• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theory on Structure and Coloring of Maximal Planar Graphs(1)Recursion Formulae of Chromatic Polynomial and Four-Color Conjecture

    2016-10-13 17:21:35XUJin
    電子與信息學(xué)報 2016年4期

    XU Jin

    ?

    Theory on Structure and Coloring of Maximal Planar Graphs(1)Recursion Formulae of Chromatic Polynomial and Four-Color Conjecture

    XU Jin*

    (School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China)(Key Laboratory of High Confidence Software Technologies, Peking University, Beijing 100871, China)

    In this paper, two recursion formulae of chromatic polynomial of a maximal planar graphare obtained: when, letbe a 4-wheel ofwith wheel-centerand wheel-cycle, then; when, leta 5-wheel ofwith wheel-centerand wheel-cycle, then,,, where“”denotes the operation of vertex contraction. Moreover, the application of the above formulae to the proof of Four-Color Conjecture is investigated. By using these formulae, the proof of Four-Color Conjecture boils down to the study on a special class of graphs, viz., 4-chromatic-funnel pseudo uniquely-4-colorable maximal planar graphs.

    Four-Color Conjecture; Maximal planar graphs; Chromatic polynomial; Pseudo uniquely-4-colorable planar graphs; 4-chromatic-funnel

    1 Introduction

    All graphs considered in this paper are finite, simple, and undirected. For a given graph, we use,,, andto denote the vertex set, the edge set, the degree of, and the neighborhood ofin(the set of neighbors of), respectively, which can be written as,,, andfor short. The order ofis the number of its vertices. A graphis a subgraph ofifand. For a subgraphof, wheneverare adjacent in, they are also adjacent in, thenis an induced subgraph ofor a subgraph ofinduced by, denoted by. Two graphsandare disjoint if they have no vertex in common. By starting with a disjoint union ofand, and adding edges joining every vertex ofto every vertex of, one obtains the join ofand, denoted by. We writeandfor the complete graph and cycle of order, respectively. The joinof a cycle and a single vertex is referred to as a wheel, denoted by(the examplesare shown in Fig. 1, whereis called the cycle ofand the vertex ofis called the center of. If, we also denote the cycle ofby. A graph is-regular if all of its vertices have the same degree. A 3-regular graph is usually called a cubic graph.

    Fig. 1 Three wheels

    A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. Such a drawing is called a planar embedding of the graph. Any planar graph considered in the paper is under its planar embedding. A maximal planar graph is a planar graph to which no new edges can be added without violating planarity. A triangulation is a planar graph in which every face is bounded by three edges (including its infinite face). It can be easily proved that maximal planar graphs are triangulations, and vice versa.

    The planar graph is a very important class of graphs no matter which aspect, theoretical or practical, is concerned. In theory, there are many famous conjectures that have very significant effect on graph theory, even mathematics, such as the Four-Color Conjecture, the Uniquely Four- Colorable Planar Graphs Conjecture, the Nine- Color Conjecture, Three-Color Problem,[1]. In application, planar graphs can be directly applied to the study of layout problems[2], information science[3],.

    Because the studying object of the well-known Four-Color Conjecture can be confined to maximal planar graphs, many scholars have been strongly attracted to the study of this typical topic. They did research on maximal planar graphs from a number of different standpoints, such as degree sequence, construction, coloring, traversability, generating operations,[4]. Moreover, many new conjectures on maximal planar graphs have been proposed, for instance, Uniquely Four-Colorable Planar Graphs Conjecture and Nine-Color Conjecture. These conjectures have gradually become the essential topics on maximal planar graphs.

    In the process of studying Four-Color Conjecture, one important method, finding an unavoidable set of reducible configurations, was proposed. This method has been used in Kempe’s “proof”[5], Heawood’s counterexample[6], and the computer-assisted proof due to Appel and Haken. Using this method, Appel and Haken found an unavoidable set containing 1936 reducible configurations and proved Four-Color Conjecture. In 1997, Robertson,.[10,11]gave a simplified proof. They found an unavoidable set containing only 633 reducible configurations.

    The research on unavoidable sets originated from Wernicke’s work[12]in 1904. The concept of reducibility was introduced by Birkhoff[13]in 1913. On the research for finding an unavoidable set of reducible configurations, the great contribution was made by German mathematician Heesch[14]. He introduced a method “discharging” to find an unavoidable set of a maximal planar graph, which lied the foundation for solving Four-Color Conjecture by electronic computer in 1976. Moreover, many researchers studied Four-Color Problem by this method, such as Franklin[15,16], Reynolds[17], Winn[18], Ore and Stemple[19], and Mayer[20].

    However, these proofs were all computer- assisted and hard to be checked one by one by hand. Therefore, finding a mathematical method to concisely solve the Four-Color Problem is still an open hard problem.

    Another incorrect proof of Four-Color problem[21]was given by Tait in 1880. His proof was based on an assumption: each 3-connected cubic plane graph was Hamiltonian. Because this assumption is incorrect, Tait’s proof is incorrect. Although the error in his proof was found by Petersen[22]in 1898, the counterexample was not given until 1946[23]. Then, in 1968, Grinberg[24]obtained a necessary condition, thus producing many non-Hamiltonian cubic planar graphs of 3-connected. Although the proof of Tait was incorrect, his work had a strong influence on the research on Graph Theory, especially edge-coloring theory.

    In order to calculate the chromatic polynomial of a given graph, the basic tool is the Deletion- Contract Edge Formula.

    The Deletion-contract Edge Formula. For a given graphand an edge, we have

    Moreover, XU etal.[32,33]obtained a recursion formula of chromatic polynomial by vertex deletion and a chromatic polynomial between a graph and its complement.

    Perhaps for the perfect degree of Tutte’s work and his highly status in academia, once upon a time, it was thought that to attack the Four-Color Problem by chromatic polynomial is impossible. Nevertheless, our work below gives a new hope to solve the Four-Color Problem by chromatic polynomial.

    2 Recursion Formulae of Chromatic Polynomial by Contracting Wheels

    We first give two useful lemmas as follows.

    Lemma 1[26]For any planar graph, it is 4-colorable if and only if

    Lemma 2[25,27]Letbe the union of two subgraphsand, whose intersection is a complete graph of order. Then

    Fig. 2 A maximal planar graph with a 4-degree vertex

    Proof In the following derivation, we representby. Now we first compute the chromatic polynomial of the graphby the Deletion-Contract Edge Formula. For the sake of understanding clearly, a method introduced by Zykov[34]is used here, where the chromatic polynomials are represented by the corresponding graphical graphs without. Notice that if there are at least two edges adjacent to two vertices, then only one remains and others are deleted excluding.

    By Lemma 2, the chromatic polynomial of the first subgraph in Formula (4) is. Therefore,

    Notice that the two graphs in Formula (6) denoteand, respectively. It is easily proved that they are both maximal planar graphs of order. Thus, we obtain that

    namely

    Fig. 3 A maximal planar graph with a 5-degree vertex

    By Lemma 2, the chromatic polynomial of the first graph in Formula (10) is. Therefore, we can obtain that

    Notice that the fourth graph in Formula (12), denoted by, contains a subgraph, and so. Thus, we can obtain that

    Actually, the first graph in the first bracket of Formula (13) is; the first graph in the second bracket is; and the first graph in the third bracket is. The proof is completed.

    3 Two Mathematical Ideas for Attacking Four-Color Conjecture Based on Theorem 2

    It is well-known that mathematical induction is an effective method to prove Four-Color Conjecture, in which maximal planar graphs are classified into three cases by their minimum degrees. The case of minimum degree 3 or 4 is easy to prove by induction, but for the case of minimum degree 5 no mathematical method has been found. Based on Theorems 1 and 2, we give a new method to prove Four-Color Conjecture as follows.

    By the induction hypothesis,. Thus,.

    Hence, the result is true when.

    The key ingredient of the proof is the following Case 3.

    The maximal planar graph of minimum degree 5 with fewest vertices is the icosahedron, depicted in Fig. 4(a), which has 12 vertices. Obviously, the icosahedron is 4-colorable. There is no maximal planar graph of minimum degree 5 with 13 vertices. Notice that for any maximal planar graphof order at least 14 and minimum degree 5, there exists a vertexsuch thatand, where(see Fig. 3). Hence, the graphin Theorem 2 is a 4-colorable maximal planar graph of minimum degree at least 4. Based on this evidence, we give two mathematical ideas to proveas follows.

    The first idea is based on the fact that the value of each square bracket in Formula (9) is no less than zero. Hence, the Four-Color Conjecture can be proved if any square bracket’s value is greater than zero. The value of the first square bracket is greater than zero if and only if there existssuch thator. Therefore,if and only if each square bracket in Formula (9) is equal to zero. Moreover, the value of the first square bracket is zero if and only if for any,and, that is, for any, the colors of vertices of the funnel shown in Fig. 4(b) are pairwise different. Such maximal planar graphs are called 4-chromatic-funnel pseudo uniquely-4-colorable maximal planar graphs. For instance, each graph in Fig. 5 is a 4-chromatic- funnel pseudo-uniquely 4-colorable maximal planar graph.

    Fig. 5 Three 4-chromatic-funnel pseudo uniquely-

    4-colorable maximal planar graphs

    Now we give the second idea to prove. The maximal planar graphs,, andin Theorem 2 can be regarded as the graphs obtained fromby deleting a 5-degree vertexand contracting,, andinto a single vertex, respectively (see Fig. 6). Moreover, the 5-cycle consisting of the neighbors ofinis contracted to a funnel subgraphin,in, andin, respectively, where,, andare the new vertices obtained by contractingandrespectively.

    Fig. 6 The processes of generating the three funnel subgraphs

    By the induction hypothesis,,, andare 4-colorable. In order to prove, it is needed to prove that at least one of the funnel subgraphs,, andis not 4-chromatic.

    Therefore, the second idea is to prove that for any maximal planar graphof minimum degree 5, there exists a 5-wheelinsuch that at least one of the funnel subgraphs,, andcorresponding to,, andis not a 4- chromatic-funnel. For instance, the graph in Fig. 5(a) can be regarded as the maximal planar graph obtained from the graph in Fig. 7 by the operation shown in Fig. 6. It is not difficult to prove that the other two graphs obtained from Fig. 7 by the operation shown in Fig. 6 have no 4-chromatic- funnel.

    4 Conclusion

    In this paper, we give two recursion formulae of chromatic polynomial on maximal planar graphs. Based on these formulae, we find: (1) two mathematical ideas for attacking Four-Color Conjecture; (2) a method to generate maximal planar graphs, called contracting and extending operational system, which establishes a relation between the structure and colorings of a maximal planar graph. For instance, the maximal planar graph in Fig. 5(a) can be obtained from the graph in Fig. 7 by the extending 5-wheel operation, in other words, the maximal planar graph in Fig. 7 can be obtained from the graph in Fig. 5(a) by the contracting 5-wheel operation. A detailed research on contracting and extending operational system of maximal planar graphs will be given in later articles.

    Fig. 7 A maximal planar graph that can be contracted to the graph in Fig. 5(a)

    中文亚洲av片在线观看爽| 99久久九九国产精品国产免费| 国产伦精品一区二区三区四那| 在线观看66精品国产| 亚洲精品成人久久久久久| 欧美一区二区国产精品久久精品| 欧美乱妇无乱码| 99热这里只有精品一区| 一个人看的www免费观看视频| 男人舔奶头视频| 少妇的逼好多水| 男女视频在线观看网站免费| 亚洲第一电影网av| 久久国产精品影院| 久久久久久久久大av| 99国产精品一区二区蜜桃av| 日韩欧美在线二视频| 亚洲欧美日韩东京热| 国产野战对白在线观看| 国产黄色小视频在线观看| 在线看三级毛片| 人人妻人人看人人澡| 国产高潮美女av| 他把我摸到了高潮在线观看| 男插女下体视频免费在线播放| 一卡2卡三卡四卡精品乱码亚洲| 国产精品99久久久久久久久| 日韩成人在线观看一区二区三区| 狠狠狠狠99中文字幕| 两人在一起打扑克的视频| av专区在线播放| 老汉色∧v一级毛片| 免费电影在线观看免费观看| 性色avwww在线观看| 亚洲不卡免费看| 国产精品一区二区三区四区免费观看 | 久久人人精品亚洲av| 久久久久久久午夜电影| x7x7x7水蜜桃| 亚洲一区二区三区不卡视频| 啦啦啦免费观看视频1| 日本免费a在线| 很黄的视频免费| 一级毛片高清免费大全| 久久欧美精品欧美久久欧美| 18禁美女被吸乳视频| 国产成人欧美在线观看| 网址你懂的国产日韩在线| 久久精品夜夜夜夜夜久久蜜豆| 狠狠狠狠99中文字幕| 亚洲精品456在线播放app | 亚洲在线观看片| 亚洲 欧美 日韩 在线 免费| 亚洲精品国产精品久久久不卡| 亚洲国产色片| 国产精品野战在线观看| 少妇人妻一区二区三区视频| 欧美黑人巨大hd| 午夜福利成人在线免费观看| 欧美区成人在线视频| 18禁国产床啪视频网站| 毛片女人毛片| 亚洲在线自拍视频| 成人国产一区最新在线观看| 欧美日韩乱码在线| 99热这里只有精品一区| 午夜福利在线观看免费完整高清在 | 丰满的人妻完整版| 男插女下体视频免费在线播放| 国产精品一区二区免费欧美| 亚洲 国产 在线| 欧美一区二区国产精品久久精品| 色视频www国产| 成人永久免费在线观看视频| 少妇人妻一区二区三区视频| 欧美zozozo另类| 人妻久久中文字幕网| 色老头精品视频在线观看| 国产不卡一卡二| 老鸭窝网址在线观看| 亚洲av不卡在线观看| 欧美不卡视频在线免费观看| 国产91精品成人一区二区三区| 久久久久九九精品影院| 啦啦啦韩国在线观看视频| 我的老师免费观看完整版| 国产精品一区二区三区四区久久| 最近在线观看免费完整版| 看免费av毛片| 欧美日本亚洲视频在线播放| 91久久精品国产一区二区成人 | 悠悠久久av| 国产精品三级大全| 午夜激情欧美在线| 日韩国内少妇激情av| 色噜噜av男人的天堂激情| 国产精品 国内视频| 精品人妻一区二区三区麻豆 | а√天堂www在线а√下载| 成年女人毛片免费观看观看9| 亚洲欧美日韩东京热| av欧美777| 色精品久久人妻99蜜桃| 日日摸夜夜添夜夜添小说| 此物有八面人人有两片| 在线观看美女被高潮喷水网站 | 啦啦啦观看免费观看视频高清| 一区二区三区高清视频在线| 18禁在线播放成人免费| 精品国产超薄肉色丝袜足j| www.999成人在线观看| 熟女人妻精品中文字幕| 国产精品国产高清国产av| 久久久成人免费电影| 成年人黄色毛片网站| 国产激情欧美一区二区| 无遮挡黄片免费观看| 国产高清有码在线观看视频| 黑人欧美特级aaaaaa片| 三级国产精品欧美在线观看| 日韩欧美免费精品| 国产av一区在线观看免费| 国语自产精品视频在线第100页| 91麻豆精品激情在线观看国产| 久久久色成人| 内射极品少妇av片p| 最新中文字幕久久久久| 日韩高清综合在线| netflix在线观看网站| 国产成人系列免费观看| 18禁裸乳无遮挡免费网站照片| 人妻丰满熟妇av一区二区三区| 97碰自拍视频| 免费看十八禁软件| 亚洲国产日韩欧美精品在线观看 | 亚洲av成人精品一区久久| 麻豆久久精品国产亚洲av| 成人特级av手机在线观看| 首页视频小说图片口味搜索| 夜夜看夜夜爽夜夜摸| 欧美一区二区国产精品久久精品| 国内久久婷婷六月综合欲色啪| 久久精品91蜜桃| 丰满乱子伦码专区| 日韩欧美在线二视频| 精品一区二区三区人妻视频| а√天堂www在线а√下载| 天堂影院成人在线观看| 女人高潮潮喷娇喘18禁视频| 最近最新免费中文字幕在线| 啦啦啦观看免费观看视频高清| 午夜福利在线在线| 日本一二三区视频观看| 国产成+人综合+亚洲专区| 日本 av在线| 国产亚洲精品久久久com| 亚洲中文日韩欧美视频| 宅男免费午夜| 两人在一起打扑克的视频| 一个人看的www免费观看视频| 五月玫瑰六月丁香| 91麻豆av在线| 两个人的视频大全免费| 日韩av在线大香蕉| 免费人成在线观看视频色| 午夜福利18| 男女视频在线观看网站免费| 91在线观看av| 日本精品一区二区三区蜜桃| 亚洲第一欧美日韩一区二区三区| 在线a可以看的网站| 亚洲精品美女久久久久99蜜臀| 亚洲人与动物交配视频| 免费av不卡在线播放| 久久香蕉国产精品| 人妻久久中文字幕网| 国内精品美女久久久久久| 最近视频中文字幕2019在线8| 欧美中文综合在线视频| 日本五十路高清| 免费搜索国产男女视频| 99精品在免费线老司机午夜| 午夜a级毛片| 精品欧美国产一区二区三| 香蕉久久夜色| 国产成人福利小说| 成人18禁在线播放| 亚洲乱码一区二区免费版| 欧美成人a在线观看| 国产精品野战在线观看| 宅男免费午夜| 欧美极品一区二区三区四区| 国产一区二区三区视频了| 免费看美女性在线毛片视频| 最近最新中文字幕大全电影3| 网址你懂的国产日韩在线| 国产真人三级小视频在线观看| 久久6这里有精品| 97超级碰碰碰精品色视频在线观看| 少妇熟女aⅴ在线视频| 国产成年人精品一区二区| 亚洲一区高清亚洲精品| 欧美一区二区精品小视频在线| 性色av乱码一区二区三区2| 男女那种视频在线观看| avwww免费| 精品一区二区三区视频在线 | 嫁个100分男人电影在线观看| 亚洲国产日韩欧美精品在线观看 | 免费一级毛片在线播放高清视频| 国产精品久久久久久精品电影| 女警被强在线播放| 国产精品一区二区三区四区免费观看 | 99久久综合精品五月天人人| 午夜福利在线观看免费完整高清在 | 亚洲国产精品成人综合色| 国产综合懂色| avwww免费| 狂野欧美白嫩少妇大欣赏| 国产精品国产高清国产av| 国产一区二区在线av高清观看| 91麻豆av在线| 2021天堂中文幕一二区在线观| 99riav亚洲国产免费| 搡老熟女国产l中国老女人| 国产精品免费一区二区三区在线| 国产成人欧美在线观看| 国产精品影院久久| 欧美色视频一区免费| 日韩国内少妇激情av| 少妇的逼好多水| 国产久久久一区二区三区| 嫩草影视91久久| 18禁裸乳无遮挡免费网站照片| 国产成+人综合+亚洲专区| 波多野结衣高清作品| 精品一区二区三区视频在线 | 搡女人真爽免费视频火全软件 | 丰满人妻熟妇乱又伦精品不卡| 少妇熟女aⅴ在线视频| eeuss影院久久| 最近最新免费中文字幕在线| 丰满人妻熟妇乱又伦精品不卡| 欧美不卡视频在线免费观看| 美女免费视频网站| 综合色av麻豆| e午夜精品久久久久久久| 欧美绝顶高潮抽搐喷水| 欧美bdsm另类| 亚洲精品影视一区二区三区av| 午夜福利在线观看免费完整高清在 | 天天添夜夜摸| 午夜激情欧美在线| 国产av麻豆久久久久久久| 全区人妻精品视频| 国产精品免费一区二区三区在线| 欧美乱妇无乱码| 窝窝影院91人妻| 欧美+亚洲+日韩+国产| 母亲3免费完整高清在线观看| 法律面前人人平等表现在哪些方面| 国产精品国产高清国产av| av国产免费在线观看| 舔av片在线| 色av中文字幕| 国产精品98久久久久久宅男小说| 日本五十路高清| 18禁在线播放成人免费| 日本撒尿小便嘘嘘汇集6| 一本综合久久免费| 亚洲精品成人久久久久久| 亚洲无线在线观看| 一个人免费在线观看电影| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品 国内视频| 免费在线观看日本一区| 小说图片视频综合网站| 日韩欧美一区二区三区在线观看| 亚洲av免费高清在线观看| 国产高清三级在线| 两个人的视频大全免费| 99国产综合亚洲精品| 99久久综合精品五月天人人| 在线观看66精品国产| 久久香蕉国产精品| 首页视频小说图片口味搜索| 香蕉丝袜av| 性色avwww在线观看| 好看av亚洲va欧美ⅴa在| 亚洲成人久久性| 久久久久久久午夜电影| 欧美一级毛片孕妇| 麻豆成人av在线观看| 国产成人福利小说| 免费人成视频x8x8入口观看| 欧美成人免费av一区二区三区| 少妇熟女aⅴ在线视频| 国产成年人精品一区二区| 69人妻影院| 欧美黄色淫秽网站| 内射极品少妇av片p| 亚洲成人精品中文字幕电影| 男女视频在线观看网站免费| 国产精品久久电影中文字幕| 老司机在亚洲福利影院| 久久精品国产亚洲av香蕉五月| 美女cb高潮喷水在线观看| 麻豆一二三区av精品| 亚洲片人在线观看| 午夜精品在线福利| 日日摸夜夜添夜夜添小说| 人人妻,人人澡人人爽秒播| 91在线精品国自产拍蜜月 | 亚洲成人精品中文字幕电影| 欧美激情在线99| 亚洲第一电影网av| 婷婷亚洲欧美| 精品久久久久久久毛片微露脸| 国产单亲对白刺激| 在线观看免费视频日本深夜| 国产精品一及| 久久久久九九精品影院| 免费一级毛片在线播放高清视频| www日本黄色视频网| 午夜福利在线观看吧| 亚洲欧美日韩高清在线视频| 91字幕亚洲| 久久天躁狠狠躁夜夜2o2o| 国产精品永久免费网站| 亚洲电影在线观看av| 欧美性猛交黑人性爽| 少妇的丰满在线观看| 国产乱人伦免费视频| 久久久久久国产a免费观看| 欧美丝袜亚洲另类 | 精品无人区乱码1区二区| 好看av亚洲va欧美ⅴa在| 91麻豆精品激情在线观看国产| 精品一区二区三区视频在线 | 亚洲18禁久久av| 好男人在线观看高清免费视频| 波多野结衣巨乳人妻| 18禁黄网站禁片免费观看直播| 欧美成人a在线观看| 亚洲不卡免费看| 亚洲最大成人中文| 久久精品夜夜夜夜夜久久蜜豆| 桃红色精品国产亚洲av| 日韩欧美在线乱码| 美女免费视频网站| a在线观看视频网站| 久久久久久久亚洲中文字幕 | 91av网一区二区| 最近最新免费中文字幕在线| 国产精品野战在线观看| 久久欧美精品欧美久久欧美| 欧美黑人巨大hd| 国产伦精品一区二区三区四那| 成人三级黄色视频| 亚洲人成电影免费在线| 激情在线观看视频在线高清| 欧美日韩黄片免| 三级男女做爰猛烈吃奶摸视频| 综合色av麻豆| 级片在线观看| 国产成人系列免费观看| av女优亚洲男人天堂| 欧美激情久久久久久爽电影| 久久久久久大精品| 日本三级黄在线观看| 在线观看av片永久免费下载| 亚洲欧美日韩卡通动漫| 啦啦啦观看免费观看视频高清| 色噜噜av男人的天堂激情| 麻豆国产av国片精品| 亚洲国产日韩欧美精品在线观看 | 99久久成人亚洲精品观看| 亚洲人成网站在线播放欧美日韩| 久久久精品欧美日韩精品| 日韩欧美在线二视频| 波多野结衣高清无吗| 91久久精品国产一区二区成人 | ponron亚洲| 亚洲五月天丁香| 啦啦啦观看免费观看视频高清| www日本黄色视频网| 99精品久久久久人妻精品| 欧美日韩精品网址| 国产一区二区在线av高清观看| 蜜桃久久精品国产亚洲av| 亚洲精品亚洲一区二区| 母亲3免费完整高清在线观看| 午夜免费男女啪啪视频观看 | 99久久九九国产精品国产免费| 国产精品久久久久久人妻精品电影| 精品福利观看| 桃红色精品国产亚洲av| 国产精品综合久久久久久久免费| 亚洲欧美激情综合另类| 午夜影院日韩av| 老司机午夜福利在线观看视频| 91av网一区二区| 熟女少妇亚洲综合色aaa.| 黄色女人牲交| 亚洲欧美日韩高清在线视频| 午夜福利免费观看在线| 好看av亚洲va欧美ⅴa在| 亚洲av第一区精品v没综合| 色老头精品视频在线观看| 亚洲五月天丁香| 日韩中文字幕欧美一区二区| 亚洲欧美日韩高清专用| 又粗又爽又猛毛片免费看| 久久久久性生活片| 啦啦啦免费观看视频1| 亚洲国产精品久久男人天堂| 亚洲av免费在线观看| 日日夜夜操网爽| 成人特级av手机在线观看| 好看av亚洲va欧美ⅴa在| 狠狠狠狠99中文字幕| 少妇高潮的动态图| www.www免费av| 老汉色∧v一级毛片| 国产成人av教育| 婷婷精品国产亚洲av在线| 色视频www国产| 国产一区二区在线观看日韩 | 无遮挡黄片免费观看| 欧美中文日本在线观看视频| 一a级毛片在线观看| 在线播放国产精品三级| 哪里可以看免费的av片| 国产亚洲精品一区二区www| 亚洲欧美日韩卡通动漫| 久久精品91蜜桃| 18禁黄网站禁片午夜丰满| 男女午夜视频在线观看| 欧美中文综合在线视频| www.999成人在线观看| 一区二区三区国产精品乱码| 观看美女的网站| 国产乱人伦免费视频| 美女cb高潮喷水在线观看| 欧美一区二区精品小视频在线| aaaaa片日本免费| 午夜福利欧美成人| 亚洲av成人精品一区久久| 久久久久久久午夜电影| 757午夜福利合集在线观看| 国产精品 国内视频| 欧美乱码精品一区二区三区| 狠狠狠狠99中文字幕| 日本成人三级电影网站| 欧美色视频一区免费| 波多野结衣高清无吗| 国产精品久久久久久久久免 | 久久精品综合一区二区三区| 国产精品乱码一区二三区的特点| 久久精品91无色码中文字幕| 欧美一区二区精品小视频在线| 成年免费大片在线观看| 国产精品久久久人人做人人爽| 亚洲在线观看片| 舔av片在线| 白带黄色成豆腐渣| 久久久国产成人免费| 人人妻人人澡欧美一区二区| 久久伊人香网站| 长腿黑丝高跟| 国产亚洲精品一区二区www| 男女视频在线观看网站免费| 悠悠久久av| 亚洲一区高清亚洲精品| 欧美午夜高清在线| 看黄色毛片网站| 欧美zozozo另类| 精品一区二区三区视频在线观看免费| 国产中年淑女户外野战色| 精品久久久久久,| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品色激情综合| 日韩欧美在线乱码| 嫩草影院入口| 中文字幕av成人在线电影| 中出人妻视频一区二区| 宅男免费午夜| 亚洲国产日韩欧美精品在线观看 | 老熟妇仑乱视频hdxx| 成年免费大片在线观看| 久久久久久久久大av| 可以在线观看毛片的网站| 香蕉丝袜av| 女同久久另类99精品国产91| 非洲黑人性xxxx精品又粗又长| 在线观看一区二区三区| 国产探花在线观看一区二区| 51午夜福利影视在线观看| 99视频精品全部免费 在线| 午夜激情福利司机影院| 搡女人真爽免费视频火全软件 | 在线免费观看的www视频| 欧美高清成人免费视频www| 免费搜索国产男女视频| 在线观看av片永久免费下载| 精品99又大又爽又粗少妇毛片 | 国内精品美女久久久久久| 日韩亚洲欧美综合| 不卡一级毛片| 成人av在线播放网站| 久久久久久人人人人人| 久9热在线精品视频| 国产高潮美女av| 国产美女午夜福利| 伊人久久大香线蕉亚洲五| 一级黄片播放器| 国产午夜精品久久久久久一区二区三区 | 亚洲欧美日韩无卡精品| 首页视频小说图片口味搜索| 久久国产乱子伦精品免费另类| 欧美中文日本在线观看视频| 五月伊人婷婷丁香| 国产精品久久电影中文字幕| 国产精品av视频在线免费观看| 国内久久婷婷六月综合欲色啪| 国产欧美日韩一区二区三| 国产aⅴ精品一区二区三区波| 亚洲av免费在线观看| 人妻丰满熟妇av一区二区三区| 久久精品影院6| 麻豆一二三区av精品| 中文字幕熟女人妻在线| 91在线观看av| 午夜亚洲福利在线播放| 757午夜福利合集在线观看| 夜夜爽天天搞| av天堂中文字幕网| 美女cb高潮喷水在线观看| 色哟哟哟哟哟哟| 老司机午夜福利在线观看视频| 五月玫瑰六月丁香| 757午夜福利合集在线观看| 99在线视频只有这里精品首页| 3wmmmm亚洲av在线观看| 成人一区二区视频在线观看| 丝袜美腿在线中文| 久久精品人妻少妇| 日本在线视频免费播放| 亚洲av电影在线进入| 黄色成人免费大全| 99久久精品国产亚洲精品| 国产欧美日韩一区二区三| 欧美乱码精品一区二区三区| 国产亚洲av嫩草精品影院| 91av网一区二区| 99精品在免费线老司机午夜| 老鸭窝网址在线观看| 一本一本综合久久| 色噜噜av男人的天堂激情| 亚洲av中文字字幕乱码综合| 精品久久久久久久末码| 人人妻人人澡欧美一区二区| xxx96com| 两个人视频免费观看高清| 久久久久久九九精品二区国产| 蜜桃久久精品国产亚洲av| or卡值多少钱| 亚洲精品在线美女| 欧美极品一区二区三区四区| 久久久国产精品麻豆| 亚洲人成网站在线播放欧美日韩| 国产成人欧美在线观看| 19禁男女啪啪无遮挡网站| 黄色成人免费大全| 日本黄色片子视频| 久久精品影院6| 国产黄片美女视频| 99久久精品国产亚洲精品| 99精品欧美一区二区三区四区| 亚洲国产精品合色在线| 黄色片一级片一级黄色片| 亚洲激情在线av| 内射极品少妇av片p| 欧美日韩一级在线毛片| 国产精品久久久久久精品电影| 一本综合久久免费| 一级作爱视频免费观看| 丰满的人妻完整版| 欧美绝顶高潮抽搐喷水| 国产精品美女特级片免费视频播放器| 精品国产美女av久久久久小说| 熟妇人妻久久中文字幕3abv| 国产亚洲av嫩草精品影院| 少妇丰满av| 欧美日本视频| tocl精华| 久久婷婷人人爽人人干人人爱| 国产午夜精品论理片| 一级作爱视频免费观看| 精品国产美女av久久久久小说| 国产精品99久久久久久久久| 欧美成狂野欧美在线观看| 日本五十路高清| 日本在线视频免费播放| 天堂√8在线中文| 无限看片的www在线观看| 中国美女看黄片| 国产高清视频在线播放一区| 欧美一级毛片孕妇| 亚洲国产欧洲综合997久久,| 一区二区三区国产精品乱码| 老鸭窝网址在线观看| 亚洲专区中文字幕在线| 内地一区二区视频在线| 亚洲精品美女久久久久99蜜臀|