久| 女的被弄到高潮叫床怎么办| 久久鲁丝午夜福利片| 午夜日本视频在线| 久久影院123| 国产淫片久久久久久久久| 亚洲国产精品国产精品| 久久久久久久久久久免费av| 精品久久久久久电影网| 丰满少妇做爰视频| av在线老鸭窝| 在线看a的网站| 国产精品秋霞免费鲁丝片| 丰满迷人的少妇在线观看| 国产美女午夜福利| 午夜免费男女啪啪视频观看| 中文欧美无线码| a级毛片免费高清观看在线播放| 中文乱码字字幕精品一区二区三区| 久久精品国产亚洲av天美| 日韩,欧美,国产一区二区三区| 亚洲精品乱码久久久久久按摩| 欧美精品国产亚洲| 欧美精品亚洲一区二区| 国产午夜精品一二区理论片| 国产亚洲5aaaaa淫片| 三上悠亚av全集在线观看 | 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲激情五月婷婷啪啪| 欧美国产精品一级二级三级 | 国产黄频视频在线观看| 亚洲精品国产色婷婷电影| 亚洲国产精品成人久久小说| 赤兔流量卡办理| 中文天堂在线官网| 在线观看国产h片| 少妇人妻精品综合一区二区| 欧美老熟妇乱子伦牲交| 黄片无遮挡物在线观看| 在线观看美女被高潮喷水网站| 亚洲欧美一区二区三区国产| 在线观看三级黄色| 一区二区三区乱码不卡18| 熟妇人妻不卡中文字幕| 黑丝袜美女国产一区| 免费播放大片免费观看视频在线观看| 国产在视频线精品| 精品亚洲成国产av| 人妻夜夜爽99麻豆av| 精品午夜福利在线看| 国产精品嫩草影院av在线观看| 在线观看一区二区三区激情| av网站免费在线观看视频| 久久人人爽人人爽人人片va| 国产精品一区www在线观看| 亚洲av成人精品一区久久| 国产av码专区亚洲av| 亚州av有码| 老司机亚洲免费影院| 国产精品麻豆人妻色哟哟久久| 老司机影院毛片| 欧美bdsm另类| 丰满少妇做爰视频| av视频免费观看在线观看| 亚洲精品日韩在线中文字幕| 一区二区三区四区激情视频| tube8黄色片| 亚洲电影在线观看av| 亚洲av福利一区| 亚洲国产色片| 久久精品国产亚洲av涩爱| 国产精品无大码| 国产综合精华液| 极品教师在线视频| 欧美日韩一区二区视频在线观看视频在线| 国产精品三级大全| 三级国产精品片| 国产精品99久久久久久久久| 国产一区二区在线观看日韩| 最后的刺客免费高清国语| 老女人水多毛片| 欧美xxⅹ黑人| 少妇被粗大猛烈的视频| 欧美bdsm另类| 男人添女人高潮全过程视频| 国产淫语在线视频| h日本视频在线播放| 亚洲欧美日韩东京热| 国产淫语在线视频| 麻豆成人av视频| 在线观看免费日韩欧美大片 | 中文天堂在线官网| 七月丁香在线播放| 热re99久久国产66热| 国产成人免费无遮挡视频| 亚洲精品中文字幕在线视频 | 亚洲天堂av无毛| 七月丁香在线播放| 日韩成人av中文字幕在线观看| 国产精品国产三级国产专区5o| 人妻 亚洲 视频| 亚洲成人av在线免费| 日韩伦理黄色片| 国产男人的电影天堂91| 欧美 亚洲 国产 日韩一| 国产精品国产三级国产专区5o| 高清在线视频一区二区三区| 在线精品无人区一区二区三| 两个人的视频大全免费| 国产亚洲5aaaaa淫片| 夫妻午夜视频| 偷拍熟女少妇极品色| 性色avwww在线观看| av在线app专区| 亚洲久久久国产精品| 男女边摸边吃奶| 黑人高潮一二区| 夜夜骑夜夜射夜夜干| 丝袜喷水一区| 高清黄色对白视频在线免费看 | 中文字幕制服av| 亚洲中文av在线| 观看av在线不卡| 91精品国产国语对白视频| 久久午夜福利片| a级毛色黄片| 亚洲性久久影院| 成人黄色视频免费在线看| 日日爽夜夜爽网站| 在线亚洲精品国产二区图片欧美 | 三级经典国产精品| freevideosex欧美| 欧美性感艳星| 男人爽女人下面视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区三区四区免费观看| 国产一区二区三区av在线| 国产高清有码在线观看视频| 亚洲美女搞黄在线观看| 亚洲av二区三区四区| 久久久午夜欧美精品| 日本av免费视频播放| 最近最新中文字幕免费大全7| 国产成人精品婷婷| av卡一久久| 久久精品国产亚洲网站| 乱码一卡2卡4卡精品| 国产精品不卡视频一区二区| 夜夜看夜夜爽夜夜摸| 在线天堂最新版资源| 一级毛片 在线播放| 成人18禁高潮啪啪吃奶动态图 | 丰满迷人的少妇在线观看| 精品久久久精品久久久| 国产无遮挡羞羞视频在线观看| 国产日韩欧美在线精品| 久久狼人影院| 精品酒店卫生间| 亚洲精品自拍成人| 日韩大片免费观看网站| 秋霞伦理黄片| 最近中文字幕2019免费版| 深夜a级毛片| √禁漫天堂资源中文www| 亚洲va在线va天堂va国产| 纯流量卡能插随身wifi吗| 日韩一区二区视频免费看| 人妻夜夜爽99麻豆av| 国产欧美另类精品又又久久亚洲欧美| 春色校园在线视频观看| 久久久a久久爽久久v久久| 久久久久国产网址| 一区二区三区精品91| 国产男女内射视频| 极品教师在线视频| 久久久亚洲精品成人影院| 亚洲欧美日韩卡通动漫| 国产色婷婷99| 国产伦精品一区二区三区视频9| 春色校园在线视频观看| 黄色一级大片看看| 亚洲精品国产色婷婷电影| 久久精品国产亚洲av天美| 日韩一本色道免费dvd| 免费观看无遮挡的男女| a级一级毛片免费在线观看| 看非洲黑人一级黄片| av女优亚洲男人天堂| 九草在线视频观看| 欧美另类一区| av在线app专区| 久久99精品国语久久久| 一区二区三区乱码不卡18| 91精品一卡2卡3卡4卡| 色婷婷av一区二区三区视频| 麻豆乱淫一区二区| 国产女主播在线喷水免费视频网站| 亚洲精品久久午夜乱码| 国产午夜精品一二区理论片| 精品午夜福利在线看| 欧美 日韩 精品 国产| 久久99一区二区三区| 免费观看性生交大片5| 国产淫语在线视频| 十分钟在线观看高清视频www | 美女大奶头黄色视频| 久久国产亚洲av麻豆专区| 久热这里只有精品99| 日本wwww免费看| 久久久久国产精品人妻一区二区| 寂寞人妻少妇视频99o| 亚洲av电影在线观看一区二区三区| 精品亚洲乱码少妇综合久久| 日本午夜av视频| 丝袜脚勾引网站| 国产黄片美女视频| 色视频在线一区二区三区| 成人综合一区亚洲| 美女国产视频在线观看| 亚洲精品中文字幕在线视频 | 最后的刺客免费高清国语| 国产毛片在线视频| av一本久久久久| 十八禁高潮呻吟视频 | 新久久久久国产一级毛片| 国产精品成人在线| 最近2019中文字幕mv第一页| 天堂中文最新版在线下载| 一区二区三区四区激情视频| 久久av网站| 久久久久视频综合| 极品少妇高潮喷水抽搐| 欧美bdsm另类| 亚洲成人一二三区av| 国产免费福利视频在线观看| 丰满少妇做爰视频| 三级经典国产精品| 一区二区三区四区激情视频| 伦精品一区二区三区| 一本色道久久久久久精品综合| 另类精品久久| 一区二区三区精品91| 国产精品熟女久久久久浪| 国产成人精品福利久久| 久久久久久久精品精品| 色5月婷婷丁香| 午夜激情久久久久久久| 久久精品国产a三级三级三级| 欧美亚洲 丝袜 人妻 在线| 国产精品嫩草影院av在线观看| 岛国毛片在线播放| 欧美日韩视频高清一区二区三区二| 成人美女网站在线观看视频| 少妇人妻久久综合中文| 自线自在国产av| 亚洲欧美精品专区久久| 国产精品国产三级国产专区5o| 国产免费福利视频在线观看| 夜夜骑夜夜射夜夜干| av有码第一页| 国精品久久久久久国模美| 蜜桃在线观看..| 亚洲精品色激情综合| 午夜精品国产一区二区电影| 国产午夜精品久久久久久一区二区三区| 男人和女人高潮做爰伦理| 女性生殖器流出的白浆| 啦啦啦视频在线资源免费观看| 日韩成人伦理影院| 狂野欧美激情性xxxx在线观看| 欧美一级a爱片免费观看看| 日韩制服骚丝袜av| 欧美成人午夜免费资源| 视频区图区小说| 久久精品久久久久久久性| 交换朋友夫妻互换小说| 麻豆成人午夜福利视频| 永久免费av网站大全| 最后的刺客免费高清国语| 黄色一级大片看看| 一级毛片久久久久久久久女| 久久av网站| 成人特级av手机在线观看| 夜夜爽夜夜爽视频| 国产欧美另类精品又又久久亚洲欧美| 免费黄频网站在线观看国产| 国产成人免费观看mmmm| 亚洲国产精品国产精品| 极品人妻少妇av视频| 丝袜在线中文字幕| 国产极品天堂在线| 亚洲欧美日韩另类电影网站| 亚洲精品自拍成人| 亚洲欧美日韩另类电影网站| 亚洲av中文av极速乱| 曰老女人黄片| 交换朋友夫妻互换小说| 人妻少妇偷人精品九色| 精品人妻偷拍中文字幕| 国产精品一区www在线观看| 成年美女黄网站色视频大全免费 | 精品亚洲成a人片在线观看| 日韩精品有码人妻一区| 国产爽快片一区二区三区| 国产一区二区三区av在线| 国产日韩欧美视频二区| 免费高清在线观看视频在线观看| 人妻系列 视频| 亚洲av欧美aⅴ国产| 99久久精品国产国产毛片| 国产男女超爽视频在线观看| 日韩欧美精品免费久久| 少妇高潮的动态图| 一级毛片电影观看| 内地一区二区视频在线| 肉色欧美久久久久久久蜜桃| 草草在线视频免费看| 成人无遮挡网站| 欧美一级a爱片免费观看看| 亚洲精品亚洲一区二区| 日韩成人av中文字幕在线观看| av在线老鸭窝| 亚洲美女黄色视频免费看| 热99国产精品久久久久久7| a级一级毛片免费在线观看| 亚洲激情五月婷婷啪啪| 国产成人精品婷婷| 亚洲精品中文字幕在线视频 | 久久久久久伊人网av| 国产老妇伦熟女老妇高清| 高清视频免费观看一区二区| 亚洲美女黄色视频免费看| 精品卡一卡二卡四卡免费| 一个人免费看片子| 日日啪夜夜撸| 最近中文字幕高清免费大全6| 国产精品伦人一区二区| 色网站视频免费| 国产成人精品婷婷| 国产精品伦人一区二区| 亚洲一区二区三区欧美精品| 麻豆乱淫一区二区| 欧美日韩在线观看h| 性色av一级| 国产精品无大码| 另类精品久久| 3wmmmm亚洲av在线观看| 国产深夜福利视频在线观看| 桃花免费在线播放| 国产精品麻豆人妻色哟哟久久| 97超视频在线观看视频| 精品视频人人做人人爽| 91久久精品国产一区二区三区| 欧美变态另类bdsm刘玥| 丰满迷人的少妇在线观看| 亚洲性久久影院| 久久久久视频综合| 亚洲人成网站在线播| 免费人妻精品一区二区三区视频| 亚洲成人手机| 亚洲精品一二三| 亚洲伊人久久精品综合| 在线 av 中文字幕| 久久亚洲国产成人精品v| 又大又黄又爽视频免费| 老司机影院成人| 中国美白少妇内射xxxbb| 18禁裸乳无遮挡动漫免费视频| 国产精品伦人一区二区| 在线观看av片永久免费下载| 午夜91福利影院| 人妻制服诱惑在线中文字幕| 黑人猛操日本美女一级片| 丁香六月天网| 久久精品国产自在天天线| 亚洲国产色片| 免费看光身美女| 国产男女内射视频| 老熟女久久久| 亚洲美女黄色视频免费看| 久久久久精品性色| 老司机影院毛片| 一级毛片久久久久久久久女| 久久精品熟女亚洲av麻豆精品| 99久久精品热视频| 色视频www国产| 纵有疾风起免费观看全集完整版| 国产成人a∨麻豆精品| 熟女av电影| 一边亲一边摸免费视频| 亚洲不卡免费看| 91aial.com中文字幕在线观看| 亚洲欧美中文字幕日韩二区| 日韩人妻高清精品专区| 日韩一区二区三区影片| 最黄视频免费看| 丝瓜视频免费看黄片| 色吧在线观看| 秋霞伦理黄片| 综合色丁香网| 成人免费观看视频高清| 欧美 亚洲 国产 日韩一| 交换朋友夫妻互换小说| 久久精品久久久久久久性| 3wmmmm亚洲av在线观看| 国产亚洲av片在线观看秒播厂| 777米奇影视久久| 两个人免费观看高清视频 | 久久久国产精品麻豆| 国产在视频线精品| 日韩人妻高清精品专区| 国产精品伦人一区二区| 少妇人妻久久综合中文| 成年女人在线观看亚洲视频| 国产精品女同一区二区软件| 色94色欧美一区二区| 高清欧美精品videossex| 天天操日日干夜夜撸| 免费在线观看成人毛片| 精品久久久久久久久亚洲| 亚洲国产精品国产精品| 国产男女内射视频| 久久久久久久久久成人| 亚洲婷婷狠狠爱综合网| 我的老师免费观看完整版| 久久人人爽人人片av| 国产熟女午夜一区二区三区 | 大陆偷拍与自拍| 五月天丁香电影| 婷婷色麻豆天堂久久| 婷婷色av中文字幕| 久久久久久久久大av| 国产色婷婷99| 一级毛片久久久久久久久女| 老司机影院毛片| 中文乱码字字幕精品一区二区三区| 国产一区二区在线观看日韩| 女性被躁到高潮视频| 成人免费观看视频高清| 91久久精品国产一区二区成人| 成年人免费黄色播放视频 | 在线观看www视频免费| 男女边摸边吃奶| 欧美精品亚洲一区二区| 色网站视频免费| 一区二区三区四区激情视频| 中国美白少妇内射xxxbb| 亚洲欧洲精品一区二区精品久久久 | 日韩一区二区视频免费看| av天堂中文字幕网| 99热网站在线观看| 免费看av在线观看网站| 亚洲精品aⅴ在线观看| 插阴视频在线观看视频| 性高湖久久久久久久久免费观看| 中国国产av一级| 日韩在线高清观看一区二区三区| 男女边吃奶边做爰视频| 欧美一级a爱片免费观看看| 色婷婷av一区二区三区视频| 国产乱人偷精品视频| 99久久中文字幕三级久久日本| 一个人免费看片子| 丰满人妻一区二区三区视频av| 国产91av在线免费观看| 成人黄色视频免费在线看| 如何舔出高潮| 如日韩欧美国产精品一区二区三区 | 日韩人妻高清精品专区| 日韩免费高清中文字幕av| 久久久国产精品麻豆| 热re99久久国产66热| 五月开心婷婷网| 免费观看性生交大片5| 久久鲁丝午夜福利片| 啦啦啦中文免费视频观看日本| 久久亚洲国产成人精品v| 久久午夜综合久久蜜桃| 亚洲精华国产精华液的使用体验| 高清av免费在线| 亚洲av成人精品一区久久| 亚洲精品乱久久久久久| 成人美女网站在线观看视频| 18禁裸乳无遮挡动漫免费视频| 国产在线一区二区三区精| 狂野欧美白嫩少妇大欣赏| 九九在线视频观看精品| 在线观看免费高清a一片| 久久久久久久久久久免费av| 欧美日韩视频高清一区二区三区二| 日韩在线高清观看一区二区三区| 久久影院123| 十八禁网站网址无遮挡 | 国产色婷婷99| 久久久国产一区二区| 赤兔流量卡办理| 国产精品女同一区二区软件| 亚洲久久久国产精品| 亚洲av电影在线观看一区二区三区| 高清视频免费观看一区二区| 国产高清有码在线观看视频| 人妻制服诱惑在线中文字幕| 亚洲色图综合在线观看| 女性生殖器流出的白浆| 亚洲,一卡二卡三卡| 免费大片黄手机在线观看| 日本爱情动作片www.在线观看| 少妇被粗大的猛进出69影院 | 久久精品国产亚洲av天美| 菩萨蛮人人尽说江南好唐韦庄| 国产精品麻豆人妻色哟哟久久| 一本色道久久久久久精品综合| 香蕉精品网在线| 国产真实伦视频高清在线观看| 纯流量卡能插随身wifi吗| 亚洲欧洲国产日韩| 丝袜在线中文字幕| av免费观看日本| 亚洲成人一二三区av| 免费观看a级毛片全部| 自线自在国产av| av福利片在线| 国产欧美日韩一区二区三区在线 | 大片电影免费在线观看免费| 免费人成在线观看视频色| 国产精品免费大片| 秋霞伦理黄片| 我要看日韩黄色一级片| 国产成人一区二区在线| av国产精品久久久久影院| 老司机影院毛片| 下体分泌物呈黄色| 男女边摸边吃奶| 99热6这里只有精品| 国产精品福利在线免费观看| 亚洲国产欧美日韩在线播放 | 精品99又大又爽又粗少妇毛片| 日本wwww免费看| av在线老鸭窝| 国产精品欧美亚洲77777| 亚洲,欧美,日韩| 黄色毛片三级朝国网站 | 免费观看性生交大片5| 九草在线视频观看| 一区二区三区免费毛片| 亚洲国产精品一区二区三区在线| 麻豆乱淫一区二区| 久久久久精品久久久久真实原创| 精品亚洲成国产av| 十分钟在线观看高清视频www | 在线观看av片永久免费下载| 国产乱来视频区| 蜜臀久久99精品久久宅男| 丰满饥渴人妻一区二区三| 亚洲美女黄色视频免费看| 欧美 日韩 精品 国产| 最近最新中文字幕免费大全7| 国产在线男女| 国产视频首页在线观看| 国产又色又爽无遮挡免| 天堂8中文在线网| 国产精品.久久久| 日韩免费高清中文字幕av| 成人毛片60女人毛片免费| 青春草国产在线视频| 搡女人真爽免费视频火全软件| 老女人水多毛片| 高清av免费在线| 日韩成人伦理影院| 久久青草综合色| 精品国产露脸久久av麻豆| 狂野欧美白嫩少妇大欣赏| 国产欧美日韩综合在线一区二区 | 国产欧美亚洲国产| 人妻人人澡人人爽人人| 久久人妻熟女aⅴ| 亚洲人与动物交配视频| 国产精品福利在线免费观看| 亚洲人成网站在线播| 久久久久视频综合| 国产精品人妻久久久久久| 国产黄片视频在线免费观看| 欧美日韩综合久久久久久| 国产 精品1| 69精品国产乱码久久久| 91成人精品电影| 丰满乱子伦码专区| 国产欧美亚洲国产| 美女cb高潮喷水在线观看| 午夜日本视频在线| 久久久久久久国产电影| 大码成人一级视频| 人妻一区二区av| 日韩欧美精品免费久久| 久久久亚洲精品成人影院|