• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Green Function of the Annulus

    2016-10-12 09:07:11MassimoGrossiandDjordjijeVujadinovi
    Analysis in Theory and Applications 2016年1期

    Massimo Grossiand Djordjije Vujadinovi′c

    1Massimo Grossi,Dipartimento di Matematica,Universit`a di Roma La Sapienza, P.le A.Moro 2–00185 Roma,Italy

    2Djordjije Vujadinovi′c,Faculty of Mathematics,University of Montenegro,Dzordza Vˇasingtona bb,81000 Podgorica,Montenegro

    ?

    On the Green Function of the Annulus

    Massimo Grossi1,?and Djordjije Vujadinovi′c

    1Massimo Grossi,Dipartimento di Matematica,Universit`a di Roma La Sapienza, P.le A.Moro 2–00185 Roma,Italy

    2Djordjije Vujadinovi′c,Faculty of Mathematics,University of Montenegro,Dzordza Vˇasingtona bb,81000 Podgorica,Montenegro

    Abstract.Using the Gegenbauer polynomials and the zonal harmonics functions we give some representation formula of the Green function in the annulus.We apply this result to prove some uniqueness results for some nonlinear elliptic problems.

    Green’s function,symmetries,uniqueness.

    AMS Subject Classifications:35B09

    Analysis in Theory and Applications

    Anal.Theory Appl.,Vol.32,No.1(2016),pp.52-64

    1 Introduction and statement of the main results

    The classical Green function of the operator??with Dirichlet boundary conditions is defined by

    where δyis the Dirac function centered at y and ? is a bounded domain of IRn,n≥2. It is well known that the Green function can be written as

    where H(x,y)is a smooth function in ?×? which is harmonic in both variables x and y. Finally the Robin function is defined as

    The knowledge of the Green(or the Robin)function is of great importance in applications(we mention the paper[2]and the rich list of references therein).Indeed the explicitcalculation of the Green function is an old problem(see for example the book by Courant and Hilbert,[5])but it can be solved only in special cases(like the ball or half-space).

    For these reason,even if it is not possible to have the explicit expression,it is very important to deduce any properties of the Green function.

    In this paper we are interested to the case where the domain is the annulus in IRn, namely ?={x∈IRn:a<|x|<b}(in the rest of the paper by simplicity we assume that b=1).Even if the annuls possesses many symmetries,you can not explicitly write the Green function.If n=2 in[7]it was given a representation for the Green function as trigonometrical series.In this paper we give a representation formula of the Green function when n≥3 using the zonal spherical harmonics.Our first result is the following,

    Theorem 1.1.Let A be the annulus A={x∈IRn:a<|x|<1}.Then we have that the Green function in A is given by,

    Moreover the Robin function is given by,setting d0=1 and

    for m≥1,

    Here Zm(x,y)are the zonal spherical harmonics(see Section 2 or[1]for the definition and main properties).

    Next corollary gives an alternative expression of the Green function which does not involve the Newtonian potential.

    Corollary 1.1.Let A be the annulus A={x∈IRn:a<|x|<1}.Then we have that the Green function is given by,

    These results are useful to derive some properties of the Robin function of the annulus.Actually we will show that the Robin function is a radial function which admits only one critical point which is nondegenerate in the radial direction.

    Theorem 1.2.Let A be the annulus{x∈Rn|a<|x|<1}for n≥2 and RA(x)the corresponding Robin function.Then,if r=|x|,we have that RA(x)=RA(r)and RA(r)has a unique critical point r0,which satisfies

    Note that this result was proved,when n=2,in[4]using different techniques.In Proposition 3.1 we give an alternative proof of this result.

    Finally we apply these results to deduce some propertiesof nonlinear PDE’s problem. A straightforward application is a uniqueness results of concentrating solutions.Let us consider the problem

    and

    It is well known(see[3])that there exists solutions uεwhich achieve Sεand satisfying

    where S is the best constant in Sobolev inequalities.In the next theorem we show the uniqueness of this solution(up to a suitable rotation).

    Theorem 1.3.Let us suppose that u1,εand u2,εare two solutions of(1.7)satisfying(1.9).Then, up to a suitable rotation,we have that

    for ε small enough.

    When ? is a generic domain of IRn,Theorem 1.3 was proved by Glangetas(see[6]) under the assumption that the critical point of the Robin function is nondegenerate.Of course,due to the rotationally invariance of the annulus,any critical point is degenerate and so Glangetas’result is therefore not applicable(note that the author conjectured the uniqueness result in the annulus at page 573 in[6]).Indeed the meaning of Theorem 1.3 is that just the nondegeneracy in the radial direction is necessary to have the uniqueness of the solution up to a suitable rotation.

    The paper is organized as follows:in Section 2 we recall some preliminaries about the zonal harmonics and the Gegenbauer polynomials.In Section 3 we prove the Theorem 1.1,Corollary 1.1 and some properties of the Robin function(proof of Theorem 1.2). Finally in Section 4 we prove Theorem 1.3.

    2 Preliminaries

    In this Section we would like to point out the basic properties of zonal harmonics which are going to be used trough the paper.A good reference for the interested reader is the book[1].

    By Hm(Rn)weare goingtodenotethefinitedimensionalHilbertspace ofall harmonic homogeneous polynomials of degree m.

    Let us denote by S the unit sphere of IRn.A spherical harmonic of degree m is the restriction to S of an element of Hm(IRn).The collection of all spherical harmonics of degree m will be denoted by Hm(S).

    Now we consider an important subset of Hm(S),the so-called zonal harmonics.They can be defined in different ways.We choose the equivalent definition given in Theorem 5.38 in[1].

    For x∈IRnwith n≥2 and ξ∈S we define the zonal harmonic Zm(x,ξ)of degree m as

    as m>0.Several properties of the zonal harmonic can be found in Chapter 5 of[1].Let us emphasize that there is an explicit formula for the zonal harmonic as n=2,

    The zonal harmonics have a particularly simple expression in terms of the Gegenbauer(or ultraspherical)polynomialsThe latter can be defined in terms of generating functions.If we write(see[11,pp.148])

    where 0≤|r|<1,|t|≤1 and λ>0,then the coefficientis called Gegenbauer polynomial of degree m associated with λ.

    The next theorem(see[11,pages 146–150])is related to representation of the zonal harmonics.

    Theorem 2.1.If n>2 is an integer,λ=and k=0,1,2,···,then we have that for all x′,y′∈S it holds

    Proof.In Corollary 2.13 in[11]it is proved that

    Let us compute the constant cn,m.If we put x′=y′∈S in(2.3)we get

    In[1],Proposition 5.27 and Proposition 5.8 showed that

    On the other hand in[9],it was shown that

    We end this section pointing out the result(see[1,pp.217,Theorem 10.13])related to the solution of Dirichlet problem in annulus.Recall that A={x∈Rn|a<|x|<1}and set

    where

    and

    Both series PA(x,ξ),PA(x,aξ)converge absolutely and uniformly on K×S,K?A(K is some compact subset).We have the following

    Theorem 2.2.Suppose n>2 and that f is continuous function on?A.Define u onˉA by

    3 The representation formula for the Green function

    Our first aim is to write the Green function for the annulus in terms of Zm(x,y).The starting point for our results is going to be the next easy lemma which will play an important role in proving Theorem 1.1.

    Lemma 3.1.We have that,for any|ξ|=1,|y|≤1 and y6=ξ,

    and

    Proof.Since|ξ|=1,by using the formula(2.2)we obtain

    In a similar way we prove(3.2):

    Thus,we complete the proof.

    Now we are in position to prove our representation formula for the Green function. Proof of Theorem 1.1.By(1.2)we have to write H(x,y),where H(x,y)is an harmonic function satisfying

    on?A.By Theorem 2.2 we have that H(x,y)=PA[fy](x)with

    where y∈A is fixed.Using Lemma 3.1,we obtain

    So we have that

    Similarly,for the second integral,we get

    So,we obtain

    The Robin function is

    By direct calculation we get the formulas(1.4)and(1.5).□

    Proof of Corollary 1.1.As in the proof of Lemma 3.1 we have,for|x|>|y|,

    From(3.10)and(1.4)the claim follows.□

    We have the following,

    Corollary 3.1.We have that

    Proof.It follows directly by Theorem 1.1.

    We end this section by proving Theorem 1.2.As we mention in the introduction this result generalizes that of Chen and Lin[4]to higher dimensions.

    Proof of Theorem 1.2.By(3.11)we have the the Robin function is radial.

    The inequality(3.12)implies that the function f(r)is strictly decreasing.Since we have that

    and

    weconclude thatthereexistsexactlyoner0,a<r0<1,suchthat f(r0)=0and then R′A(r0)= 0.

    On the other hand,

    Following the line of the proof of the previous theorem we have the following alternative proof to the result in[4].

    Proposition 3.1.The Robin function of the 2-dimensional annulus has a unique nondegenerate critical point.

    Proof.Let us recall the formula for the Robin function in the plane(see[7])

    As in the previous theorem we have,

    So,

    On the other hand we get

    On the other hand,while

    So,we can conclude that there exist unique r0,a<r0<1,for which=0 and>0.

    4 A uniqueness result for a nonlinear elliptic equation

    Let us consider the problem

    and solutions satisfying

    where S is the best constant in Sobolev inequalities and

    It is well known that a family of solutions satisfying(1.7)and(1.9)concentrates at one point,i.e.,

    weakly in the sense of measure as ε→0.It was proved by Han(see[8])that P is a critical point of the Robin function.

    Using Theorem 1.2 we have the following”asymptotic”uniqueness result.

    Theorem 4.1.Let A={x∈Rn|a<|x|<1}and uεa family of solutions to(1.7)satisfying(1.9). Then

    where r0is the unique root of the equation

    Next aim is to improve the previous result.Indeed we will show that not only our problemhas a unique pointof concentration,but evenit has a unique solutionfor ? small. Of course,since the problem is rotationally invariant we can have uniqueness only up to a suitable rotation.

    Now let us consider a solution to(1.7)satisfying(1.9).Up to a suitable rotation we can assume that its maximum point is given by(y1,0,···,0)with y1∈(a,1).Then we want to give a representation formula for this solution.This involves classical results which we recall below.Basically we follow the line of the proof of Theorem A in[6].

    Let us introduce some notations.Set,for y=(y1,0,···,0)with y1∈(a,1),

    which is the only positive solution to

    and for λ>0 let us define

    where〈u1,u2〉=RA?u1?u2is the scalar product in(A).

    Finally set for some δ>0,ω0=(a+δ,1?δ)?(a,1)such that|?R|>1 in(a,a+δ)∪(1?δ,1).

    The following proposition is classical for concentration problems like(1.7)as ε→0 (see[10]or[6]for example).

    Proposition 4.1.There exist ε0>0,λ0>0 and η0>0 such that,for ε∈(0,ε0)and for (x,λ)∈ω0×[λ0,+∞),there exists a uniquesuch thatand for any

    Now we are in position to prove Theorem 1.3.

    Now we use the crucial fact that u=PUy,λ+vy,λis a solution to(1.7)if and only if the pair(y,λ)is a critical point of the reduced functional

    So our claim is equivalent to show that the functional Kε(y,λ):ω0×(0,+∞)→IR has exactly one critical point.

    Let us introduce the function?Kε(y,λ):ω0×(0,+∞)→IR defined as

    In[6,page 576],it was proved that there exist constants A,B,C∈IR such that

    By Theorem 1.2 we have that?RA(r0)=0 andThis means that r0is a nondegenerate critical point for the function RA(y1,0,···,0).Hence Step 1 in[6]applies and thenwe have the uniquenessof the critical point of Kε(y1,λ).Thenandand the claim follows.

    Acknowledgments

    The first author is supportedby PRIN-2009-WRJ3W7 grant and the second author is supported by Basileus scholarship programme.

    References

    [1]S.Axler,P.Bourdon and W.Ramey,Harmonic Function Theory,Springer-Verlag,New York, Inc.Second Edition,2000.

    [2]C.Bandle and M.Flucher,Harmonic Radius and Concentration of Energy;Hyperbolic Radius and Liouville’s Equations?U=eUand?U=Un+2n?2,SIAM Rev.,38(2)(1996),191–238.

    [3]H.Brezis and L.Nirenberg,Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,Commun.Pure Appl.Math.,36(1983),437–477.

    [4]C.C.Chen and C.-S.Lin,On the symmetry of blowup solutions to a mean field equation, Ann.I.H.Poincar′e-AN,18(3)(2001),271–296.

    [5]R.Courant and D.Hilbert,Methods of Mathematical Physics,Vol.I,Interscience Publishers, Inc.,New York,N.Y.,1953.xv+561 pp.

    [6]L.Glangetas,Uniqueness of positive solutions of a nonlinear elliptic equation involving the critical exponent,Nonlinear Analysis,Theory,Methods and Applications,20(5)(1993),571–603.

    [7]M.GrossiandF.Takahashi,On the location oftwo blowup points on an annulus forthe mean field equation,C.R.Acad.Sci.Paris,Ser.I,352(2014),615-619.

    [8]Z.-C.Han,Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent,Ann.I.H.Poincar′e AN,8(2)(1991),159-174.

    [9]D.Kim,T.Kim andS-H.Rim,Some identitiesinvolving Gegenbauerpolynomials,Advances in Difference Equations,(2012),2012–2019.

    [10]O.Rey,The role of the Green’s function in a non-linear elliptic equation involving the critical Sobolev exponent,J.Funct.Anal.,89(1)(1990),1–52.

    [11]E.Stein and G.Weiss,Introduction to Fourier Analysis on Euclidean Spaces,Princeton,N.J. Princeton University Press,(1971).

    10.4208/ata.2016.v32.n1.5

    30 October 2015;Accepted(in revised version)5 November 2015

    ?Corresponding author.Email addresses:massimo.grossi@uniroma1.it(M.Grossi),djordjijevuj@t-com. me(D.Vujadinovi′c)

    亚洲人成网站高清观看| 欧美性猛交黑人性爽| 99热这里只有是精品在线观看| 欧美成人a在线观看| av播播在线观看一区| 亚洲人成网站高清观看| 成人二区视频| 免费黄网站久久成人精品| 午夜亚洲福利在线播放| 久久精品久久久久久噜噜老黄 | 国产午夜福利久久久久久| 中文资源天堂在线| 久久久久久久久久成人| 欧美性感艳星| 免费观看在线日韩| 欧美日本视频| 亚洲美女搞黄在线观看| 三级毛片av免费| 国产成人福利小说| 男女下面进入的视频免费午夜| 日日啪夜夜撸| 欧美日韩在线观看h| 3wmmmm亚洲av在线观看| 99热网站在线观看| 99在线人妻在线中文字幕| 亚洲熟妇中文字幕五十中出| 国产精品爽爽va在线观看网站| 精品人妻视频免费看| 亚洲第一区二区三区不卡| 色5月婷婷丁香| 久久精品国产鲁丝片午夜精品| 最近2019中文字幕mv第一页| 欧美zozozo另类| 亚洲18禁久久av| 亚洲成人中文字幕在线播放| 两个人的视频大全免费| 岛国毛片在线播放| 欧美一级a爱片免费观看看| 蜜桃亚洲精品一区二区三区| 国产精品久久视频播放| 淫秽高清视频在线观看| 久久久成人免费电影| 男女啪啪激烈高潮av片| 岛国毛片在线播放| 午夜视频国产福利| 伦精品一区二区三区| 亚洲最大成人中文| 色网站视频免费| 亚洲第一区二区三区不卡| 久久精品人妻少妇| 少妇被粗大猛烈的视频| АⅤ资源中文在线天堂| 日日摸夜夜添夜夜爱| 国产在视频线精品| 99热全是精品| 99久国产av精品| 99热这里只有是精品在线观看| 日日撸夜夜添| 亚洲最大成人av| 日本免费a在线| 欧美性猛交黑人性爽| 一边摸一边抽搐一进一小说| 久久久国产成人免费| 99久国产av精品| 午夜精品一区二区三区免费看| 天天一区二区日本电影三级| 亚洲中文字幕一区二区三区有码在线看| 亚洲第一区二区三区不卡| 国产爱豆传媒在线观看| 国产真实伦视频高清在线观看| 我的女老师完整版在线观看| 国产精品爽爽va在线观看网站| 偷拍熟女少妇极品色| 97在线视频观看| 综合色av麻豆| 久久6这里有精品| 天天躁日日操中文字幕| 国产精品一区www在线观看| 国产精品久久久久久久久免| 亚洲美女搞黄在线观看| 亚洲人成网站高清观看| 国产成人一区二区在线| 国产成人一区二区在线| 久久鲁丝午夜福利片| 亚洲中文字幕日韩| 国产av在哪里看| 日产精品乱码卡一卡2卡三| 婷婷六月久久综合丁香| 在线免费观看的www视频| 久久久久久久久大av| 老司机福利观看| 亚洲国产成人一精品久久久| 国产一级毛片在线| 建设人人有责人人尽责人人享有的 | 亚洲四区av| 国产亚洲精品久久久com| 欧美色视频一区免费| 能在线免费观看的黄片| 熟女人妻精品中文字幕| 欧美xxxx性猛交bbbb| 久久精品国产亚洲网站| 三级国产精品片| 午夜激情福利司机影院| 亚洲欧美一区二区三区国产| 午夜爱爱视频在线播放| 三级国产精品片| 干丝袜人妻中文字幕| 国产视频内射| 又爽又黄无遮挡网站| 嘟嘟电影网在线观看| 国产单亲对白刺激| 久久精品夜色国产| 国产麻豆成人av免费视频| 亚洲人成网站在线播| 精品久久久噜噜| 亚洲最大成人中文| 永久网站在线| 婷婷色麻豆天堂久久 | 久久草成人影院| 欧美潮喷喷水| 天堂网av新在线| 天堂网av新在线| 少妇的逼水好多| 亚洲欧美日韩东京热| 熟女电影av网| 亚洲精品aⅴ在线观看| 亚洲精品亚洲一区二区| av免费观看日本| 精品一区二区免费观看| 国产亚洲最大av| 精品免费久久久久久久清纯| 精品免费久久久久久久清纯| 一区二区三区免费毛片| 国产亚洲av嫩草精品影院| 99久久精品国产国产毛片| 少妇人妻精品综合一区二区| 非洲黑人性xxxx精品又粗又长| 美女高潮的动态| 男人狂女人下面高潮的视频| 国产中年淑女户外野战色| 99热这里只有是精品在线观看| 别揉我奶头 嗯啊视频| 大又大粗又爽又黄少妇毛片口| 国语自产精品视频在线第100页| 全区人妻精品视频| 午夜福利网站1000一区二区三区| 精品人妻偷拍中文字幕| 亚洲激情五月婷婷啪啪| 免费观看在线日韩| 国产午夜福利久久久久久| 只有这里有精品99| 亚洲国产精品专区欧美| 免费大片18禁| 丰满少妇做爰视频| 亚洲四区av| 99久久无色码亚洲精品果冻| 久久久精品94久久精品| 激情 狠狠 欧美| 亚洲av熟女| 久久午夜福利片| 国内精品宾馆在线| 亚洲四区av| 国产乱来视频区| 中文字幕精品亚洲无线码一区| 免费在线观看成人毛片| 欧美高清性xxxxhd video| 亚洲精品乱码久久久v下载方式| 日本三级黄在线观看| 亚洲国产精品国产精品| 观看免费一级毛片| 亚洲欧美成人精品一区二区| 国产白丝娇喘喷水9色精品| 国产免费一级a男人的天堂| 亚洲欧美日韩无卡精品| 国产精品,欧美在线| 亚洲av福利一区| 淫秽高清视频在线观看| 美女内射精品一级片tv| 成人午夜高清在线视频| 国产高清有码在线观看视频| av在线天堂中文字幕| 亚洲欧美日韩卡通动漫| 国产在视频线精品| 国产人妻一区二区三区在| 女人被狂操c到高潮| 蜜桃久久精品国产亚洲av| 99热这里只有是精品50| 久久这里有精品视频免费| 亚洲成色77777| 国产极品天堂在线| 久久精品国产亚洲av涩爱| 黄色配什么色好看| 身体一侧抽搐| av播播在线观看一区| 亚洲精品乱久久久久久| 最近视频中文字幕2019在线8| 亚洲国产精品成人综合色| 亚洲av免费高清在线观看| 成年免费大片在线观看| 精品久久久久久成人av| 精品久久久噜噜| 久久久久久久久久成人| 亚洲电影在线观看av| av播播在线观看一区| 国产成年人精品一区二区| 少妇裸体淫交视频免费看高清| 丰满少妇做爰视频| 午夜精品在线福利| 最近2019中文字幕mv第一页| 一卡2卡三卡四卡精品乱码亚洲| 国产日韩欧美在线精品| 亚洲,欧美,日韩| 夫妻性生交免费视频一级片| 国产成人精品久久久久久| 午夜福利在线在线| 亚洲综合色惰| 听说在线观看完整版免费高清| 亚洲aⅴ乱码一区二区在线播放| 2021少妇久久久久久久久久久| 欧美色视频一区免费| 国产美女午夜福利| 亚洲av不卡在线观看| 午夜久久久久精精品| 啦啦啦韩国在线观看视频| 91精品一卡2卡3卡4卡| 看免费成人av毛片| 在线天堂最新版资源| 国内少妇人妻偷人精品xxx网站| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲最大av| 国产人妻一区二区三区在| 亚洲图色成人| 亚洲最大成人中文| 成人国产麻豆网| 国产高清有码在线观看视频| 亚洲精品乱码久久久v下载方式| 成人亚洲欧美一区二区av| 亚洲av成人精品一二三区| 欧美性感艳星| 久久久久性生活片| 国产一区有黄有色的免费视频 | 最新中文字幕久久久久| 深爱激情五月婷婷| 午夜免费激情av| 欧美成人免费av一区二区三区| 日韩欧美在线乱码| 亚洲精品aⅴ在线观看| 日本色播在线视频| 久久精品综合一区二区三区| 午夜福利视频1000在线观看| 久久精品国产99精品国产亚洲性色| 日韩成人伦理影院| 午夜福利在线在线| 精品免费久久久久久久清纯| 色尼玛亚洲综合影院| 国产熟女欧美一区二区| 男人舔女人下体高潮全视频| 中国国产av一级| 一级av片app| 国产亚洲精品av在线| 午夜日本视频在线| 一级毛片电影观看 | 禁无遮挡网站| 狂野欧美白嫩少妇大欣赏| 精品人妻一区二区三区麻豆| 国产成人freesex在线| 国产精品福利在线免费观看| АⅤ资源中文在线天堂| 一区二区三区免费毛片| 欧美丝袜亚洲另类| 欧美潮喷喷水| 亚洲欧美精品自产自拍| 国产成人免费观看mmmm| 91在线精品国自产拍蜜月| 久久久国产成人免费| 亚洲av成人精品一区久久| 国产熟女欧美一区二区| 久久精品国产自在天天线| 超碰av人人做人人爽久久| 午夜爱爱视频在线播放| 亚洲av成人精品一区久久| 小说图片视频综合网站| 日韩精品有码人妻一区| 18禁在线播放成人免费| 国产真实乱freesex| 国产精品伦人一区二区| 免费一级毛片在线播放高清视频| 日本免费在线观看一区| 国产成人精品婷婷| 99国产精品一区二区蜜桃av| 韩国av在线不卡| 日韩欧美在线乱码| av.在线天堂| 26uuu在线亚洲综合色| 国产黄色小视频在线观看| 午夜免费激情av| 老司机福利观看| 91狼人影院| 欧美精品一区二区大全| 美女大奶头视频| 亚洲欧洲日产国产| 一个人观看的视频www高清免费观看| 国产精品久久久久久精品电影小说 | 婷婷色麻豆天堂久久 | 少妇熟女欧美另类| 99热这里只有是精品50| 人体艺术视频欧美日本| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩高清专用| 国产成人午夜福利电影在线观看| 少妇被粗大猛烈的视频| 18禁裸乳无遮挡免费网站照片| 啦啦啦韩国在线观看视频| 久久精品人妻少妇| 欧美性猛交黑人性爽| 建设人人有责人人尽责人人享有的 | 中文精品一卡2卡3卡4更新| 亚洲高清免费不卡视频| 国产精品蜜桃在线观看| 欧美日韩国产亚洲二区| 久久精品91蜜桃| 国产亚洲午夜精品一区二区久久 | 91狼人影院| 精品国产三级普通话版| 男女视频在线观看网站免费| 久久久a久久爽久久v久久| 美女脱内裤让男人舔精品视频| 中文字幕熟女人妻在线| 国产亚洲av片在线观看秒播厂 | 老师上课跳d突然被开到最大视频| 欧美最新免费一区二区三区| АⅤ资源中文在线天堂| 久久草成人影院| 国产精品不卡视频一区二区| 午夜日本视频在线| 欧美激情在线99| 国产精品野战在线观看| 亚洲欧美精品专区久久| 午夜福利视频1000在线观看| 人妻制服诱惑在线中文字幕| 国产私拍福利视频在线观看| a级毛色黄片| 亚洲av二区三区四区| 亚州av有码| 三级毛片av免费| 国产精品一区二区在线观看99 | 级片在线观看| 久久欧美精品欧美久久欧美| 在现免费观看毛片| 精品酒店卫生间| 色哟哟·www| 高清在线视频一区二区三区 | 日韩欧美精品免费久久| 色5月婷婷丁香| 久久久久久国产a免费观看| 国产亚洲av片在线观看秒播厂 | 日日啪夜夜撸| 亚洲婷婷狠狠爱综合网| 欧美日本视频| 久久久久久久久久黄片| 晚上一个人看的免费电影| 国产女主播在线喷水免费视频网站 | 久久久久久伊人网av| 国产精品一二三区在线看| 你懂的网址亚洲精品在线观看 | 伦精品一区二区三区| 成年女人永久免费观看视频| 国产精品麻豆人妻色哟哟久久 | 高清av免费在线| 亚洲天堂国产精品一区在线| 久久精品久久久久久噜噜老黄 | 精华霜和精华液先用哪个| 韩国高清视频一区二区三区| 欧美最新免费一区二区三区| 欧美性猛交黑人性爽| 国产免费又黄又爽又色| 男女下面进入的视频免费午夜| 亚洲国产色片| 亚洲av二区三区四区| 中文字幕熟女人妻在线| 色尼玛亚洲综合影院| 少妇被粗大猛烈的视频| 色视频www国产| 国产精品综合久久久久久久免费| 午夜福利视频1000在线观看| 免费av不卡在线播放| 亚洲av电影在线观看一区二区三区 | 亚洲一级一片aⅴ在线观看| 欧美成人精品欧美一级黄| 日韩精品青青久久久久久| 国产精品熟女久久久久浪| 精品不卡国产一区二区三区| 91久久精品国产一区二区成人| 中文资源天堂在线| 日本猛色少妇xxxxx猛交久久| 老女人水多毛片| 欧美bdsm另类| 欧美丝袜亚洲另类| 男女啪啪激烈高潮av片| 久久国内精品自在自线图片| 国产精品1区2区在线观看.| 亚洲av一区综合| 久久久久久久久中文| 国产亚洲91精品色在线| 亚洲天堂国产精品一区在线| 免费播放大片免费观看视频在线观看 | 欧美成人精品欧美一级黄| 黄片无遮挡物在线观看| 国产中年淑女户外野战色| 久久热精品热| 免费观看的影片在线观看| av天堂中文字幕网| 欧美zozozo另类| 亚洲欧美日韩东京热| 视频中文字幕在线观看| 尾随美女入室| 97在线视频观看| 国产日韩欧美在线精品| 草草在线视频免费看| 欧美高清性xxxxhd video| 亚洲欧美日韩无卡精品| 在线免费十八禁| 精品熟女少妇av免费看| 卡戴珊不雅视频在线播放| 少妇熟女aⅴ在线视频| 超碰av人人做人人爽久久| 91狼人影院| 超碰av人人做人人爽久久| 赤兔流量卡办理| 久久精品综合一区二区三区| 大又大粗又爽又黄少妇毛片口| 国产高清视频在线观看网站| 亚洲天堂国产精品一区在线| 亚洲精品日韩av片在线观看| 中文字幕精品亚洲无线码一区| 国产精品综合久久久久久久免费| 好男人在线观看高清免费视频| 欧美区成人在线视频| 美女黄网站色视频| 最近最新中文字幕大全电影3| 国产乱来视频区| 欧美三级亚洲精品| 91久久精品国产一区二区成人| 亚洲无线观看免费| 国产一区二区亚洲精品在线观看| 成人欧美大片| 国产一区二区在线av高清观看| 精品人妻一区二区三区麻豆| 自拍偷自拍亚洲精品老妇| 在线免费观看不下载黄p国产| 日本免费一区二区三区高清不卡| 欧美色视频一区免费| 欧美三级亚洲精品| 丰满少妇做爰视频| 久久久欧美国产精品| 中文资源天堂在线| 又粗又硬又长又爽又黄的视频| 99热这里只有精品一区| 国产高清不卡午夜福利| 在线观看av片永久免费下载| 亚洲欧美清纯卡通| 精品酒店卫生间| 日韩强制内射视频| av在线老鸭窝| 欧美bdsm另类| 精品无人区乱码1区二区| 欧美区成人在线视频| 青青草视频在线视频观看| 国产一区有黄有色的免费视频 | 级片在线观看| 日本午夜av视频| 水蜜桃什么品种好| 人体艺术视频欧美日本| 天美传媒精品一区二区| 欧美潮喷喷水| 久久99热这里只有精品18| 秋霞在线观看毛片| 国产av码专区亚洲av| 免费观看性生交大片5| 国产精品野战在线观看| 99热网站在线观看| 成人二区视频| 纵有疾风起免费观看全集完整版 | 国产 一区精品| 亚洲欧美日韩高清专用| 免费无遮挡裸体视频| 我要看日韩黄色一级片| 亚洲av成人精品一区久久| 欧美日韩精品成人综合77777| 麻豆成人午夜福利视频| 黄色日韩在线| 乱人视频在线观看| 久久久a久久爽久久v久久| 少妇丰满av| 国产麻豆成人av免费视频| 欧美区成人在线视频| av卡一久久| 亚洲国产日韩欧美精品在线观看| 亚洲一级一片aⅴ在线观看| 老司机福利观看| 汤姆久久久久久久影院中文字幕 | 日本wwww免费看| 99热6这里只有精品| 国产精品一区二区性色av| 一区二区三区免费毛片| 欧美+日韩+精品| 国产成人福利小说| 国产日韩欧美在线精品| 草草在线视频免费看| 欧美3d第一页| 男女啪啪激烈高潮av片| 男人和女人高潮做爰伦理| 精品不卡国产一区二区三区| 丝袜美腿在线中文| 日韩成人伦理影院| 国国产精品蜜臀av免费| a级一级毛片免费在线观看| 一级毛片电影观看 | 精品国产露脸久久av麻豆 | 搡女人真爽免费视频火全软件| 国产一级毛片在线| 男的添女的下面高潮视频| 一区二区三区乱码不卡18| www.av在线官网国产| 免费看美女性在线毛片视频| 国产又色又爽无遮挡免| 国产成人福利小说| 中文字幕久久专区| 色吧在线观看| 九九爱精品视频在线观看| 26uuu在线亚洲综合色| 婷婷色av中文字幕| 国产亚洲5aaaaa淫片| 日韩 亚洲 欧美在线| 寂寞人妻少妇视频99o| 亚洲精品国产av成人精品| 亚洲av二区三区四区| av在线播放精品| 伊人久久精品亚洲午夜| 乱人视频在线观看| 麻豆一二三区av精品| 亚洲熟妇中文字幕五十中出| 观看免费一级毛片| 久久久久久久久大av| 亚洲精品乱码久久久v下载方式| 五月伊人婷婷丁香| 超碰97精品在线观看| 中文欧美无线码| 久久99热6这里只有精品| 日韩av不卡免费在线播放| 国产精品美女特级片免费视频播放器| 三级国产精品欧美在线观看| 日本欧美国产在线视频| 国产一级毛片七仙女欲春2| 国产亚洲av嫩草精品影院| 精品不卡国产一区二区三区| 天天躁日日操中文字幕| 不卡视频在线观看欧美| 一区二区三区四区激情视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产亚洲最大av| 中文字幕av在线有码专区| 国产av不卡久久| 成人综合一区亚洲| 国产私拍福利视频在线观看| 国产精品永久免费网站| 26uuu在线亚洲综合色| 欧美成人免费av一区二区三区| 91av网一区二区| 久久99热6这里只有精品| av播播在线观看一区| 国产视频内射| 日产精品乱码卡一卡2卡三| 久久精品夜色国产| 亚洲精品自拍成人| 亚洲欧美一区二区三区国产| 男人舔奶头视频| 国产精品美女特级片免费视频播放器| 一区二区三区高清视频在线| 亚洲国产精品成人久久小说| 纵有疾风起免费观看全集完整版 | 天堂中文最新版在线下载 | 99视频精品全部免费 在线| 国产精品久久久久久精品电影小说 | 免费看日本二区| 哪个播放器可以免费观看大片| 嘟嘟电影网在线观看| 黄片wwwwww| 久久精品国产亚洲av天美| 色综合亚洲欧美另类图片| 日韩欧美国产在线观看| 97超视频在线观看视频| 精品国内亚洲2022精品成人| 97在线视频观看| 日韩成人伦理影院| 搡老妇女老女人老熟妇| 亚洲最大成人中文| 91精品伊人久久大香线蕉| 网址你懂的国产日韩在线| av国产久精品久网站免费入址| 欧美区成人在线视频| 欧美xxxx性猛交bbbb| 精品久久久久久久久亚洲| 真实男女啪啪啪动态图| 男女国产视频网站| 大香蕉久久网| 美女cb高潮喷水在线观看| 亚洲精品自拍成人| 欧美极品一区二区三区四区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av一区综合| 三级男女做爰猛烈吃奶摸视频| 人妻少妇偷人精品九色| 91aial.com中文字幕在线观看| 国产69精品久久久久777片|