• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    BIFURCATIONS OF TRAVELING WAVE SOLUTIONS OF INTEGRABLE EVOLUTION EQUATIONS FOR SURFACE WAVES IN DEEP WATER

    2016-10-13 08:12:19MODalongLULiangGUOXiufeng
    數(shù)學(xué)雜志 2016年5期
    關(guān)鍵詞:表面波賀州行波

    MO Da-long,LU Liang,2,GUO Xiu-feng

    (1.School of Sciences,Hezhou University,Hezhou 542899,China)

    (2.Guangxi Key Laboratories of Hybrid Computation and Integrated Circuit Design Analysis,Nanning 530006,China)

    BIFURCATIONS OF TRAVELING WAVE SOLUTIONS OF INTEGRABLE EVOLUTION EQUATIONS FOR SURFACE WAVES IN DEEP WATER

    MO Da-long1,LU Liang1,2,GUO Xiu-feng1

    (1.School of Sciences,Hezhou University,Hezhou 542899,China)

    (2.Guangxi Key Laboratories of Hybrid Computation and Integrated Circuit Design Analysis,Nanning 530006,China)

    In this paper,we investigate the traveling wave solutions of a small-aspect-ratio wave equation and an integrable evolution equation for surface waves in deep water.By applying the qualitative theory of differential equations,we analyze the phase portraits of the traveling wave systems and obtain the exact explicit representations of solitary wave solutions.

    traveling wave solutions;bifurcations of phase portraits;integrable systems;surface waves equations

    2010 MR Subject Classification:35Q51;35C07;37G10

    Document code:AArticle ID:0255-7797(2016)05-0963-12

    1 Introduction

    In order to describe the dynamics of monochromatic surface waves in deep water,a asymptotic model for small-aspect-ratio wave was derived in[1]as follows

    where g is the gravitation constant and k is wave vector.The equation(1.1)has a kdependent coefficient and it can be considered as belonging to both of the two categories:that of Korteweg-de Vries models(KdV,modified KdV,Benjamin-Bona-Mahony-Peregrine,Camassa-Holm,etc.)describing evolutions of wave profiles and that of NLS-type equations(modified NLS[2],Davey-Stewartson[3],etc.)describing modulation of wave profiles and having k-dependent coefficients.Moreover,in order to find a steep rotational Stokes wave,paper[1]also start with equation(1.1)in the frame as

    In this paper,since(1.1)and(1.2)are meaningful equations for surface waves in deep water,we will employ the bifurcation method and qualitative theory of dynamical systems [4]to investigate these equations.The phase portraits and the explicit expressions of the bounded traveling wave solutions for the equations will obtained in the paper.To the best of our knowledge,bifurcations of traveling wave solution for above equations have not yet been considered.

    It is well known that traveling waves propagation in nonlinear media was the subject of intense investigations in recent years.The study of nonlinear wave equations and their solutions were of great importance in many areas of physics(see[5-9]and the references therein).Traveling wave solution is an important type of solutions for the nonlinear partial differential equations(NLPDEs)which were found to have a variety of traveling wave solutions(see[10,13,14,30,32]).

    In recent years,various powerful methods were developed to construct traveling wave solutions of nonlinear partial differential equations,such as the trigonometric function series method[15],the modified mapping method and the extended mapping method(see[16]),theexpansion method(see[17,18]),the homogeneous balance method(see[19,20]),the tanh and extended methods(see[21])and so on.Meanwhile,the bifurcation method of phase plane was developed to obtain traveling wave solutions of NLPDEs(see[22-24]).Therefore,it is a good way to understand the behavior of traveling wave solutions of NLPDEs.What is more,breaking three solutions have attracted a great deal of interest(see[25-35])since Konno et al.(see[37])first reported the breaking three solutions in a nonlinear oscillation model of an elastic beam with tension.

    Motivated by above mentioned works,we consider equation(1.1)and(1.2)by using the bifurcation method and qualitative theory of dynamical systems.The paper is organized as follows.In Section 2,we discuss the dynamical behavior of solutions of small-aspect-ratio wave model(1.2)and give exact parametric expressions of traveling wave solutions for the equations.In Section 3,the dynamical analysis and exact explicit representations of solitary wave solutions of an integrable evolution equation are given.At the last section,we give the conclusions of this paper.

    2 Dynamical Analysis and Exact Parametric Traveling Wave Solutions

    In this section,we investigate the traveling wave solutions of a small-aspect-ratio waves equation(1.1).A breaking three solution and a family of periodic breaking three solutions are found by employing the method of the phase plane.In addition,the relationship betweenthe loop-soliton solution and the periodic loop solutions is as well investigated.The analysis may be helpful in understanding the significance of dynamical behavior of eq.(1.1).

    It is well known that a traveling wave solution of(1.1)with wave speed c is the solution having the form η=φ(ξ)with ξ=x-ct.Substituting the traveling wave solution η(x,t)=φ(x-ct)for the constant wave speed c into(1.1),we have the following ordinary differential equation

    Integrating(2.1),we have

    It is easy to see that system(2.2)has the first integral

    which is obtained from(2.2)by letting dξ=3udζ.System(2.4)has the same first integral H(u,y)and the same topological phase portraits as system(2.2)except for the straight line u=0.Clearly,system System(2.4)has two types of singular points of system(2.4),as follows(see Fig.1).Using qualitative theory of differential equations[29,30],we can easily verify the following proposition.

    Proposition 2.1 Denote h0=H,the pointsand,respectively,then

    Case I If A<0,then P is a center,P1and P2are saddle points,which shown in Fig.1(a).For h∈(h0,0)defined by(2.3),(1.1)has a family of smooth periodic wave solutions(see Fig.2(a)).For h=h0defined by(2.3),(1.1)has a unique periodic cuspon solution shown in Fig.2(b).

    Case II If A>0,then P is saddle point(Fig.1(b));for h=h0defined by(2.3),(1.1)has a unique breaking three solution shown in Fig.2(c);for h∈(0,h0),there exists afamily of uncountably infinite many periodic breaking three solutions of(1.1)shown in Fig. 2(d).Moreover,the periodic loop solutions converge to the breaking three solutions as h approaches h0.

    Now,we will give the exact parametric representations of smooth traveling wave solutions,periodic cuspons,breaking three solution and periodic breaking three solutions of the small-aspect-ratio waves equation(1.1).

    (a)Smooth periodic wave solutions.

    First,corresponding to Fig.1(a),when A<0,a family of smooth periodic wave solutions of(1.1)exist,which correspond to a family of periodic orbits defined by H(u,y)=h,where h∈(h0,0).The numerator of(2.3)can be decomposed into

    where α>β>0>γ are function of c,k,g, g,which can be rigorously determined by the formula for cubic algebraic equations.Then for β<u<α,and by y=,we have

    Then we obtain the following exact parametric representations of smooth periodic wave solutions of(1.1)as follows(see[36])

    where λ2=(α-β)/(α-γ),sn(τ,λ)is Jacobian elliptic functions with the modulus λ,Π(···)is the elliptic integral of the third kind andμis a appropriate parameters.

    (b)Periodic cuspons

    Let T=,we obtain the following periodic cuspon(see Fig.2(b))

    (c)Breaking three solutions

    Fig.1:phase portraits of system(3.4).(a)for A<0,(b)for A>0. (a)(b)

    Fig.2:wave profiles.(a)smooth periodic wave solutions,(b)periodic cuspons,(c)breaking three solutions,(d)periodic breaking three solutions.

    Corresponding to Fig.1(a),when A>0 and h=h0,the equilibrium point P(-A/2,0)is a saddle point.By using the first equation of system(2.2)to perform the integration along the three orbits for the initial value u(0)=and u(0)=,respectively,we have

    Then we obtain the following parametric representations of the traveling wave solutions of (1.1)(see Fig.2(c))

    where

    (d)Periodic breaking three solutions

    Corresponding to Fig.2(d),when A>0,the graph defined by H(u,y)=h,h∈(0,h0)consists of two open-end curves,passing through the points(β,0)and(α,0),respectively,where-A/2<β<0<α.

    By the algebra curve the numerator of(2.3),we have the similar representations of smooth periodic wave solutions as in(a)by doing similar procedure,we also have

    where α>0>β>γ are function of c,k,g,,and we obtain the following exact parametric representations of smooth periodic wave solutions of(1.1)(see Fig.2(d))as follows

    where λ2=(α-β)/(α-γ),sn(τ,λ)is Jacobian elliptic functions with the modulus λ,Π(···)is the elliptic integral of the third kind andμis a appropriate parameter.

    3 Dynamical Analysis and Exact Traveling Wave Solutions of(1.2)

    In this section,we investigate the periodic traveling wave solutions of(1.2)which has a great relationship with the steep rotational Stokes wave equation.Moreover,the results have some different from(1.1).

    First,by substituting η(x,t)=φ(ξ)with ξ=x-ct for the constant wave speed c into (1.2),we have the following ordinary differential equation

    which is obtained from(3.2)by letting dξ=6udζ.System(3.4)has the same first integral H(u,y)and the same topological phase portraits as system(3.2)except for the straight line u=0.Clearly,system(3.4)also has two types of singular points,as follows(see Fig.1).Using qualitative theory of differential equations,we can easily verify the following statement.

    Proposition 3.1 Denote

    Case I If Q>0,then P is a center;P1and P2are saddle points(see Fig.3(a)).For h∈(h0,0)defined by(3.3),(1.2)has a family of smooth periodic wave solutions(Fig.4(a)). For h=0 defined by(3.4),(1.2)has a unique periodic cuspon shown in Fig.4(b).

    Case II If Q<0,then P is saddle points(see Fig.3(b);For h=h0defined by(3.4),(1.2)has a unique breaking three solution which is shown in Fig.4(c).For h∈(0,h0),there exists a family of uncountably infinite many periodic loop solutions of(1.2)shown in Fig.3(d).Moreover,the periodic breaking three solutions converge to the breaking three solutions as h approaches h0.

    Fig.3:phase portraits of system(3.4),(a)for Q>0,(b)for Q<0. (a)(b)

    Fig.4:(color online)wave profiles.(a)smooth periodic wave solutions,(b)periodic cuspons,(c)breaking three solutions,(d)periodic breaking three solutions.

    In the following,we will give the exact representations of the smooth periodic traveling wave solutions,periodic cuspons,the breaking three solution and periodic breaking three solutions of equation(1.2).

    (a)Smooth periodic wave solutions.

    Corresponding to Fig.3(a),when Q>0,a family of smooth periodic wave solutions of (1.1)exist,which correspond to a family of periodic orbits defined by H(u,y)=h∈(h0,0),we have

    By using the first equation of system(3.2),we have

    where γ<β<0<α are function of c,k,g,,which can be rigorously determined by the formula for cubic algebraic equations.Then we obtain the following exact parametric representations of smooth periodic wave solutions of of eq.(1.2)

    where λ2=(β-γ)/(α-γ),sn(τ,λ)is Jacobian elliptic functions with the modulus λ,E(·)is the elliptic integral of the second kind andμis a appropriate parameters.

    (b)Periodic cuspons

    Corresponding to Fig.3(b),when Q>0 and h=0,a periodic cuspon of(1.2)exists,which corresponds to the heteroclinic orbits defined by H(u,y)=h=0.We have the following traveling wave solution of(1.2)

    Thus we have the periodic cusp wave solutions of equation(1.2)(see Fig.4(b))

    (c)Breaking three solutions

    Corresponding to Fig.3(b),when Q<0 and h=h0,the equilibrium point P(-Q/2,0)is a saddle point.By using the first equation of system(3.2)to perform the integration along the three orbits for the initial value u(0)=Q/4 and u(0)=-Q/4,respectively,we have

    Then we obtain the following parametric representations of the traveling wave solutions of (1.2)(see Fig.4(c))

    (d)Periodic breaking three solutions

    Corresponding to Fig.3(b),when Q<0 and h∈(0,h0),the graph defined by H(u,y)= h∈(0,h0)consists of two open-end curves,passing through the points(γ,0)and(β,0),respectively,where γ<0<β<.By calculating,we obtain following exact parametric representations of the periodic breaking three solutions of(1.2)[see Fig.4(d)]

    where λ2=(β-γ)/(α-γ),sn(τ,λ)is Jacobian elliptic functions with the modulus λ and μis a appropriate parameter.

    4 Conclusions

    In this paper,by using the qualitative theory of differential equations,a small-aspectratio wave equation(1.1)and an integrable evolution equation(1.2)for surface waves in deep water are studied.The phase portraits of the traveling wave systems are analyzed(see Fig. 1 and Fig.3)and exact explicit representations of solitary wave solutions such as smooth periodic wave solutions,periodic cuspons,breaking three solution and periodic breaking three solutions(see Fig.2 and Fig.4)are give in Section 2 and Section 3,respectively.By comparing the results of these two equations,the phase portraits and exact explicit representations of solitary wave solutions are obtained under some different parameter conditions.

    References

    [1]Kraenkel R A,Leblond H,Manna M A.An integrable evolution equation for surface waves in deep water[J].Phys.A:Math.Theor.,2014,47:1-17.

    [2]Dodd R K,Eilbeck J C,Gibbon J D,Morris H C.Solitons and nonlinear wave equations[M].London:Academic,1982.

    [3]Davey A,Stewartson K.On three-dimensional packets of surface waves[J].Proc.R.Soc.Lond.A.,1974,338:101-110.

    [4]Nemytskii V,Stepanov V.Qualitative theory of differential equations[M].New York:Dover,1989.

    [5]Biswas A,Yildirim A,Hayat T,Aldossary O,Sassaman R.Soliton perturbation theory for the generalized Klein-Gordon equation with full nonlinearity[J].Proc.Rom.Acad.Ser.A Math.Phys. Tech.Sci.Inf.Sci.,2012,13:32-41.

    [6]Lenells J.Traveling wave solutions of the Camassa-Holm equation[J].J.Differ.Equ.,2005,217:393-430.

    [7]Liu Yu.New type soliton solutions to Korteweg-de Vries and Benjamin-Bona-Mahony equations[J]. Chin.Phys.Lett.,2010,27(9):090201,1-4.

    [8]Razborova P,Ahmed B,Biswas A.Solitons,shock waves and conservation laws of Rosenau-KdVRLW equation with power law nonlinearity[J].Appl.Math.Inf.Sci.,2014,8:485-491.

    [9]Wazwaz A M.Multiple soliton solutions for an integrable couplings of the Boussinesq equation[J]. Ocean Eng.,2013,73,38-40.

    [10]Johnpillai A G,Yildirim A,Biswas A.Chiral solitons with Bohm potential by Lie group analysis and traveling wave hypothesi[J].Rom.J.Phys.,2012,57:545-554.

    [32]Li Jibin,Qiao Zhijun.Peakon,pseudo-peakon,and cuspon solutions for two generalized Camassa-Holm equations[J].J.Math.Phys.,2013,54:1-14.

    [30]Li Jibin,Liu Zhengrong.Smooth and non-smooth traveling waves in a nonlinearly dispersive equation[J].Appl.Math.Model.,2000,25:41-56.

    [13]Zhang Lina,Chen Aiyong,Tang Jiade.Special exact soliton solutions for the K(2,2)equation with non-zero constant pedestal[J].Appl.Math.Comput.,2011,218:4448-4457.

    [14]Zhang Zaiyuna,Liu Zhenhai,Miao Xiujin,Chen Yuezhong.Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schr¨odinger's equation with Kerr law nonlinearity[J].J.Phys. A,2011,375:1275-1280.

    [15]Zhang Zaiyun.New exact traveling wave solutions for the nonlinear Klein-Gordon equation[J].Turk. J.Phys.,2008,32:235-240.

    [16]Zhang Zaiyuna,Liu Zhenhai,Miao Xiu-jin,Chen Yuezhong.New exact solutions to the perturbed nonlinear Schr¨odinger's equation with Kerr law nonlinearity[J].Appl.Math.Comput.,2010,216:3064-3072.

    [17]Wang Mingliang,Li Xiangzheng,Zhang Jinliang.The)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J].Phys.Lett.A,2008,372:417-423

    [18]Shehata A R.The traveling wave solutions of the perturbed nonlinear Schrdinger equation and the cubic-quintic Ginzburg Landau equation using the modified)-expansion method[J].Appl. Math.Comput.,2010,217(1):1-10.

    [19]Wang Mingliang.Exact solutions for a compound KdV-Burgers equation[J].Phys.Lett.A 1996,213:279-287.

    [20]Fan Engui,Zhang Hongqing.A note on the homogeneous balance method[J].Phys.Lett.A,1998,246:403-406.

    [21]Duffy B R,Parkes E J,Travelling solitary wave solutions to a seventh-order generalized KdV equation[J].Phys.Lett.A,1996,214:271-272.

    [22]Tang Minying,Yang Chengxi.Extension on peaked wave solutions of CH-γ equation[J].Chaos Solitons Fractals,2004,20:815-825.

    [23]Li Jibin,Zhang Lina.Bifurcations of traveling wave solutions in generalized Pochhammer-Chree equation[J].Chaos Solitons Fractals,2002,14:581-593.

    [24]Liu Zhengrong,Qian Tifei.Peakons of the Camassa-Holm equation[J].Appl.Math.Modeling,2002,26:473-480.

    [25]Abbasbandy S,Parkes E J.Solitary smooth hump solutions of the Camassa-Holm equation by means of the homotopy analysis method[J].Chaos Sol.Fract.,2008,36,581-591.

    [26]Chen Aiyong,Li Jibin.Single peak solitary wave solutions for the osmosis K(2,2)equation under inhomogeneous boundary condition[J].J.Math.Anal.Appl.,2010,369:758-766.

    [27]Chen Aiyong,Huang Wentao,Xie Yongan,Nilpotent singular points and compactons[J].Appl. Math.Comput.,2014,236:300-310.

    [28]Chen Aiyong,Wen Shuangquan.Double compactons in the Olver-Rosenau equation[J].Pramana J. Phys.,2013,80:471-478.

    [29]Li Jibin,Dai Huihui.On the study for singular nonlinear wave equations:Dynamical approach[M]. Beijing:Sci.Publ.House,2007.

    [30]Li Jibin.Singular nonlinear travelling wave equations:Bifurcations and exact solutions[M].Beijing:Sci.Press,2013.

    [31]Jibin Li.Dynamical understanding of loop soliton for several nonlinear wave equations[J].Sci. China Ser.A,2007,50(6):773-785.

    [32]Li Jibin,Chen Guanrong.On nonlinear wave equations with breaking loop-solutions[J].Inter.J. Bifur.Chaos,2010,20(2):519-537.

    [33]Rosenau P,Hyman J M.Compactons:solitons with finite wavelengths[J].Phys.Rev.Lett.,1993,70:564-567.

    [34]Rong Jihong,Tang Shengqiang,Huang Wentao,Bifurcations of traverlling wave solutions for the K(n,2n,-n)equations[J].J.Math.,2010,30:603-612.

    [35]Tang Shengqiang,Tang Qinggan,Travelling wave solutions for the generalized special type of the Tzitzeica-Dodd-Bullough equations[J].J.Math.,2009,29:27-36.

    [36]Byrd P F,F(xiàn)riedman M D.Handbook of elliptic integrals for engineers and scientists[M].New York:Springer,1971.

    [37]Konno K,Ichikawa Y H,Wadati M,A Loop soliton Propagating along a Stretched Rope[J].J.Phys. Soc.Jpn.,1981,50:1025-1026.

    深水表面波可積發(fā)展方程的行波解與分支

    莫達(dá)隆1,盧亮1,2,郭秀鳳1
    (1.賀州學(xué)院理學(xué)院,廣西賀州542899)
    (2.廣西混雜計(jì)算與集成電路設(shè)計(jì)分析重點(diǎn)實(shí)驗(yàn)室,廣西南寧530006)

    本文研究了small-aspect-ratio波方程和深水表面波可積發(fā)展方程的行波解問題.利用微分方程定性理論的方法,分析了行波系統(tǒng)的相圖分支,獲得了孤立波解的精確表達(dá)式.

    行波解;相圖分支;可積系統(tǒng);表面波方程

    MR(2010)主題分類號(hào):35Q51;35C07;37G10O175.29

    date:2014-09-04Accepted date:2015-04-07

    Supported by National Natural Science Foundation of China Grants(11461021);National Natural Science Foundation of Guangxi Grant(2014GXNSFAA118028);Scientific Research Foundation of Guangxi Education Department(KY2015YB306);the open fund of Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis(HCIC201305);Scientific Research Project of Hezhou University(2012PYZK02;2015ZZZK16);Guangxi Colleges and Universities Key Laboratory of Symbolic Computation and Engineering Data Processing.

    Biography:Mo Dalong(1970-),male,born at Mengshan,Guangxi,associate professor,major in probability and statistics,differential equations.

    Lu Liang.

    猜你喜歡
    表面波賀州行波
    一類非局部擴(kuò)散的SIR模型的行波解
    游賀州紫云洞
    印象賀州
    黃河之聲(2021年20期)2021-02-24 02:48:52
    溫度梯度場(chǎng)對(duì)聲表面波器件影響研究
    電子制作(2018年23期)2018-12-26 01:01:20
    基于WSN的聲表面波微壓力傳感器的研究
    聲表面波技術(shù)的無線測(cè)溫系統(tǒng)分析與實(shí)驗(yàn)
    Joseph-Egri方程行波解的分岔
    我的家鄉(xiāng)最美之賀州
    柔性聲表面波器件的波模式分析
    吾城·吾鄉(xiāng)
    免费观看性生交大片5| 亚洲久久久国产精品| 中文在线观看免费www的网站| 新久久久久国产一级毛片| 中文字幕久久专区| 人体艺术视频欧美日本| 亚洲欧美成人综合另类久久久| 成人18禁高潮啪啪吃奶动态图 | 免费大片18禁| 97精品久久久久久久久久精品| 久久久久久久亚洲中文字幕| av有码第一页| 国产女主播在线喷水免费视频网站| 国产 一区精品| www.色视频.com| 亚洲av电影在线观看一区二区三区| 大香蕉97超碰在线| 国产乱人偷精品视频| 人妻 亚洲 视频| 成人亚洲欧美一区二区av| av播播在线观看一区| 久久久国产一区二区| 午夜福利视频精品| 建设人人有责人人尽责人人享有的| 亚洲精品国产av蜜桃| 国产伦精品一区二区三区四那| 国产黄片美女视频| 国产极品粉嫩免费观看在线 | freevideosex欧美| 久久久国产一区二区| 啦啦啦视频在线资源免费观看| 国产淫片久久久久久久久| 丝瓜视频免费看黄片| 人人妻人人看人人澡| 欧美三级亚洲精品| 九九久久精品国产亚洲av麻豆| 欧美少妇被猛烈插入视频| 国产在视频线精品| 极品少妇高潮喷水抽搐| 女人久久www免费人成看片| 这个男人来自地球电影免费观看 | 自拍偷自拍亚洲精品老妇| 99热网站在线观看| 卡戴珊不雅视频在线播放| 韩国av在线不卡| 久久久久久久亚洲中文字幕| 在线天堂最新版资源| 99热国产这里只有精品6| 91久久精品国产一区二区三区| 日韩免费高清中文字幕av| 美女视频免费永久观看网站| a级片在线免费高清观看视频| 制服丝袜香蕉在线| 极品人妻少妇av视频| 视频中文字幕在线观看| 热re99久久精品国产66热6| 在线观看免费视频网站a站| 99精国产麻豆久久婷婷| 色婷婷av一区二区三区视频| 黄色毛片三级朝国网站 | 国产黄频视频在线观看| 观看美女的网站| 曰老女人黄片| 欧美精品高潮呻吟av久久| 成人免费观看视频高清| 国产精品国产三级国产av玫瑰| 日韩欧美精品免费久久| 精品亚洲乱码少妇综合久久| 成年美女黄网站色视频大全免费 | 中文乱码字字幕精品一区二区三区| 国产色爽女视频免费观看| 最近中文字幕2019免费版| 精品国产一区二区久久| 久久国内精品自在自线图片| 秋霞伦理黄片| av在线观看视频网站免费| 91久久精品国产一区二区三区| 少妇 在线观看| 亚洲人成网站在线观看播放| 22中文网久久字幕| 欧美日韩视频高清一区二区三区二| 免费看av在线观看网站| 欧美日本中文国产一区发布| 日本wwww免费看| 亚洲高清免费不卡视频| 亚洲av成人精品一区久久| 肉色欧美久久久久久久蜜桃| 精品久久国产蜜桃| 亚洲四区av| 超碰97精品在线观看| 日韩av免费高清视频| 97超视频在线观看视频| 亚洲精品自拍成人| 91午夜精品亚洲一区二区三区| 免费高清在线观看视频在线观看| 亚洲精品自拍成人| 26uuu在线亚洲综合色| 国产精品国产三级国产av玫瑰| 精品久久久久久久久av| 9色porny在线观看| 欧美国产精品一级二级三级 | 中文字幕精品免费在线观看视频 | 免费看光身美女| 国产色婷婷99| 哪个播放器可以免费观看大片| 午夜福利网站1000一区二区三区| 国产在线免费精品| 日本黄色日本黄色录像| 成人综合一区亚洲| 又黄又爽又刺激的免费视频.| 乱人伦中国视频| 十八禁高潮呻吟视频 | 成人国产麻豆网| 日韩制服骚丝袜av| 欧美精品国产亚洲| 久久影院123| 精品少妇久久久久久888优播| 亚洲色图综合在线观看| 精品久久久精品久久久| 亚洲av免费高清在线观看| 免费观看的影片在线观看| 男人和女人高潮做爰伦理| 偷拍熟女少妇极品色| 国产在视频线精品| 亚洲va在线va天堂va国产| 好男人视频免费观看在线| 免费在线观看成人毛片| 亚洲人成网站在线播| 亚洲三级黄色毛片| 国产成人freesex在线| 亚洲av欧美aⅴ国产| 亚洲av成人精品一二三区| 狂野欧美激情性xxxx在线观看| 日本爱情动作片www.在线观看| a 毛片基地| 极品少妇高潮喷水抽搐| 欧美日本中文国产一区发布| 日韩人妻高清精品专区| 最新中文字幕久久久久| 99九九线精品视频在线观看视频| 熟女人妻精品中文字幕| 丁香六月天网| 纵有疾风起免费观看全集完整版| 视频中文字幕在线观看| tube8黄色片| 日韩欧美 国产精品| 国产视频首页在线观看| 啦啦啦啦在线视频资源| 国产精品一区二区三区四区免费观看| 99久久精品热视频| 国产片特级美女逼逼视频| 在线观看免费视频网站a站| 免费高清在线观看视频在线观看| 性色avwww在线观看| 日韩精品免费视频一区二区三区 | 国产精品国产av在线观看| 日产精品乱码卡一卡2卡三| 久久影院123| 乱系列少妇在线播放| av女优亚洲男人天堂| 偷拍熟女少妇极品色| 久久人人爽av亚洲精品天堂| 日韩 亚洲 欧美在线| av黄色大香蕉| 亚洲欧美日韩东京热| 国产有黄有色有爽视频| 国产精品久久久久久久电影| 永久免费av网站大全| 91午夜精品亚洲一区二区三区| 中文欧美无线码| 又大又黄又爽视频免费| 一区二区av电影网| 久久精品久久久久久噜噜老黄| 免费播放大片免费观看视频在线观看| 精品一区二区免费观看| 亚洲av男天堂| 欧美精品国产亚洲| 激情五月婷婷亚洲| 黑人猛操日本美女一级片| 我要看日韩黄色一级片| 中国国产av一级| av国产精品久久久久影院| 狂野欧美激情性xxxx在线观看| 男女边吃奶边做爰视频| 亚洲av福利一区| av又黄又爽大尺度在线免费看| 69精品国产乱码久久久| 免费高清在线观看视频在线观看| 欧美精品人与动牲交sv欧美| 国产成人精品久久久久久| 国产精品福利在线免费观看| 美女国产视频在线观看| 我要看日韩黄色一级片| 国产淫片久久久久久久久| 极品少妇高潮喷水抽搐| 女性生殖器流出的白浆| 免费人妻精品一区二区三区视频| 日韩三级伦理在线观看| 六月丁香七月| 国产精品蜜桃在线观看| 伦精品一区二区三区| 看十八女毛片水多多多| 一区二区三区精品91| 日本爱情动作片www.在线观看| 极品少妇高潮喷水抽搐| 男女边摸边吃奶| 观看美女的网站| 中文在线观看免费www的网站| 天天操日日干夜夜撸| 黄色怎么调成土黄色| 亚洲精品国产av蜜桃| 国产黄片美女视频| 亚洲欧洲国产日韩| a级毛片免费高清观看在线播放| 一级二级三级毛片免费看| 久久人人爽人人爽人人片va| 国产亚洲最大av| 一边亲一边摸免费视频| 大片电影免费在线观看免费| 精品午夜福利在线看| 日韩伦理黄色片| 99热网站在线观看| 啦啦啦在线观看免费高清www| 国产伦精品一区二区三区视频9| 色吧在线观看| 人人澡人人妻人| 国产精品99久久99久久久不卡 | 久久久久久久精品精品| 国产精品国产三级国产专区5o| 久久久欧美国产精品| 国产成人一区二区在线| 国产精品久久久久久精品电影小说| 日韩视频在线欧美| 永久免费av网站大全| 国产男女内射视频| 亚洲欧美一区二区三区国产| a级片在线免费高清观看视频| 伊人亚洲综合成人网| 夫妻午夜视频| 精品一区二区三区视频在线| 精品亚洲成a人片在线观看| 精品酒店卫生间| 哪个播放器可以免费观看大片| av在线播放精品| 亚洲精品乱码久久久v下载方式| 亚洲经典国产精华液单| 亚洲欧洲国产日韩| av国产久精品久网站免费入址| 亚洲精品乱码久久久v下载方式| 夫妻性生交免费视频一级片| 成人国产麻豆网| 18禁在线无遮挡免费观看视频| 国产乱人偷精品视频| 熟女电影av网| 少妇的逼好多水| 欧美日韩亚洲高清精品| 亚洲精品日韩在线中文字幕| 热99国产精品久久久久久7| 中文资源天堂在线| 国产亚洲欧美精品永久| 自线自在国产av| 亚洲一区二区三区欧美精品| 男人和女人高潮做爰伦理| 国产探花极品一区二区| 一级毛片电影观看| 99热这里只有是精品50| av免费观看日本| av女优亚洲男人天堂| 看免费成人av毛片| 国产亚洲最大av| 久久精品国产a三级三级三级| 亚洲精品视频女| 久久国产亚洲av麻豆专区| 久久久精品免费免费高清| 亚洲怡红院男人天堂| 亚洲欧美日韩另类电影网站| 在线看a的网站| 噜噜噜噜噜久久久久久91| 晚上一个人看的免费电影| 久久人妻熟女aⅴ| 久久青草综合色| 一级毛片aaaaaa免费看小| 99久久精品热视频| 亚洲精品456在线播放app| 大话2 男鬼变身卡| 一区二区三区免费毛片| 中国美白少妇内射xxxbb| 99久久中文字幕三级久久日本| 国产免费一区二区三区四区乱码| 国产精品国产av在线观看| 观看av在线不卡| 99九九在线精品视频 | 人体艺术视频欧美日本| 亚洲成人av在线免费| 在线天堂最新版资源| 国产日韩一区二区三区精品不卡 | 欧美精品国产亚洲| 成年人午夜在线观看视频| 国产老妇伦熟女老妇高清| 高清毛片免费看| 久久久久久久久久久久大奶| 日本猛色少妇xxxxx猛交久久| 极品教师在线视频| 色网站视频免费| 亚洲天堂av无毛| 多毛熟女@视频| 久久99蜜桃精品久久| 在线观看国产h片| 日韩中文字幕视频在线看片| 在线观看三级黄色| www.色视频.com| 汤姆久久久久久久影院中文字幕| 美女大奶头黄色视频| 自线自在国产av| 国产精品蜜桃在线观看| 麻豆乱淫一区二区| 免费黄色在线免费观看| 欧美bdsm另类| 久久久久久久久久成人| 亚洲精品一区蜜桃| 好男人视频免费观看在线| 欧美bdsm另类| 国产在线免费精品| 亚洲综合精品二区| 黄色视频在线播放观看不卡| 一级爰片在线观看| 国产av码专区亚洲av| 亚洲美女视频黄频| 久久精品久久精品一区二区三区| 亚洲国产欧美日韩在线播放 | 国产熟女午夜一区二区三区 | 天美传媒精品一区二区| 亚洲精品成人av观看孕妇| 乱人伦中国视频| 国产成人freesex在线| 91久久精品电影网| 一级,二级,三级黄色视频| 一级毛片黄色毛片免费观看视频| 男女边摸边吃奶| 日本午夜av视频| 精品久久久久久久久av| 亚洲va在线va天堂va国产| 国产深夜福利视频在线观看| av专区在线播放| 国产av码专区亚洲av| 精品久久久久久电影网| 色5月婷婷丁香| 久久久亚洲精品成人影院| 一级毛片 在线播放| 国产成人免费无遮挡视频| 少妇人妻精品综合一区二区| 久久毛片免费看一区二区三区| 天天躁夜夜躁狠狠久久av| 国产亚洲午夜精品一区二区久久| 日韩 亚洲 欧美在线| 久久这里有精品视频免费| 国产探花极品一区二区| 寂寞人妻少妇视频99o| 这个男人来自地球电影免费观看 | 桃花免费在线播放| 欧美日韩视频精品一区| 国产片特级美女逼逼视频| 日韩大片免费观看网站| 亚洲天堂av无毛| 日本-黄色视频高清免费观看| 精品人妻一区二区三区麻豆| 国产色婷婷99| 欧美日韩一区二区视频在线观看视频在线| 国产永久视频网站| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美 亚洲 国产 日韩一| 亚洲av在线观看美女高潮| 成人美女网站在线观看视频| 亚洲人成网站在线观看播放| 不卡视频在线观看欧美| 成人毛片a级毛片在线播放| 麻豆精品久久久久久蜜桃| 晚上一个人看的免费电影| 天天操日日干夜夜撸| 精品少妇久久久久久888优播| 免费看不卡的av| 国产黄频视频在线观看| 少妇裸体淫交视频免费看高清| 午夜免费观看性视频| 亚洲av福利一区| 久久精品久久久久久久性| 一个人看视频在线观看www免费| 天堂8中文在线网| 亚洲精品国产av蜜桃| 久久国产乱子免费精品| 久久国内精品自在自线图片| 97超碰精品成人国产| 99久久精品热视频| 纯流量卡能插随身wifi吗| 国产精品一区二区性色av| 国产免费视频播放在线视频| 久久av网站| 又粗又硬又长又爽又黄的视频| 啦啦啦啦在线视频资源| 一区二区三区精品91| 亚洲欧美清纯卡通| 欧美日韩综合久久久久久| 欧美国产精品一级二级三级 | 亚洲内射少妇av| 熟妇人妻不卡中文字幕| 3wmmmm亚洲av在线观看| 国产一区二区在线观看av| 亚洲美女搞黄在线观看| 少妇人妻久久综合中文| 男人狂女人下面高潮的视频| 国产精品成人在线| 2021少妇久久久久久久久久久| 欧美日韩一区二区视频在线观看视频在线| 一区二区三区四区激情视频| 少妇高潮的动态图| av一本久久久久| 人人妻人人看人人澡| 寂寞人妻少妇视频99o| 色婷婷久久久亚洲欧美| 性高湖久久久久久久久免费观看| 国产高清有码在线观看视频| 国产在线视频一区二区| 夫妻午夜视频| av视频免费观看在线观看| 亚州av有码| 免费看av在线观看网站| 在线观看免费日韩欧美大片 | 久久国内精品自在自线图片| 看免费成人av毛片| 日日爽夜夜爽网站| 视频区图区小说| 99热全是精品| 美女大奶头黄色视频| 午夜激情福利司机影院| 精品熟女少妇av免费看| 色视频在线一区二区三区| 欧美变态另类bdsm刘玥| 亚洲一级一片aⅴ在线观看| 久久人人爽人人片av| 久久久午夜欧美精品| 夜夜骑夜夜射夜夜干| 亚洲电影在线观看av| 最近中文字幕高清免费大全6| 日韩中字成人| 老司机影院成人| 波野结衣二区三区在线| 一本大道久久a久久精品| 亚洲在久久综合| 啦啦啦中文免费视频观看日本| 亚洲第一av免费看| 欧美另类一区| 国产91av在线免费观看| 日产精品乱码卡一卡2卡三| 天堂俺去俺来也www色官网| 欧美xxⅹ黑人| 亚洲人与动物交配视频| 99国产精品免费福利视频| 天美传媒精品一区二区| 亚洲av二区三区四区| 国产精品女同一区二区软件| 久久鲁丝午夜福利片| 大片电影免费在线观看免费| 中文字幕久久专区| 少妇人妻久久综合中文| 精品一品国产午夜福利视频| 精品国产一区二区久久| 国产精品麻豆人妻色哟哟久久| 又大又黄又爽视频免费| 又爽又黄a免费视频| 亚洲精品,欧美精品| 亚洲人与动物交配视频| 黑丝袜美女国产一区| 欧美 亚洲 国产 日韩一| 亚洲中文av在线| 国产精品久久久久久av不卡| 欧美激情国产日韩精品一区| 亚洲内射少妇av| 成人二区视频| .国产精品久久| 少妇人妻 视频| 韩国高清视频一区二区三区| 亚洲成色77777| 天美传媒精品一区二区| 免费黄频网站在线观看国产| 男人舔奶头视频| 久久午夜综合久久蜜桃| 精品一区二区三卡| 国产 一区精品| 国模一区二区三区四区视频| 精品久久久噜噜| 国产黄频视频在线观看| 一本大道久久a久久精品| 免费av不卡在线播放| 国产亚洲欧美精品永久| 三上悠亚av全集在线观看 | 91久久精品国产一区二区成人| 亚洲国产精品一区三区| 亚洲欧美中文字幕日韩二区| 韩国av在线不卡| 青春草视频在线免费观看| 蜜臀久久99精品久久宅男| 曰老女人黄片| 国产在线视频一区二区| 精品久久久久久久久av| 国产成人午夜福利电影在线观看| 日日撸夜夜添| 蜜桃久久精品国产亚洲av| 亚洲一级一片aⅴ在线观看| 十八禁高潮呻吟视频 | 国产视频内射| 永久免费av网站大全| 色视频www国产| 最新的欧美精品一区二区| 久热久热在线精品观看| 女人精品久久久久毛片| 欧美xxxx性猛交bbbb| 成人黄色视频免费在线看| av在线app专区| 有码 亚洲区| 男人添女人高潮全过程视频| 国产精品女同一区二区软件| 全区人妻精品视频| 国产免费一区二区三区四区乱码| 久久久亚洲精品成人影院| 下体分泌物呈黄色| 久久人妻熟女aⅴ| 一区二区三区乱码不卡18| 美女大奶头黄色视频| 男人和女人高潮做爰伦理| 亚洲精品久久久久久婷婷小说| 亚洲国产成人一精品久久久| 国产极品粉嫩免费观看在线 | 国语对白做爰xxxⅹ性视频网站| a级片在线免费高清观看视频| 少妇猛男粗大的猛烈进出视频| 欧美精品人与动牲交sv欧美| 中文乱码字字幕精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 一级黄片播放器| 久久精品久久久久久噜噜老黄| 亚洲国产色片| 亚洲精品aⅴ在线观看| 在线观看www视频免费| 只有这里有精品99| 老女人水多毛片| 日本wwww免费看| 内地一区二区视频在线| 少妇丰满av| 99久久人妻综合| 桃花免费在线播放| 欧美成人精品欧美一级黄| 久久国产乱子免费精品| 日本欧美视频一区| 丰满人妻一区二区三区视频av| 人人妻人人看人人澡| 18禁在线无遮挡免费观看视频| 色网站视频免费| 国产日韩欧美视频二区| 久久99精品国语久久久| 十八禁高潮呻吟视频 | 又爽又黄a免费视频| 国产成人91sexporn| 国产精品久久久久久久久免| 午夜av观看不卡| 高清欧美精品videossex| 男女免费视频国产| 性色avwww在线观看| 这个男人来自地球电影免费观看 | 最近2019中文字幕mv第一页| 天天操日日干夜夜撸| 国产精品久久久久久久久免| 视频区图区小说| 午夜视频国产福利| 亚洲欧洲日产国产| 精品人妻熟女毛片av久久网站| 国产精品三级大全| kizo精华| 2018国产大陆天天弄谢| 精品人妻一区二区三区麻豆| 欧美精品国产亚洲| 97在线人人人人妻| 欧美精品一区二区大全| 丝袜脚勾引网站| 久久久国产精品麻豆| 日韩欧美精品免费久久| 国产白丝娇喘喷水9色精品| 菩萨蛮人人尽说江南好唐韦庄| 99热这里只有是精品50| 99热网站在线观看| 亚洲精品第二区| 黄片无遮挡物在线观看| 日韩亚洲欧美综合| 亚洲中文av在线| 亚洲av免费高清在线观看| 国产高清不卡午夜福利| 色婷婷久久久亚洲欧美| 熟女电影av网| 91精品一卡2卡3卡4卡| 9色porny在线观看| av福利片在线观看| 色婷婷久久久亚洲欧美| 黄色日韩在线| 在线 av 中文字幕| 久久久久久久久久久免费av| 精品久久久久久久久av| 麻豆成人av视频| 国产国拍精品亚洲av在线观看| 久热久热在线精品观看| 国产黄频视频在线观看| 一级黄片播放器| 3wmmmm亚洲av在线观看| 在线观看www视频免费| 亚洲第一区二区三区不卡| 国产精品国产三级国产专区5o| 亚洲精品乱码久久久久久按摩|