• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    BIFURCATIONS OF TRAVELING WAVE SOLUTIONS OF INTEGRABLE EVOLUTION EQUATIONS FOR SURFACE WAVES IN DEEP WATER

    2016-10-13 08:12:19MODalongLULiangGUOXiufeng
    數(shù)學(xué)雜志 2016年5期
    關(guān)鍵詞:表面波賀州行波

    MO Da-long,LU Liang,2,GUO Xiu-feng

    (1.School of Sciences,Hezhou University,Hezhou 542899,China)

    (2.Guangxi Key Laboratories of Hybrid Computation and Integrated Circuit Design Analysis,Nanning 530006,China)

    BIFURCATIONS OF TRAVELING WAVE SOLUTIONS OF INTEGRABLE EVOLUTION EQUATIONS FOR SURFACE WAVES IN DEEP WATER

    MO Da-long1,LU Liang1,2,GUO Xiu-feng1

    (1.School of Sciences,Hezhou University,Hezhou 542899,China)

    (2.Guangxi Key Laboratories of Hybrid Computation and Integrated Circuit Design Analysis,Nanning 530006,China)

    In this paper,we investigate the traveling wave solutions of a small-aspect-ratio wave equation and an integrable evolution equation for surface waves in deep water.By applying the qualitative theory of differential equations,we analyze the phase portraits of the traveling wave systems and obtain the exact explicit representations of solitary wave solutions.

    traveling wave solutions;bifurcations of phase portraits;integrable systems;surface waves equations

    2010 MR Subject Classification:35Q51;35C07;37G10

    Document code:AArticle ID:0255-7797(2016)05-0963-12

    1 Introduction

    In order to describe the dynamics of monochromatic surface waves in deep water,a asymptotic model for small-aspect-ratio wave was derived in[1]as follows

    where g is the gravitation constant and k is wave vector.The equation(1.1)has a kdependent coefficient and it can be considered as belonging to both of the two categories:that of Korteweg-de Vries models(KdV,modified KdV,Benjamin-Bona-Mahony-Peregrine,Camassa-Holm,etc.)describing evolutions of wave profiles and that of NLS-type equations(modified NLS[2],Davey-Stewartson[3],etc.)describing modulation of wave profiles and having k-dependent coefficients.Moreover,in order to find a steep rotational Stokes wave,paper[1]also start with equation(1.1)in the frame as

    In this paper,since(1.1)and(1.2)are meaningful equations for surface waves in deep water,we will employ the bifurcation method and qualitative theory of dynamical systems [4]to investigate these equations.The phase portraits and the explicit expressions of the bounded traveling wave solutions for the equations will obtained in the paper.To the best of our knowledge,bifurcations of traveling wave solution for above equations have not yet been considered.

    It is well known that traveling waves propagation in nonlinear media was the subject of intense investigations in recent years.The study of nonlinear wave equations and their solutions were of great importance in many areas of physics(see[5-9]and the references therein).Traveling wave solution is an important type of solutions for the nonlinear partial differential equations(NLPDEs)which were found to have a variety of traveling wave solutions(see[10,13,14,30,32]).

    In recent years,various powerful methods were developed to construct traveling wave solutions of nonlinear partial differential equations,such as the trigonometric function series method[15],the modified mapping method and the extended mapping method(see[16]),theexpansion method(see[17,18]),the homogeneous balance method(see[19,20]),the tanh and extended methods(see[21])and so on.Meanwhile,the bifurcation method of phase plane was developed to obtain traveling wave solutions of NLPDEs(see[22-24]).Therefore,it is a good way to understand the behavior of traveling wave solutions of NLPDEs.What is more,breaking three solutions have attracted a great deal of interest(see[25-35])since Konno et al.(see[37])first reported the breaking three solutions in a nonlinear oscillation model of an elastic beam with tension.

    Motivated by above mentioned works,we consider equation(1.1)and(1.2)by using the bifurcation method and qualitative theory of dynamical systems.The paper is organized as follows.In Section 2,we discuss the dynamical behavior of solutions of small-aspect-ratio wave model(1.2)and give exact parametric expressions of traveling wave solutions for the equations.In Section 3,the dynamical analysis and exact explicit representations of solitary wave solutions of an integrable evolution equation are given.At the last section,we give the conclusions of this paper.

    2 Dynamical Analysis and Exact Parametric Traveling Wave Solutions

    In this section,we investigate the traveling wave solutions of a small-aspect-ratio waves equation(1.1).A breaking three solution and a family of periodic breaking three solutions are found by employing the method of the phase plane.In addition,the relationship betweenthe loop-soliton solution and the periodic loop solutions is as well investigated.The analysis may be helpful in understanding the significance of dynamical behavior of eq.(1.1).

    It is well known that a traveling wave solution of(1.1)with wave speed c is the solution having the form η=φ(ξ)with ξ=x-ct.Substituting the traveling wave solution η(x,t)=φ(x-ct)for the constant wave speed c into(1.1),we have the following ordinary differential equation

    Integrating(2.1),we have

    It is easy to see that system(2.2)has the first integral

    which is obtained from(2.2)by letting dξ=3udζ.System(2.4)has the same first integral H(u,y)and the same topological phase portraits as system(2.2)except for the straight line u=0.Clearly,system System(2.4)has two types of singular points of system(2.4),as follows(see Fig.1).Using qualitative theory of differential equations[29,30],we can easily verify the following proposition.

    Proposition 2.1 Denote h0=H,the pointsand,respectively,then

    Case I If A<0,then P is a center,P1and P2are saddle points,which shown in Fig.1(a).For h∈(h0,0)defined by(2.3),(1.1)has a family of smooth periodic wave solutions(see Fig.2(a)).For h=h0defined by(2.3),(1.1)has a unique periodic cuspon solution shown in Fig.2(b).

    Case II If A>0,then P is saddle point(Fig.1(b));for h=h0defined by(2.3),(1.1)has a unique breaking three solution shown in Fig.2(c);for h∈(0,h0),there exists afamily of uncountably infinite many periodic breaking three solutions of(1.1)shown in Fig. 2(d).Moreover,the periodic loop solutions converge to the breaking three solutions as h approaches h0.

    Now,we will give the exact parametric representations of smooth traveling wave solutions,periodic cuspons,breaking three solution and periodic breaking three solutions of the small-aspect-ratio waves equation(1.1).

    (a)Smooth periodic wave solutions.

    First,corresponding to Fig.1(a),when A<0,a family of smooth periodic wave solutions of(1.1)exist,which correspond to a family of periodic orbits defined by H(u,y)=h,where h∈(h0,0).The numerator of(2.3)can be decomposed into

    where α>β>0>γ are function of c,k,g, g,which can be rigorously determined by the formula for cubic algebraic equations.Then for β<u<α,and by y=,we have

    Then we obtain the following exact parametric representations of smooth periodic wave solutions of(1.1)as follows(see[36])

    where λ2=(α-β)/(α-γ),sn(τ,λ)is Jacobian elliptic functions with the modulus λ,Π(···)is the elliptic integral of the third kind andμis a appropriate parameters.

    (b)Periodic cuspons

    Let T=,we obtain the following periodic cuspon(see Fig.2(b))

    (c)Breaking three solutions

    Fig.1:phase portraits of system(3.4).(a)for A<0,(b)for A>0. (a)(b)

    Fig.2:wave profiles.(a)smooth periodic wave solutions,(b)periodic cuspons,(c)breaking three solutions,(d)periodic breaking three solutions.

    Corresponding to Fig.1(a),when A>0 and h=h0,the equilibrium point P(-A/2,0)is a saddle point.By using the first equation of system(2.2)to perform the integration along the three orbits for the initial value u(0)=and u(0)=,respectively,we have

    Then we obtain the following parametric representations of the traveling wave solutions of (1.1)(see Fig.2(c))

    where

    (d)Periodic breaking three solutions

    Corresponding to Fig.2(d),when A>0,the graph defined by H(u,y)=h,h∈(0,h0)consists of two open-end curves,passing through the points(β,0)and(α,0),respectively,where-A/2<β<0<α.

    By the algebra curve the numerator of(2.3),we have the similar representations of smooth periodic wave solutions as in(a)by doing similar procedure,we also have

    where α>0>β>γ are function of c,k,g,,and we obtain the following exact parametric representations of smooth periodic wave solutions of(1.1)(see Fig.2(d))as follows

    where λ2=(α-β)/(α-γ),sn(τ,λ)is Jacobian elliptic functions with the modulus λ,Π(···)is the elliptic integral of the third kind andμis a appropriate parameter.

    3 Dynamical Analysis and Exact Traveling Wave Solutions of(1.2)

    In this section,we investigate the periodic traveling wave solutions of(1.2)which has a great relationship with the steep rotational Stokes wave equation.Moreover,the results have some different from(1.1).

    First,by substituting η(x,t)=φ(ξ)with ξ=x-ct for the constant wave speed c into (1.2),we have the following ordinary differential equation

    which is obtained from(3.2)by letting dξ=6udζ.System(3.4)has the same first integral H(u,y)and the same topological phase portraits as system(3.2)except for the straight line u=0.Clearly,system(3.4)also has two types of singular points,as follows(see Fig.1).Using qualitative theory of differential equations,we can easily verify the following statement.

    Proposition 3.1 Denote

    Case I If Q>0,then P is a center;P1and P2are saddle points(see Fig.3(a)).For h∈(h0,0)defined by(3.3),(1.2)has a family of smooth periodic wave solutions(Fig.4(a)). For h=0 defined by(3.4),(1.2)has a unique periodic cuspon shown in Fig.4(b).

    Case II If Q<0,then P is saddle points(see Fig.3(b);For h=h0defined by(3.4),(1.2)has a unique breaking three solution which is shown in Fig.4(c).For h∈(0,h0),there exists a family of uncountably infinite many periodic loop solutions of(1.2)shown in Fig.3(d).Moreover,the periodic breaking three solutions converge to the breaking three solutions as h approaches h0.

    Fig.3:phase portraits of system(3.4),(a)for Q>0,(b)for Q<0. (a)(b)

    Fig.4:(color online)wave profiles.(a)smooth periodic wave solutions,(b)periodic cuspons,(c)breaking three solutions,(d)periodic breaking three solutions.

    In the following,we will give the exact representations of the smooth periodic traveling wave solutions,periodic cuspons,the breaking three solution and periodic breaking three solutions of equation(1.2).

    (a)Smooth periodic wave solutions.

    Corresponding to Fig.3(a),when Q>0,a family of smooth periodic wave solutions of (1.1)exist,which correspond to a family of periodic orbits defined by H(u,y)=h∈(h0,0),we have

    By using the first equation of system(3.2),we have

    where γ<β<0<α are function of c,k,g,,which can be rigorously determined by the formula for cubic algebraic equations.Then we obtain the following exact parametric representations of smooth periodic wave solutions of of eq.(1.2)

    where λ2=(β-γ)/(α-γ),sn(τ,λ)is Jacobian elliptic functions with the modulus λ,E(·)is the elliptic integral of the second kind andμis a appropriate parameters.

    (b)Periodic cuspons

    Corresponding to Fig.3(b),when Q>0 and h=0,a periodic cuspon of(1.2)exists,which corresponds to the heteroclinic orbits defined by H(u,y)=h=0.We have the following traveling wave solution of(1.2)

    Thus we have the periodic cusp wave solutions of equation(1.2)(see Fig.4(b))

    (c)Breaking three solutions

    Corresponding to Fig.3(b),when Q<0 and h=h0,the equilibrium point P(-Q/2,0)is a saddle point.By using the first equation of system(3.2)to perform the integration along the three orbits for the initial value u(0)=Q/4 and u(0)=-Q/4,respectively,we have

    Then we obtain the following parametric representations of the traveling wave solutions of (1.2)(see Fig.4(c))

    (d)Periodic breaking three solutions

    Corresponding to Fig.3(b),when Q<0 and h∈(0,h0),the graph defined by H(u,y)= h∈(0,h0)consists of two open-end curves,passing through the points(γ,0)and(β,0),respectively,where γ<0<β<.By calculating,we obtain following exact parametric representations of the periodic breaking three solutions of(1.2)[see Fig.4(d)]

    where λ2=(β-γ)/(α-γ),sn(τ,λ)is Jacobian elliptic functions with the modulus λ and μis a appropriate parameter.

    4 Conclusions

    In this paper,by using the qualitative theory of differential equations,a small-aspectratio wave equation(1.1)and an integrable evolution equation(1.2)for surface waves in deep water are studied.The phase portraits of the traveling wave systems are analyzed(see Fig. 1 and Fig.3)and exact explicit representations of solitary wave solutions such as smooth periodic wave solutions,periodic cuspons,breaking three solution and periodic breaking three solutions(see Fig.2 and Fig.4)are give in Section 2 and Section 3,respectively.By comparing the results of these two equations,the phase portraits and exact explicit representations of solitary wave solutions are obtained under some different parameter conditions.

    References

    [1]Kraenkel R A,Leblond H,Manna M A.An integrable evolution equation for surface waves in deep water[J].Phys.A:Math.Theor.,2014,47:1-17.

    [2]Dodd R K,Eilbeck J C,Gibbon J D,Morris H C.Solitons and nonlinear wave equations[M].London:Academic,1982.

    [3]Davey A,Stewartson K.On three-dimensional packets of surface waves[J].Proc.R.Soc.Lond.A.,1974,338:101-110.

    [4]Nemytskii V,Stepanov V.Qualitative theory of differential equations[M].New York:Dover,1989.

    [5]Biswas A,Yildirim A,Hayat T,Aldossary O,Sassaman R.Soliton perturbation theory for the generalized Klein-Gordon equation with full nonlinearity[J].Proc.Rom.Acad.Ser.A Math.Phys. Tech.Sci.Inf.Sci.,2012,13:32-41.

    [6]Lenells J.Traveling wave solutions of the Camassa-Holm equation[J].J.Differ.Equ.,2005,217:393-430.

    [7]Liu Yu.New type soliton solutions to Korteweg-de Vries and Benjamin-Bona-Mahony equations[J]. Chin.Phys.Lett.,2010,27(9):090201,1-4.

    [8]Razborova P,Ahmed B,Biswas A.Solitons,shock waves and conservation laws of Rosenau-KdVRLW equation with power law nonlinearity[J].Appl.Math.Inf.Sci.,2014,8:485-491.

    [9]Wazwaz A M.Multiple soliton solutions for an integrable couplings of the Boussinesq equation[J]. Ocean Eng.,2013,73,38-40.

    [10]Johnpillai A G,Yildirim A,Biswas A.Chiral solitons with Bohm potential by Lie group analysis and traveling wave hypothesi[J].Rom.J.Phys.,2012,57:545-554.

    [32]Li Jibin,Qiao Zhijun.Peakon,pseudo-peakon,and cuspon solutions for two generalized Camassa-Holm equations[J].J.Math.Phys.,2013,54:1-14.

    [30]Li Jibin,Liu Zhengrong.Smooth and non-smooth traveling waves in a nonlinearly dispersive equation[J].Appl.Math.Model.,2000,25:41-56.

    [13]Zhang Lina,Chen Aiyong,Tang Jiade.Special exact soliton solutions for the K(2,2)equation with non-zero constant pedestal[J].Appl.Math.Comput.,2011,218:4448-4457.

    [14]Zhang Zaiyuna,Liu Zhenhai,Miao Xiujin,Chen Yuezhong.Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schr¨odinger's equation with Kerr law nonlinearity[J].J.Phys. A,2011,375:1275-1280.

    [15]Zhang Zaiyun.New exact traveling wave solutions for the nonlinear Klein-Gordon equation[J].Turk. J.Phys.,2008,32:235-240.

    [16]Zhang Zaiyuna,Liu Zhenhai,Miao Xiu-jin,Chen Yuezhong.New exact solutions to the perturbed nonlinear Schr¨odinger's equation with Kerr law nonlinearity[J].Appl.Math.Comput.,2010,216:3064-3072.

    [17]Wang Mingliang,Li Xiangzheng,Zhang Jinliang.The)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J].Phys.Lett.A,2008,372:417-423

    [18]Shehata A R.The traveling wave solutions of the perturbed nonlinear Schrdinger equation and the cubic-quintic Ginzburg Landau equation using the modified)-expansion method[J].Appl. Math.Comput.,2010,217(1):1-10.

    [19]Wang Mingliang.Exact solutions for a compound KdV-Burgers equation[J].Phys.Lett.A 1996,213:279-287.

    [20]Fan Engui,Zhang Hongqing.A note on the homogeneous balance method[J].Phys.Lett.A,1998,246:403-406.

    [21]Duffy B R,Parkes E J,Travelling solitary wave solutions to a seventh-order generalized KdV equation[J].Phys.Lett.A,1996,214:271-272.

    [22]Tang Minying,Yang Chengxi.Extension on peaked wave solutions of CH-γ equation[J].Chaos Solitons Fractals,2004,20:815-825.

    [23]Li Jibin,Zhang Lina.Bifurcations of traveling wave solutions in generalized Pochhammer-Chree equation[J].Chaos Solitons Fractals,2002,14:581-593.

    [24]Liu Zhengrong,Qian Tifei.Peakons of the Camassa-Holm equation[J].Appl.Math.Modeling,2002,26:473-480.

    [25]Abbasbandy S,Parkes E J.Solitary smooth hump solutions of the Camassa-Holm equation by means of the homotopy analysis method[J].Chaos Sol.Fract.,2008,36,581-591.

    [26]Chen Aiyong,Li Jibin.Single peak solitary wave solutions for the osmosis K(2,2)equation under inhomogeneous boundary condition[J].J.Math.Anal.Appl.,2010,369:758-766.

    [27]Chen Aiyong,Huang Wentao,Xie Yongan,Nilpotent singular points and compactons[J].Appl. Math.Comput.,2014,236:300-310.

    [28]Chen Aiyong,Wen Shuangquan.Double compactons in the Olver-Rosenau equation[J].Pramana J. Phys.,2013,80:471-478.

    [29]Li Jibin,Dai Huihui.On the study for singular nonlinear wave equations:Dynamical approach[M]. Beijing:Sci.Publ.House,2007.

    [30]Li Jibin.Singular nonlinear travelling wave equations:Bifurcations and exact solutions[M].Beijing:Sci.Press,2013.

    [31]Jibin Li.Dynamical understanding of loop soliton for several nonlinear wave equations[J].Sci. China Ser.A,2007,50(6):773-785.

    [32]Li Jibin,Chen Guanrong.On nonlinear wave equations with breaking loop-solutions[J].Inter.J. Bifur.Chaos,2010,20(2):519-537.

    [33]Rosenau P,Hyman J M.Compactons:solitons with finite wavelengths[J].Phys.Rev.Lett.,1993,70:564-567.

    [34]Rong Jihong,Tang Shengqiang,Huang Wentao,Bifurcations of traverlling wave solutions for the K(n,2n,-n)equations[J].J.Math.,2010,30:603-612.

    [35]Tang Shengqiang,Tang Qinggan,Travelling wave solutions for the generalized special type of the Tzitzeica-Dodd-Bullough equations[J].J.Math.,2009,29:27-36.

    [36]Byrd P F,F(xiàn)riedman M D.Handbook of elliptic integrals for engineers and scientists[M].New York:Springer,1971.

    [37]Konno K,Ichikawa Y H,Wadati M,A Loop soliton Propagating along a Stretched Rope[J].J.Phys. Soc.Jpn.,1981,50:1025-1026.

    深水表面波可積發(fā)展方程的行波解與分支

    莫達(dá)隆1,盧亮1,2,郭秀鳳1
    (1.賀州學(xué)院理學(xué)院,廣西賀州542899)
    (2.廣西混雜計(jì)算與集成電路設(shè)計(jì)分析重點(diǎn)實(shí)驗(yàn)室,廣西南寧530006)

    本文研究了small-aspect-ratio波方程和深水表面波可積發(fā)展方程的行波解問題.利用微分方程定性理論的方法,分析了行波系統(tǒng)的相圖分支,獲得了孤立波解的精確表達(dá)式.

    行波解;相圖分支;可積系統(tǒng);表面波方程

    MR(2010)主題分類號(hào):35Q51;35C07;37G10O175.29

    date:2014-09-04Accepted date:2015-04-07

    Supported by National Natural Science Foundation of China Grants(11461021);National Natural Science Foundation of Guangxi Grant(2014GXNSFAA118028);Scientific Research Foundation of Guangxi Education Department(KY2015YB306);the open fund of Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis(HCIC201305);Scientific Research Project of Hezhou University(2012PYZK02;2015ZZZK16);Guangxi Colleges and Universities Key Laboratory of Symbolic Computation and Engineering Data Processing.

    Biography:Mo Dalong(1970-),male,born at Mengshan,Guangxi,associate professor,major in probability and statistics,differential equations.

    Lu Liang.

    猜你喜歡
    表面波賀州行波
    一類非局部擴(kuò)散的SIR模型的行波解
    游賀州紫云洞
    印象賀州
    黃河之聲(2021年20期)2021-02-24 02:48:52
    溫度梯度場(chǎng)對(duì)聲表面波器件影響研究
    電子制作(2018年23期)2018-12-26 01:01:20
    基于WSN的聲表面波微壓力傳感器的研究
    聲表面波技術(shù)的無線測(cè)溫系統(tǒng)分析與實(shí)驗(yàn)
    Joseph-Egri方程行波解的分岔
    我的家鄉(xiāng)最美之賀州
    柔性聲表面波器件的波模式分析
    吾城·吾鄉(xiāng)
    国产成年人精品一区二区| 亚洲欧美激情综合另类| 国产高清三级在线| 中文亚洲av片在线观看爽| 嫩草影视91久久| 色吧在线观看| 亚洲精华国产精华精| 成年女人毛片免费观看观看9| 天堂av国产一区二区熟女人妻| 成年版毛片免费区| 久久九九热精品免费| 18禁裸乳无遮挡免费网站照片| bbb黄色大片| 午夜激情福利司机影院| 免费一级毛片在线播放高清视频| 熟女电影av网| 一a级毛片在线观看| 欧美性猛交╳xxx乱大交人| 给我免费播放毛片高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 人妻制服诱惑在线中文字幕| 久久精品国产自在天天线| 一个人免费在线观看电影| 真人一进一出gif抽搐免费| 免费在线观看成人毛片| 级片在线观看| 黄色一级大片看看| 午夜a级毛片| 听说在线观看完整版免费高清| 国产真实乱freesex| 久久久久久久亚洲中文字幕 | 国模一区二区三区四区视频| 国产又黄又爽又无遮挡在线| 亚洲电影在线观看av| 国产蜜桃级精品一区二区三区| 91久久精品国产一区二区成人| 国产精品伦人一区二区| 伦理电影大哥的女人| 亚洲精品日韩av片在线观看| 国产高清有码在线观看视频| 久久伊人香网站| 国产毛片a区久久久久| 五月伊人婷婷丁香| av视频在线观看入口| 又爽又黄无遮挡网站| 欧美日韩国产亚洲二区| 最新中文字幕久久久久| 亚洲黑人精品在线| 欧美国产日韩亚洲一区| 又紧又爽又黄一区二区| 亚洲精品色激情综合| 亚洲五月婷婷丁香| 啦啦啦韩国在线观看视频| av在线蜜桃| 国产国拍精品亚洲av在线观看| 一本一本综合久久| 天堂网av新在线| 久久精品91蜜桃| 高清日韩中文字幕在线| 毛片女人毛片| 免费一级毛片在线播放高清视频| 亚洲成人精品中文字幕电影| 亚洲av熟女| 如何舔出高潮| 波野结衣二区三区在线| 亚州av有码| 精品欧美国产一区二区三| 日本一本二区三区精品| 日韩人妻高清精品专区| 免费看美女性在线毛片视频| 老司机福利观看| 成年版毛片免费区| 亚洲熟妇中文字幕五十中出| 在线免费观看不下载黄p国产 | 波多野结衣高清无吗| a级毛片a级免费在线| 老司机午夜十八禁免费视频| 757午夜福利合集在线观看| 男女下面进入的视频免费午夜| 亚洲aⅴ乱码一区二区在线播放| 如何舔出高潮| 欧美三级亚洲精品| 欧美日韩中文字幕国产精品一区二区三区| 日本黄色片子视频| 三级男女做爰猛烈吃奶摸视频| 国产免费av片在线观看野外av| 中国美女看黄片| 一本精品99久久精品77| 成人毛片a级毛片在线播放| 九色成人免费人妻av| 国产成人aa在线观看| 小蜜桃在线观看免费完整版高清| 亚洲乱码一区二区免费版| 制服丝袜大香蕉在线| 国产精品久久久久久久久免 | 90打野战视频偷拍视频| 亚洲欧美激情综合另类| 国产精品98久久久久久宅男小说| 一进一出好大好爽视频| 男插女下体视频免费在线播放| 国产色爽女视频免费观看| 国产一级毛片七仙女欲春2| 国产国拍精品亚洲av在线观看| 国产美女午夜福利| 国产精品一区二区三区四区免费观看 | 9191精品国产免费久久| 3wmmmm亚洲av在线观看| 嫁个100分男人电影在线观看| 久久精品人妻少妇| 偷拍熟女少妇极品色| 免费看日本二区| 黄色一级大片看看| 精品乱码久久久久久99久播| 热99re8久久精品国产| 91在线观看av| 村上凉子中文字幕在线| 亚洲欧美清纯卡通| 亚洲三级黄色毛片| 精品人妻视频免费看| av视频在线观看入口| 久久久久精品国产欧美久久久| 国产极品精品免费视频能看的| 亚洲内射少妇av| 久久99热6这里只有精品| 伊人久久精品亚洲午夜| 搡女人真爽免费视频火全软件 | 高清日韩中文字幕在线| aaaaa片日本免费| 熟妇人妻久久中文字幕3abv| 国产精品,欧美在线| 最近在线观看免费完整版| 波多野结衣巨乳人妻| 国产午夜精品久久久久久一区二区三区 | 成年版毛片免费区| 国产三级黄色录像| 首页视频小说图片口味搜索| 亚洲国产高清在线一区二区三| 国产一区二区亚洲精品在线观看| 中出人妻视频一区二区| 国产一级毛片七仙女欲春2| 丰满乱子伦码专区| 亚洲第一电影网av| 此物有八面人人有两片| 亚洲五月天丁香| 十八禁国产超污无遮挡网站| 国产av在哪里看| 欧美激情在线99| 又爽又黄a免费视频| 国产高清视频在线播放一区| 岛国在线免费视频观看| 一本精品99久久精品77| 国产午夜精品久久久久久一区二区三区 | 久久精品91蜜桃| a级毛片免费高清观看在线播放| 久久久国产成人精品二区| 国产精品98久久久久久宅男小说| 淫秽高清视频在线观看| 最近最新中文字幕大全电影3| 精品人妻偷拍中文字幕| 夜夜爽天天搞| 在线国产一区二区在线| 久久中文看片网| 亚洲人与动物交配视频| 欧美不卡视频在线免费观看| 国产国拍精品亚洲av在线观看| 最新在线观看一区二区三区| 一个人看的www免费观看视频| 天堂动漫精品| 亚洲久久久久久中文字幕| 夜夜看夜夜爽夜夜摸| 久久久久久久午夜电影| 99热这里只有精品一区| 亚洲专区中文字幕在线| 色播亚洲综合网| 国产在线精品亚洲第一网站| av国产免费在线观看| 成人无遮挡网站| 成人一区二区视频在线观看| 国产野战对白在线观看| 亚洲欧美清纯卡通| 午夜免费男女啪啪视频观看 | 变态另类成人亚洲欧美熟女| 麻豆国产97在线/欧美| 免费看日本二区| 亚洲 欧美 日韩 在线 免费| 嫩草影院新地址| 久久国产精品人妻蜜桃| 久久国产乱子免费精品| 熟女人妻精品中文字幕| 在线a可以看的网站| 女生性感内裤真人,穿戴方法视频| 成年女人毛片免费观看观看9| 全区人妻精品视频| 观看美女的网站| 国产精品一区二区免费欧美| 91av网一区二区| 亚洲欧美清纯卡通| 国产精品一区二区三区四区免费观看 | 精品国产亚洲在线| or卡值多少钱| 观看免费一级毛片| 91av网一区二区| 真人一进一出gif抽搐免费| 内射极品少妇av片p| 国产精品,欧美在线| 在线看三级毛片| 日本成人三级电影网站| 国内毛片毛片毛片毛片毛片| 可以在线观看毛片的网站| 少妇被粗大猛烈的视频| 少妇人妻精品综合一区二区 | 国内毛片毛片毛片毛片毛片| 人妻丰满熟妇av一区二区三区| 国产真实伦视频高清在线观看 | 99热这里只有是精品50| eeuss影院久久| 久9热在线精品视频| 国产精品乱码一区二三区的特点| 精品久久国产蜜桃| 最近最新中文字幕大全电影3| 精品人妻1区二区| www.www免费av| 18+在线观看网站| 九九久久精品国产亚洲av麻豆| 日韩 亚洲 欧美在线| 老司机深夜福利视频在线观看| 3wmmmm亚洲av在线观看| 午夜精品在线福利| 亚洲av二区三区四区| 亚洲av电影在线进入| 丰满人妻熟妇乱又伦精品不卡| 欧美又色又爽又黄视频| 性色avwww在线观看| 国产午夜精品论理片| 五月玫瑰六月丁香| 99久久成人亚洲精品观看| 国产av在哪里看| 亚洲欧美清纯卡通| h日本视频在线播放| 综合色av麻豆| 免费在线观看日本一区| 亚洲综合色惰| 久久精品国产99精品国产亚洲性色| 亚洲一区二区三区色噜噜| 亚洲七黄色美女视频| 可以在线观看毛片的网站| 草草在线视频免费看| 在线免费观看不下载黄p国产 | 亚洲综合色惰| 中文字幕免费在线视频6| 日韩免费av在线播放| 性插视频无遮挡在线免费观看| 亚洲午夜理论影院| 亚洲熟妇中文字幕五十中出| 国产 一区 欧美 日韩| 国产野战对白在线观看| 精品无人区乱码1区二区| 亚洲中文字幕日韩| 欧美黑人巨大hd| 淫妇啪啪啪对白视频| 午夜福利欧美成人| 久久久国产成人精品二区| 日韩欧美 国产精品| 久久亚洲真实| 中文资源天堂在线| 国产国拍精品亚洲av在线观看| 久久伊人香网站| 国产午夜精品久久久久久一区二区三区 | 人妻夜夜爽99麻豆av| 一个人观看的视频www高清免费观看| 中文字幕高清在线视频| 天堂√8在线中文| 日本三级黄在线观看| 亚洲成人精品中文字幕电影| 国产中年淑女户外野战色| .国产精品久久| 亚洲狠狠婷婷综合久久图片| 免费在线观看日本一区| 亚州av有码| 国产成人啪精品午夜网站| 波多野结衣高清无吗| 男人和女人高潮做爰伦理| 少妇高潮的动态图| 偷拍熟女少妇极品色| 美女被艹到高潮喷水动态| 丰满的人妻完整版| 亚洲久久久久久中文字幕| 国产野战对白在线观看| 免费在线观看成人毛片| 亚洲av成人不卡在线观看播放网| 亚洲国产色片| 国产一级毛片七仙女欲春2| 日本 欧美在线| 国产探花极品一区二区| 久久久久久久午夜电影| 丁香六月欧美| 国产欧美日韩精品亚洲av| 黄色丝袜av网址大全| www日本黄色视频网| 无人区码免费观看不卡| 身体一侧抽搐| 18禁裸乳无遮挡免费网站照片| 99国产精品一区二区三区| 床上黄色一级片| 男女那种视频在线观看| 亚洲激情在线av| 精品日产1卡2卡| 午夜福利在线在线| 国产中年淑女户外野战色| 12—13女人毛片做爰片一| 午夜免费激情av| 亚洲经典国产精华液单 | 亚洲精品一卡2卡三卡4卡5卡| 欧美一区二区亚洲| 亚洲国产日韩欧美精品在线观看| 国产精品爽爽va在线观看网站| 99久久成人亚洲精品观看| 中文字幕人成人乱码亚洲影| 国产亚洲欧美98| 男人舔奶头视频| 成人av在线播放网站| 一区二区三区激情视频| 午夜福利视频1000在线观看| 国产亚洲精品久久久久久毛片| 男女视频在线观看网站免费| 久久精品国产亚洲av涩爱 | 99久久九九国产精品国产免费| 我要搜黄色片| 亚洲中文日韩欧美视频| 中文字幕熟女人妻在线| 在线国产一区二区在线| 亚洲性夜色夜夜综合| 欧美潮喷喷水| 九色成人免费人妻av| 久久久精品大字幕| 亚洲熟妇中文字幕五十中出| 国产探花在线观看一区二区| 一进一出好大好爽视频| 亚洲精品在线观看二区| 日本撒尿小便嘘嘘汇集6| 国产三级中文精品| 热99re8久久精品国产| 久久久久久九九精品二区国产| 国产精品嫩草影院av在线观看 | 午夜福利在线在线| 亚洲人与动物交配视频| 一区二区三区高清视频在线| 一进一出抽搐动态| 大型黄色视频在线免费观看| 国产麻豆成人av免费视频| 午夜福利高清视频| 亚洲人与动物交配视频| 午夜免费成人在线视频| 又爽又黄无遮挡网站| 亚洲乱码一区二区免费版| 99久久精品国产亚洲精品| 亚洲 国产 在线| 麻豆成人午夜福利视频| 国产高潮美女av| 欧美乱妇无乱码| 亚洲精品在线美女| 欧美乱妇无乱码| 欧美日韩黄片免| 日韩亚洲欧美综合| 国产乱人视频| 在线免费观看不下载黄p国产 | 嫩草影院精品99| 国产亚洲精品综合一区在线观看| 舔av片在线| 国产精品人妻久久久久久| 午夜福利免费观看在线| 成人永久免费在线观看视频| 欧美成人性av电影在线观看| 国产精品乱码一区二三区的特点| 夜夜爽天天搞| 全区人妻精品视频| 麻豆成人午夜福利视频| av在线蜜桃| 午夜精品久久久久久毛片777| 亚洲中文字幕一区二区三区有码在线看| 给我免费播放毛片高清在线观看| 成年女人看的毛片在线观看| 在现免费观看毛片| 欧美一区二区精品小视频在线| 国产人妻一区二区三区在| 久久久久亚洲av毛片大全| 色精品久久人妻99蜜桃| 一个人看视频在线观看www免费| 在线免费观看的www视频| 99热这里只有精品一区| 国产91精品成人一区二区三区| 99久久成人亚洲精品观看| 色综合亚洲欧美另类图片| 级片在线观看| 免费高清视频大片| 国产精品野战在线观看| 美女xxoo啪啪120秒动态图 | 欧美在线一区亚洲| 99视频精品全部免费 在线| 亚洲五月婷婷丁香| 午夜福利高清视频| 最新在线观看一区二区三区| 少妇丰满av| 亚洲不卡免费看| 国产伦精品一区二区三区视频9| 久久久久精品国产欧美久久久| 亚洲,欧美精品.| 亚洲av成人精品一区久久| 长腿黑丝高跟| 午夜日韩欧美国产| 观看美女的网站| 国产毛片a区久久久久| 嫩草影院入口| 国产一区二区三区视频了| 国产人妻一区二区三区在| 日韩精品青青久久久久久| 很黄的视频免费| 久久人人精品亚洲av| 久久久国产成人精品二区| 午夜福利欧美成人| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 美女高潮的动态| 欧美在线黄色| 在线播放国产精品三级| 精品午夜福利在线看| 怎么达到女性高潮| 黄色视频,在线免费观看| 日本熟妇午夜| 欧美成人一区二区免费高清观看| 国产精品一区二区性色av| 欧美xxxx性猛交bbbb| 婷婷精品国产亚洲av在线| 欧美中文日本在线观看视频| 国产主播在线观看一区二区| 国产成人a区在线观看| 99在线人妻在线中文字幕| 美女被艹到高潮喷水动态| 最近视频中文字幕2019在线8| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲黑人精品在线| 国产一区二区三区视频了| 三级毛片av免费| 日本与韩国留学比较| 99久国产av精品| 国产免费av片在线观看野外av| 国产精品一区二区免费欧美| 午夜福利免费观看在线| 黄色一级大片看看| 最近中文字幕高清免费大全6 | 在线观看av片永久免费下载| 成年免费大片在线观看| 搡女人真爽免费视频火全软件 | 国产成人影院久久av| 亚洲成人久久性| 午夜激情福利司机影院| 男女做爰动态图高潮gif福利片| 99在线人妻在线中文字幕| 久久久久久久久中文| 一夜夜www| 在线a可以看的网站| 1024手机看黄色片| av天堂在线播放| 如何舔出高潮| 97超视频在线观看视频| 亚洲av中文字字幕乱码综合| 欧美成人性av电影在线观看| 亚洲 欧美 日韩 在线 免费| 欧美xxxx性猛交bbbb| 日韩欧美 国产精品| 国产亚洲av嫩草精品影院| 国产黄片美女视频| 久久6这里有精品| av天堂中文字幕网| 可以在线观看的亚洲视频| 亚洲美女黄片视频| 天堂影院成人在线观看| 亚洲国产欧美人成| 国内精品一区二区在线观看| 亚洲欧美清纯卡通| 午夜免费成人在线视频| 色尼玛亚洲综合影院| 一二三四社区在线视频社区8| 在线播放无遮挡| 啪啪无遮挡十八禁网站| av在线蜜桃| 女人被狂操c到高潮| 免费av毛片视频| 国产色婷婷99| 欧美一区二区亚洲| 女同久久另类99精品国产91| 国产麻豆成人av免费视频| 中文字幕人成人乱码亚洲影| 夜夜躁狠狠躁天天躁| 国产一区二区三区在线臀色熟女| 婷婷亚洲欧美| 国产真实乱freesex| 亚洲精品日韩av片在线观看| 十八禁国产超污无遮挡网站| 18禁在线播放成人免费| 国产亚洲精品久久久久久毛片| 国产成人av教育| 五月伊人婷婷丁香| 国产高清三级在线| 日韩欧美免费精品| 成人永久免费在线观看视频| 成人无遮挡网站| 成人国产一区最新在线观看| 亚洲av日韩在线播放| 少妇猛男粗大的猛烈进出视频 | 亚洲国产精品成人久久小说| 精华霜和精华液先用哪个| 久久久a久久爽久久v久久| 91久久精品国产一区二区三区| 国产精品.久久久| 在线 av 中文字幕| 亚洲成人精品中文字幕电影| 国产精品麻豆人妻色哟哟久久| 精品久久久久久久末码| 人妻夜夜爽99麻豆av| 国产精品伦人一区二区| 国产成年人精品一区二区| 91狼人影院| 最后的刺客免费高清国语| 婷婷色麻豆天堂久久| 99久久人妻综合| 丰满乱子伦码专区| av天堂中文字幕网| 久久人人爽人人片av| 草草在线视频免费看| 80岁老熟妇乱子伦牲交| 美女内射精品一级片tv| 国产乱人视频| 国产在线一区二区三区精| 男女国产视频网站| 大陆偷拍与自拍| 少妇熟女欧美另类| av免费在线看不卡| 男女国产视频网站| 99精国产麻豆久久婷婷| 久久精品国产亚洲网站| 色吧在线观看| 中文资源天堂在线| 久久国内精品自在自线图片| 亚洲天堂av无毛| 亚洲av成人精品一区久久| 校园人妻丝袜中文字幕| 国产女主播在线喷水免费视频网站| 免费看日本二区| 啦啦啦在线观看免费高清www| 日韩,欧美,国产一区二区三区| 精品一区二区三区视频在线| 久久久久精品久久久久真实原创| 日韩欧美一区视频在线观看 | 亚洲最大成人av| 人体艺术视频欧美日本| 99热这里只有是精品在线观看| 久久久久久伊人网av| kizo精华| 午夜福利视频1000在线观看| 亚洲精品日韩av片在线观看| 老师上课跳d突然被开到最大视频| 亚洲国产欧美在线一区| a级一级毛片免费在线观看| 18禁在线播放成人免费| 看十八女毛片水多多多| 午夜福利视频1000在线观看| 国产精品成人在线| 亚洲在线观看片| 国产精品精品国产色婷婷| 亚洲第一区二区三区不卡| 女人被狂操c到高潮| 国产国拍精品亚洲av在线观看| 白带黄色成豆腐渣| 少妇 在线观看| av免费在线看不卡| 久久精品国产亚洲av涩爱| 麻豆成人午夜福利视频| 国产精品av视频在线免费观看| 80岁老熟妇乱子伦牲交| 国语对白做爰xxxⅹ性视频网站| 日韩欧美精品v在线| 免费人成在线观看视频色| 午夜福利视频精品| 亚洲真实伦在线观看| 午夜精品一区二区三区免费看| 91久久精品国产一区二区成人| 男人舔奶头视频| 国产色爽女视频免费观看| 一区二区三区四区激情视频| 精品人妻偷拍中文字幕| 亚洲天堂国产精品一区在线| 嫩草影院新地址| 天天躁夜夜躁狠狠久久av| 中文字幕人妻熟人妻熟丝袜美| 99九九线精品视频在线观看视频| 午夜福利在线观看免费完整高清在| 欧美成人精品欧美一级黄| 日本猛色少妇xxxxx猛交久久| h日本视频在线播放| 性色av一级| 日本猛色少妇xxxxx猛交久久| 大陆偷拍与自拍| 91精品国产九色| 一级片'在线观看视频| 一个人看的www免费观看视频| 色视频www国产| 中文精品一卡2卡3卡4更新| 亚洲成色77777| 免费看av在线观看网站| 国产黄a三级三级三级人| 精品国产一区二区三区久久久樱花 | 国精品久久久久久国模美| 神马国产精品三级电影在线观看| 国产高清三级在线| 卡戴珊不雅视频在线播放|