• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Copositive Approximation in Spaces ofContinuous Functions II*:The Uniqueness of Best Copositive Approximation

    2016-10-12 09:07:07ArefKamal
    Analysis in Theory and Applications 2016年1期

    Aref K.Kamal

    Department of Mathematics and Statistics,S.Q.University,P.O.Box 36 Al Khoudh 123 Muscat,Sultanate of Oman

    ?

    On Copositive Approximation in Spaces of
    Continuous Functions II*:The Uniqueness of Best Copositive Approximation

    Aref K.Kamal?

    Department of Mathematics and Statistics,S.Q.University,P.O.Box 36 Al Khoudh 123 Muscat,Sultanate of Oman

    Abstract.This paper is part II of”O(jiān)n Copositive Approximation in Spaces of Continuous Functions”.In this paper,the author shows that if Q is any compact subset of real numbers,and M is any finite dimensional strict Chebyshev subspace of C(Q),then for any admissible function f∈C(Q)M,the best copositive approximation to f from M is unique.

    Strict Chebyshev spaces,best copositive approximation,change of sign.

    AMS Subject Classifications:41A65

    Analysis in Theory and Applications

    Anal.Theory Appl.,Vol.32,No.1(2016),pp.20-26

    1 Introduction

    If Q is a compact Hausdorff space,then C(Q)denotes the Banach space of all continuous real valued functions on Q,together with the uniform norm,that is,‖f‖=max{|f(x)|: x∈Q}.If M is a subspace of C(Q),and f∈C(Q),then g∈M is said to be copositive with f on Q iff f(x)g(x)≥0 for all x∈Q.The element g0∈M is called a best copositive approximation to f from M iff g0is copositive with f on Q and‖f?g0‖=inf{‖f?g‖:g∈M,and g is copositive withf on Q}.The set{g∈M:g is copositive with f on Q}is closed, so if the dimension of M is finite,then the best copositive approximation to each f∈C(Q) from M is attained.If Q is a compact subset of real numbers,then the n-dimensional subspace M of C(Q)is called Chebyshev subspace of C(Q)if each g6=0 in M has at most n?1 zeros.The n-dimensional Chebyshev subspace M of C(Q)is called a”Strict Chebyshev subspace”of C(Q)if each g6=0 in M has at most n?1 changes of signs,that is,no g6=0 in M alternates strongly at n+1 points of Q,which means that there do not exist n+1 points,x0<x2<···<xn+1in Q so that g(xi)g(xi+1)<0 for all i=1,2,···,n.

    This paper is a continuation of the author’s paper[1].In this paper the author investigates the uniqueness of the best copositive approximation by elements of finite dimensional subspaces of C(Q).Passow and Taylor[2]showed that when Q is any finite subset of real numbers,and M is a finite dimensional strict Chebyshev subspace of C(Q) then the best copositive approximation to each f∈C(Q)from M is unique.Zhong[3] proved the same result for the case when Q is a closed and bounded interval[a,b]of the real numbers,and f does not vanish on any subinterval of[a,b].In this paper it is shown that this fact is true for any compact subset of real numbers.

    The rest of this section will be used to cover some notation and results that will be used later in Section 2.As in Kamal[1],If Q is a compact subset of real numbers,and x1<x2in Q thenthe”intervals”(x1,x2),(x1,x2],[x1,x2),and[x1,x2]in Q are defined in the ordinary way,for example;(x1,x2)={x∈Q:x1<x<x2}.If Q is not connectedthennone of those intervals need to be connected.The point z0in Q is called”a limit point from both sides”in Q if z0is an accumulation for the set{x∈Q:x<z0},and the set{x∈Q:x>z0}. If z0is an accumulation point for the set{x∈Q:x<z0}or the set{x∈Q:x>z0}but not for both then z0is called”a limit point from one side”in Q.The function f∈C(Q)is said to have at”least k changes of sign in Q”if there are k+1 point t1<t2<···,tk+1in Q so that f(ti)f(ti+1)<0 for all i=1,2,···,k.The”number of changes of sign of f”is defined to be the sup{k:f has at least k changes of sign}.Assume that f6=0 in C(Q),the point z∈Q is said to be a”double zero”for f in Q if f(z)=0,and there are x<z<y in Q so that f(α)f(β)>0 for all α6=z,and β6=z in[x,y].If f(z)=0,and z is not a double zero then z is called a”single zero”in Q(see[4]).Finally the function f∈C(Q)is called admissible if f does not vanish on any infinite interval of Q.

    The following Proposition presents some of the known propertis of strict Chebyshev subspaces.

    Proposition 1.1.Assume that Q is a compact subset of real numbers containing at least n+1 points,and that M is an n-dimensional strict Chebyshev subspace of C(Q).The following facts hold;

    i).If z1<z2<···<zn?1are n?1 points in Q,then there is g∈M,such that g(x)=0 for all x∈{z1,z2,···,zn?1}and;

    1).g(x)>0,if x<z1,

    2).(?1)n?1g(x)>0 if x>zn?1,and;

    3).(?1)ig(x)>0 if x∈(zi,zi+1),and i=1,2,···,n?1.

    ii).No g6=0 in M alternates weakly at n+1 points in Q,that is,there do not exist x1<x2<···<xn+1in Q,and g6=0 in M such that(?1)ig(xi)≥0 for each i=1,2,···,n+1.

    iii).If g6=0 in M and k is the number of single zeros of g,and m is the number of double zeros of g then k+2m≤n?1.

    Part i)in Proposition 1.1 can be obtained from Lemma 6.5 in Zielke[4],part ii),is in[4,Lemma 3.1b],part iii)is[4,Lemma 6.2].

    Lemma 1.1(see[1]).Assume that Q is an infinite compact subset of real numbers,M is an n-dimensional strict Chebyshev subspace of C(Q),and q is a limit point from both sides in Q.If g and h are two elements in M and h6=0,then limand limboth exist as extended real numbers.

    Lemma 1.2.Assume that Q is an infinite compact subset of real numbers,and that M is an n-dimensional strict Chebyshev subspace of C(Q).Let q be a limit point from both sides in Q and let g and h be two nonzero elements in M,such that g(q)=h(q)=0.If the number of zeros of g is n?1,then

    Proof.It will be shown that limWith the same method one can prove that limBy Lemma 1.1,limexists as an extended real number.Assume that lim=0,and let x1<x2<···<xn?be the zeros of g.For each k=1,2,···,n?2,1let Ik=(xk,xk+1).Let I0={x∈Q:x<x1},and In?1={x∈Q:x>xn?1}.By Proposition 1.1, all the zeros of g are single zeros.Thus one can assume without loss of generality that (?1)kg(x)>0 for all x∈Ik,and k=0,1,2,···,n?1.The proof will be given first for the case at which Ik6=φ for all k.In this case for each k,choose tk∈Ik.Then g alternates strongly at the n points t0<t1<···<tn?1in Q.Since q=xi0for some i0,then ti0?1<xi0<ti0. It is clear that g does not changes sign in neithernor in[xi0,ti0].Let c>0 be chosen so that c‖h‖<min{|g(t0)|,|g(t1)|,···,|g(tn?1)|}.Since lim=0,then there is y06=xi0in,so that|g(y0)|<c|h(y0)|.If g>0,thenlet ψ=g?ch,and if g<0,then let ψ=g+ch.In bothcases ψ6=0,and ψ<0.Therefore, ψ alternates weakly at the n+2 points of the setwhich contradicts Proposition 1.1.

    Second,assume that some of the intervals I0,I1,···,In?1are empty.The proof will be given by strong induction.Assume that the number of empty intervals among I0,I1,···,In?1is k.Then 0≤k<n.The hypothesis is true for k=0.Now let k≥0,and assume that the hypothesis is true for all 0≤i≤k.It will be shown that it is true for k+1. Assume that the number of empty intervals is k+1,and let Ij=(xj,xj+1)be one of those empty intervals.Since xi0is a limit point from both sides in Q then Ij6=Ii0?1and Ij6=Ii0. Q is infinite,so one can find a natural number α∈{0,1,2,···,n?1},so that Iαis infinite. Let s be any point in Iαsuch that{x∈Iα:x<s}6=φ and{x∈Iα:x>s}6=φ,and let g0be a non zero element in M having n?1 zeros at[{x1,x2,···,xn?1}{xj+1}]∪{s}.The zeros of g0includes q=xi0,and if J0,J1,···,Jn?1are the intervals between its zeros then the number of empty intervals among them is no more than k.By induction lim6=0.But lim=0.So lim=0 .Let t1be any element inand t2be any element in Ii0,thenChoose c>0 be so that c‖g0‖<min{|g(t1)|,|g(t2)|}. Since lim=0,then there issuch that|g(y0)|<c|g0(y0)|.Ifg(t1)g0(y0)>0,then let ψ=g?cg0,and if g(t1)g0(y0)<0,then let ψ=g+cg0.In both cases ψ6=0,and ψ(t1)ψ(y0)<0,and since g(t1)g(t2)<0,it follows that ψ(t2)ψ(y0)>0. Therefore,ψ alternates weakly at the points t1<y0<xi0<t2.But g(xk)=g0(xk)=0 for all k6=j+1.So ψ(xk)=0 for all k6=j+1.Thus ψ alternates weakly at the n+1 points of the set [{x1,x2,···,xn?1}{xj+1}]∪{t1,t2,y0},which contradicts Proposition 1.1.

    2 The main results

    This section is devoted to show that the best copositive approximation is unique.Let n be any natural number,Q be any compact subset of the real numbers containing more than n+1 points,and let M be any n-dimensional strict Chebyshev subspace of C(Q).

    Let f be any element in C(Q).If f has more than n?1 changes of sign then there are n+1 points t1<t2<···<tn+1in Q so that f(ti)f(ti+1)<0 for all i=1,2,···,n.If g is any best copositive approximation to f from M then g(ti)g(ti+1)≤0 for all i=1,2,···,n. Therefore by Proposition 1.1.g must be zero.Hence g=0 is the unique best copositive approximation to f from M.So in this section the function f will have no more than n?1 changes of sign.

    As in Kamal[1],if Q is a compact subset of real numbers containing at least n+1 points,and f is an admissible function in C(Q)having no more than n?1 changes of sign.Define X0(f)={z1,z2,···,zm}to be the set of all z∈Q such that z is a limit point from both sides in Q,and that f changes sign at z.If M is an n-dimensional strict Chebyshev subspace of C(Q),then for each g6=0 in M,copositive with f,define;

    X1(f,g)={x∈Q:|f(x)?g(x)|=‖f?g‖}∪{x∈Q:f(x)6=0 and g(x)=0},

    X2(f,g)={x∈Q:g(x)=0,f(x)=0,and x is not an isolated point inQ}.

    Let X(f,g)=X1(f,g)∪X2(f,g),and define M0to be{g∈M:g(z)=0 for all z∈X0(f)}. It is clear that M0is an(n?m)-dimensional subspace of M,and that if g∈M is copositive with f on Q,then g∈M0.

    The function θ6=0 in M is said to be”copositive with f around the elements of X0(f)”if for each z∈X0(f),there is a neighborhood Uzaround z such that f(x)θ(x)≥0 for all x∈Uz.It is clear that θ(z)=0 for all z∈X0(f).For such function,define X3(f,g,θ)to be

    and X4(f,g,θ)to be

    Lemma 2.1(see[1]).Assume that f is admissible function in C(Q)M having no more than n?1 changes of sign.If g is a best copositive approximation to f from M then there is a non-zero function ?∈M0copositive with f around the elements of X0(f),such that the numberof elements in[X(f,g)X0(f)]∪X3(f,g,?)∪X4(f,g,?)is more than or equal to n?m+1.

    Lemma 2.2.Assume that f is admissible function in C(Q)M having no more than n?1 changes of sign,g is a best copositive approximation to f from M,and let ? be any element in M0copositive with f around the elements of X0(f).For any h0∈M0,if there are ξ1,ξ2,···,ξηin X(f,g)X0(f),and y1,y2,···,yrin X3(f,g,?)∪X4(f,g,?),such that η+r=n?m+1,h0(ξi)=0 for all i=1,2,···,η,and for all j=1,2,···,r,either

    then h0=0.

    Proof.By contradiction,assume that there is h0∈M0with the given properties,and that h06=0.Since h0has zeros at the points of the two distinct setsand {z1,z2,···,zm},then η+m≤n?1.If Q is finite then r=0,so η=n?m+1.Thus η+m=n+1. But then h0has more than n?1 zeros,which contradict the fact that M is a strict ndimensional Chebyshev space.So one may assume that Q is infinite,and that r>0. By Proposition 1.1,let h1be any nonzero element in M having n?1 zeros,including,and choose the location of the extra zeros so that h1,and h0have the same sign in some neighborhood around yjfor all j=1,2,···r.This can be done by replacing each double zero of h0by two very close single zeros for h1.By Proposition 1.1,the number of zeros of h1may still less than n?1.To make this number equal n?1, one can add extra zeros after zmor before z1.For each j=1,2,···,r,choose ejin Q so that if limthen ej<yj,and if limthen ej>yj,and with the properties that,if Ijis the open interval between ejand yjin Q,then Ijdoes not intersectneither h0,nor h1change sign or have zeros in Ij,and h0(ej)6=0.Let λ0>0, so that

    and let h2=h0?λ0h1.It is clear that h26=0,and that h2(x)=0 for all x∈∪{z1,z2,···,zm},and that h2(ej)h0(ej)>0 for all j.Foreach 1≤j≤r,eitherlim=0, orlim0.Assumefirstthat lim=0.Since h1has n?1 zerosand Q is infinite and yjis a limit point from both sides in Q,then by Lemma 1.2 lim= 0.So lim=0.Since h1and h0have the same sign at ej,and h2(ej)h0(ej)>0, then h2(ej)h1(ej)>0.On the other hand lim=?λ0.Thus there is a point ujin Q such that ej<uj<yjand that h2(uj)h1(uj)<0.Since h1has a constant sign in [ej,yj)and h2(ej)h1(ej)>0 then h2(ej)h2(uj)<0.In the same manner,if lim= 0,then one can find point ujin Q such that yj<uj<ejand that h2(uj)h2(ej)<0.Let {s1,s2,···,sη+m}={ξ1,ξ2,···,ξη}∪{z1,z2,···,zm},then h2(si)=0 for all i=1,2,···,η+m, and if si=yjfor some j,then the two points uj,ejlie between siand si?1or si,and si+1. Furthermore h2(uj)h2(ej)<0.Thus one can choose tj∈{uj,ej}so that h2alternates weaklyat the points of{s1,s2,···,sη+m}∪{t1,t2,···,tr}.But η+m+r=(n?m+1)+m=n+1.So h2alternates weakly at n+1 points of Q.This is a contradiction.

    Theorem 2.1.Assume that Q is a compact subset of real numbers having at least n+1 points, and that M is an n-dimensional strict Chebyshev subspace of C(Q).If f is an admissible function in C(Q)M,then the best copositive approximation to f from M is unique.

    Proof.If f has more than n?1 changes of sign then as the argument at the start of this section,thebestcopositiveapproximation to f from M is unique.So onemay assumethat f have no more than n?1 changes of sign.By contradiction,assume that g1and g2are two distinct best copositive approximations to f from M.Let g?g0=g1?g2,then g06=0 and g?is another best copositive approximation to f from M.By Lemma 2.1,there is a non-zero function ?∈M0copositive with f around the elements of X0(f)such that the number of the elements in[X(f,g?)X0(f)]∪X3(f,g?,?)∪X4(f,g?,?)is more than or equal to n?m+1.Thus letbe elements in X(f,g?)X0(f),and let y1,y2,···,yrbe elements in X3(f,g?,?)∪X4(f,g?,?)such that η+r=n?m+1.

    It will be shown that g0(ξi)=0 for all i=1,2,···,η,and for all j=1,2,···,r,either lim=0 or lim=0.If this is true,then by Lemma 2.2,g0=0,which is a contradiction.

    For each i=1,2,···,η,ξi∈X(f,g?)X0(f)=[X1(f,g?)∪X2(f,g?)]X0(f).So either ξi∈X1(f,g?),or ξi∈X2(f,g?)X0(f).If ξi∈X1(f,g?),and|(f?g?)(ξi)|=‖f?g?‖,then since

    it follows that

    Therefore,

    If ξi∈X1(f,g?),and f(ξi)6=0,but g?(ξi)=0,then since g?,g1,and g2are copositive with f on Q,andit follows that=0.ThereforeIfthenand ξiis a limit point either from both sides or from one side in Q.Since g?,g1and g2are all continuous on Q,and copositive with the admissible function f,then g1(ξi)=g2(ξi)=g?(ξi)=0.Thus g0(ξi)=0.

    Finally,it will be shown that for each j=1,2,···,r,either limor limSince yj∈X3(f,g?,?)∪X4(f,g?,?),then either limor limAssume first that limSince g?,g1,g2are all continuous on Q,and copositive with the admissible function f,then limand lim

    In the same method one can show that if limthen lim

    Acknowledgments

    The author want to thank Dr.AL.Brown for his patience in reading the manuscript and all his suggestions and corrections which made the paper readable.

    References

    [1]A.K.Kamal,On copositive approximation in spaces of continuous functions I,the alternation property of copositive approximation,Anal.Theory Appl.,31(2015),354–372.

    [2]E.Passow and G.D,Taylor,An alternation theory for copositive approximation,J.Approx. Theory,19(1977),123–134.

    [3]J.Zhong,Best copositive approximation,J.Approx.Theory,72(1993),210–233.

    [4]R.Zielke,Discontinuous Chebyshev system,Lecture Notes in Mathematics,Vol.707, Spriger-Verlag,Berlin-Heidelberg-New York,1979.

    10.4208/ata.2016.v32.n1.2

    2 April 2015;Accepted(in revised version)25 May 2015

    ?Corresponding author.Email address:akamal@squ.edu.om(A.K.Kamal)

    亚洲精品美女久久久久99蜜臀| av在线蜜桃| bbb黄色大片| 人人妻,人人澡人人爽秒播| 亚洲国产高清在线一区二区三| 九色国产91popny在线| 亚洲精品456在线播放app | 国产亚洲精品久久久com| 免费搜索国产男女视频| 亚洲欧美一区二区三区黑人| 欧美一区二区国产精品久久精品| 丰满人妻一区二区三区视频av | 久久久久久久精品吃奶| 制服丝袜大香蕉在线| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久久午夜电影| 伊人久久大香线蕉亚洲五| 国内久久婷婷六月综合欲色啪| 国内揄拍国产精品人妻在线| 男女做爰动态图高潮gif福利片| 国模一区二区三区四区视频| 国产爱豆传媒在线观看| 国内精品美女久久久久久| 日韩中文字幕欧美一区二区| 国产色婷婷99| 国产在线精品亚洲第一网站| 欧美极品一区二区三区四区| 亚洲第一欧美日韩一区二区三区| aaaaa片日本免费| 欧美色欧美亚洲另类二区| 99久久精品国产亚洲精品| 免费在线观看亚洲国产| 久久久久性生活片| 女警被强在线播放| 操出白浆在线播放| x7x7x7水蜜桃| 在线免费观看不下载黄p国产 | 国产三级中文精品| 国产爱豆传媒在线观看| 欧美+亚洲+日韩+国产| 免费看a级黄色片| 国产午夜精品久久久久久一区二区三区 | 乱人视频在线观看| 舔av片在线| 欧美性猛交╳xxx乱大交人| 90打野战视频偷拍视频| 国产精品精品国产色婷婷| 老鸭窝网址在线观看| 欧美激情在线99| 中国美女看黄片| 国产精华一区二区三区| 午夜免费激情av| a在线观看视频网站| 亚洲av免费高清在线观看| 1024手机看黄色片| 黄色片一级片一级黄色片| 午夜激情福利司机影院| 女人被狂操c到高潮| 99久久精品国产亚洲精品| 国产97色在线日韩免费| 亚洲avbb在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久成人av| 成年女人毛片免费观看观看9| 性欧美人与动物交配| 亚洲第一电影网av| 脱女人内裤的视频| 欧美乱码精品一区二区三区| 变态另类成人亚洲欧美熟女| 白带黄色成豆腐渣| 九九在线视频观看精品| 亚洲一区二区三区色噜噜| 国产精品亚洲一级av第二区| 嫩草影视91久久| 亚洲乱码一区二区免费版| 在线观看一区二区三区| 99热只有精品国产| 亚洲av日韩精品久久久久久密| 久久久精品欧美日韩精品| 亚洲aⅴ乱码一区二区在线播放| 男女床上黄色一级片免费看| 变态另类丝袜制服| 观看美女的网站| 欧美黑人巨大hd| 男人和女人高潮做爰伦理| 非洲黑人性xxxx精品又粗又长| 蜜桃亚洲精品一区二区三区| 在线播放国产精品三级| 日日夜夜操网爽| 全区人妻精品视频| 欧美最新免费一区二区三区 | 国产又黄又爽又无遮挡在线| 久久久久久久久中文| 国产精品国产高清国产av| 老司机在亚洲福利影院| 亚洲专区中文字幕在线| 国产精品综合久久久久久久免费| 美女大奶头视频| 国产精品久久久久久精品电影| 亚洲精品国产精品久久久不卡| 亚洲七黄色美女视频| 在线观看午夜福利视频| 日韩高清综合在线| 非洲黑人性xxxx精品又粗又长| 亚洲人成网站在线播| 黄色丝袜av网址大全| 国产精品一区二区免费欧美| 亚洲国产欧美网| 国产毛片a区久久久久| 欧美三级亚洲精品| 美女免费视频网站| 亚洲熟妇中文字幕五十中出| 欧美日韩乱码在线| 免费观看的影片在线观看| 国产亚洲欧美98| 亚洲av成人精品一区久久| 欧美最黄视频在线播放免费| 免费看光身美女| 日韩精品青青久久久久久| 久久精品影院6| 美女黄网站色视频| 老汉色av国产亚洲站长工具| 高清日韩中文字幕在线| 国产91精品成人一区二区三区| 精品人妻1区二区| 亚洲欧美日韩无卡精品| 深夜精品福利| 国产高清有码在线观看视频| 亚洲国产色片| 亚洲男人的天堂狠狠| 麻豆一二三区av精品| 色老头精品视频在线观看| 老熟妇仑乱视频hdxx| 亚洲乱码一区二区免费版| 在线免费观看的www视频| 亚洲欧美一区二区三区黑人| www.www免费av| 亚洲avbb在线观看| 91在线观看av| 全区人妻精品视频| 亚洲国产精品sss在线观看| 国产精品一区二区三区四区久久| 老鸭窝网址在线观看| 最新在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 岛国在线观看网站| 成人国产一区最新在线观看| 国产精品久久久久久精品电影| 亚洲性夜色夜夜综合| 免费观看的影片在线观看| 亚洲第一欧美日韩一区二区三区| 免费在线观看日本一区| 国产精品1区2区在线观看.| 国产精品久久久久久亚洲av鲁大| 国产私拍福利视频在线观看| 亚洲av第一区精品v没综合| 久久午夜亚洲精品久久| 亚洲av不卡在线观看| 久久久久免费精品人妻一区二区| 999久久久精品免费观看国产| 最新中文字幕久久久久| 变态另类丝袜制服| 国模一区二区三区四区视频| 精品午夜福利视频在线观看一区| 欧美一级a爱片免费观看看| 婷婷精品国产亚洲av| 亚洲美女黄片视频| 99在线人妻在线中文字幕| 精品久久久久久久末码| 无人区码免费观看不卡| 日韩欧美国产在线观看| 国产探花极品一区二区| 免费在线观看影片大全网站| 草草在线视频免费看| 日日干狠狠操夜夜爽| aaaaa片日本免费| 真人做人爱边吃奶动态| 成年女人看的毛片在线观看| 他把我摸到了高潮在线观看| 制服丝袜大香蕉在线| 日本撒尿小便嘘嘘汇集6| 国产精品野战在线观看| av在线蜜桃| 久久精品影院6| 男插女下体视频免费在线播放| e午夜精品久久久久久久| 中文字幕久久专区| 麻豆成人av在线观看| 中文字幕人成人乱码亚洲影| 久久久久久国产a免费观看| 十八禁人妻一区二区| 首页视频小说图片口味搜索| 日韩大尺度精品在线看网址| av天堂中文字幕网| 啦啦啦免费观看视频1| 乱人视频在线观看| 无人区码免费观看不卡| 国内精品久久久久精免费| 国产精品亚洲一级av第二区| 国产精品久久久久久人妻精品电影| bbb黄色大片| 久久人妻av系列| 在线观看66精品国产| 日韩欧美精品v在线| 午夜福利免费观看在线| 久久久国产成人免费| 天堂网av新在线| 一级黄色大片毛片| 欧美在线黄色| 欧美一区二区亚洲| 无人区码免费观看不卡| av黄色大香蕉| 欧美激情久久久久久爽电影| 亚洲美女黄片视频| 日韩欧美免费精品| 少妇人妻精品综合一区二区 | 波多野结衣高清无吗| 日本精品一区二区三区蜜桃| 高清毛片免费观看视频网站| 日韩欧美在线二视频| 天天一区二区日本电影三级| 最好的美女福利视频网| 午夜福利免费观看在线| 国产成人aa在线观看| 国产色婷婷99| 国产一级毛片七仙女欲春2| 18禁国产床啪视频网站| 超碰av人人做人人爽久久 | 男女那种视频在线观看| 在线观看66精品国产| avwww免费| 色精品久久人妻99蜜桃| 亚洲av不卡在线观看| 欧美一级a爱片免费观看看| 精品国产亚洲在线| 国产成年人精品一区二区| 一本久久中文字幕| 国产在线精品亚洲第一网站| 亚洲人成网站在线播放欧美日韩| 99久久精品热视频| 99久久无色码亚洲精品果冻| 久久精品国产99精品国产亚洲性色| 又黄又粗又硬又大视频| 久久久久亚洲av毛片大全| 久久香蕉国产精品| 操出白浆在线播放| 亚洲中文日韩欧美视频| 人妻夜夜爽99麻豆av| 成年女人永久免费观看视频| 亚洲人与动物交配视频| 看黄色毛片网站| 日韩精品青青久久久久久| 亚洲无线在线观看| 别揉我奶头~嗯~啊~动态视频| 黑人欧美特级aaaaaa片| 亚洲电影在线观看av| 色吧在线观看| 日本一二三区视频观看| 男女那种视频在线观看| 午夜两性在线视频| 国产精品,欧美在线| www.www免费av| 夜夜躁狠狠躁天天躁| 1000部很黄的大片| 欧美性猛交黑人性爽| 精品欧美国产一区二区三| 脱女人内裤的视频| 在线观看av片永久免费下载| 亚洲国产欧美人成| 国内精品久久久久久久电影| 在线观看舔阴道视频| 99国产极品粉嫩在线观看| 国产一区二区三区在线臀色熟女| 日韩有码中文字幕| 成人精品一区二区免费| 99国产极品粉嫩在线观看| 欧美一区二区亚洲| 女人被狂操c到高潮| 欧美+日韩+精品| eeuss影院久久| 久久久久久久精品吃奶| 欧美日韩亚洲国产一区二区在线观看| 婷婷亚洲欧美| 国内揄拍国产精品人妻在线| 性色avwww在线观看| 男女那种视频在线观看| 久久久久久人人人人人| 露出奶头的视频| 国产97色在线日韩免费| 色老头精品视频在线观看| 久久精品国产自在天天线| 久久亚洲真实| 国产综合懂色| 国产视频一区二区在线看| 亚洲精品色激情综合| 久9热在线精品视频| 中文字幕高清在线视频| 日韩免费av在线播放| 乱人视频在线观看| 欧美丝袜亚洲另类 | 亚洲av日韩精品久久久久久密| 亚洲第一欧美日韩一区二区三区| 手机成人av网站| 免费av毛片视频| 1024手机看黄色片| 亚洲国产欧美网| 成人三级黄色视频| 欧美在线一区亚洲| 欧美日韩亚洲国产一区二区在线观看| 免费无遮挡裸体视频| 日韩欧美一区二区三区在线观看| 最近在线观看免费完整版| 免费一级毛片在线播放高清视频| 神马国产精品三级电影在线观看| 听说在线观看完整版免费高清| xxxwww97欧美| 成人高潮视频无遮挡免费网站| 搡老岳熟女国产| 亚洲精品影视一区二区三区av| 精品久久久久久久久久久久久| 免费在线观看影片大全网站| 亚洲av电影在线进入| 色av中文字幕| 日本成人三级电影网站| 中文字幕人妻丝袜一区二区| 亚洲美女视频黄频| 欧美一区二区亚洲| 亚洲久久久久久中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 88av欧美| 精品一区二区三区视频在线 | 一个人免费在线观看的高清视频| 在线免费观看不下载黄p国产 | 99久久无色码亚洲精品果冻| 国产色爽女视频免费观看| 久久久久久人人人人人| 嫩草影院精品99| 成人亚洲精品av一区二区| 精品福利观看| 日韩欧美三级三区| 国产中年淑女户外野战色| 欧美日韩瑟瑟在线播放| 精品国产美女av久久久久小说| www.www免费av| 波多野结衣巨乳人妻| 97人妻精品一区二区三区麻豆| 亚洲五月天丁香| 欧美一级a爱片免费观看看| 男人舔奶头视频| 性色av乱码一区二区三区2| 中文在线观看免费www的网站| 国产一级毛片七仙女欲春2| 亚洲无线在线观看| 亚洲av电影不卡..在线观看| 国产视频一区二区在线看| 19禁男女啪啪无遮挡网站| 色视频www国产| 一级黄色大片毛片| 国产精品,欧美在线| aaaaa片日本免费| 亚洲色图av天堂| 十八禁网站免费在线| 成年免费大片在线观看| 黄色成人免费大全| 亚洲国产欧美人成| 国产v大片淫在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 麻豆国产97在线/欧美| 午夜福利在线观看吧| 日本三级黄在线观看| 在线十欧美十亚洲十日本专区| 色综合亚洲欧美另类图片| 女警被强在线播放| www日本在线高清视频| 美女黄网站色视频| 少妇的丰满在线观看| 欧美三级亚洲精品| 深爱激情五月婷婷| 亚洲天堂国产精品一区在线| 亚洲 国产 在线| 99国产精品一区二区蜜桃av| 久久久久久久亚洲中文字幕 | 男人舔奶头视频| 亚洲黑人精品在线| 午夜精品一区二区三区免费看| 色在线成人网| 嫁个100分男人电影在线观看| 搡老熟女国产l中国老女人| 国产成年人精品一区二区| 夜夜夜夜夜久久久久| 一级黄色大片毛片| 天天添夜夜摸| 午夜久久久久精精品| 人人妻,人人澡人人爽秒播| 亚洲aⅴ乱码一区二区在线播放| 日韩大尺度精品在线看网址| 亚洲成人中文字幕在线播放| 嫁个100分男人电影在线观看| 欧美+日韩+精品| 亚洲av免费在线观看| 欧美黄色淫秽网站| 夜夜看夜夜爽夜夜摸| 偷拍熟女少妇极品色| 观看免费一级毛片| 亚洲精品日韩av片在线观看 | 可以在线观看毛片的网站| 日韩 欧美 亚洲 中文字幕| 欧美日韩福利视频一区二区| 亚洲国产精品合色在线| 少妇的逼好多水| 精品午夜福利视频在线观看一区| ponron亚洲| 免费观看人在逋| 麻豆一二三区av精品| 国产主播在线观看一区二区| 51国产日韩欧美| 国产精品国产高清国产av| or卡值多少钱| 国产精品久久电影中文字幕| 日本五十路高清| 午夜福利免费观看在线| 日本三级黄在线观看| 嫩草影视91久久| 嫁个100分男人电影在线观看| 国产伦在线观看视频一区| 国产高清视频在线观看网站| 国产成人欧美在线观看| 国产99白浆流出| 99久久无色码亚洲精品果冻| 午夜日韩欧美国产| 婷婷六月久久综合丁香| 在线看三级毛片| 午夜福利在线观看免费完整高清在 | 国产极品精品免费视频能看的| 天美传媒精品一区二区| 脱女人内裤的视频| 一进一出好大好爽视频| 性欧美人与动物交配| 国产爱豆传媒在线观看| 俺也久久电影网| 国产精品亚洲美女久久久| 麻豆国产97在线/欧美| 最近最新中文字幕大全电影3| 国产精品香港三级国产av潘金莲| 色视频www国产| 久久精品人妻少妇| 欧美成狂野欧美在线观看| 久久精品国产亚洲av涩爱 | 免费av不卡在线播放| 少妇的逼好多水| 精品久久久久久久久久久久久| 国产午夜精品久久久久久一区二区三区 | 亚洲成人中文字幕在线播放| 18禁黄网站禁片午夜丰满| 国产极品精品免费视频能看的| av天堂中文字幕网| 国产高清三级在线| 男女做爰动态图高潮gif福利片| 51国产日韩欧美| 欧美日韩黄片免| 久久亚洲真实| 亚洲最大成人中文| 久久久国产精品麻豆| 两个人看的免费小视频| 他把我摸到了高潮在线观看| 成熟少妇高潮喷水视频| 国产三级在线视频| 男人和女人高潮做爰伦理| 波野结衣二区三区在线 | 日本黄色片子视频| 一进一出抽搐gif免费好疼| 午夜福利在线观看吧| 欧美不卡视频在线免费观看| 少妇裸体淫交视频免费看高清| 色综合婷婷激情| 有码 亚洲区| 两个人看的免费小视频| 色综合亚洲欧美另类图片| 亚洲av电影不卡..在线观看| 午夜影院日韩av| 日本撒尿小便嘘嘘汇集6| 日韩欧美 国产精品| 久久九九热精品免费| 小说图片视频综合网站| 啪啪无遮挡十八禁网站| 内射极品少妇av片p| 在线观看美女被高潮喷水网站 | 欧美色视频一区免费| 久久国产精品影院| 国产精品日韩av在线免费观看| 首页视频小说图片口味搜索| 国产一级毛片七仙女欲春2| 俺也久久电影网| 久久国产精品影院| 一个人免费在线观看电影| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人久久性| 亚洲五月婷婷丁香| 日日摸夜夜添夜夜添小说| 亚洲精品日韩av片在线观看 | 香蕉丝袜av| 午夜视频国产福利| 国产精品久久久人人做人人爽| 欧美黄色淫秽网站| 人人妻人人澡欧美一区二区| 男人的好看免费观看在线视频| 久久香蕉精品热| 成人无遮挡网站| 一个人看的www免费观看视频| 国产精品久久久久久人妻精品电影| 一个人看视频在线观看www免费 | 国产精品野战在线观看| 色吧在线观看| 丰满人妻熟妇乱又伦精品不卡| 在线观看一区二区三区| 特大巨黑吊av在线直播| eeuss影院久久| 亚洲不卡免费看| 欧美bdsm另类| 色综合欧美亚洲国产小说| 日韩成人在线观看一区二区三区| av片东京热男人的天堂| 村上凉子中文字幕在线| 少妇人妻精品综合一区二区 | 在线观看午夜福利视频| 国产私拍福利视频在线观看| 成人亚洲精品av一区二区| 18禁黄网站禁片免费观看直播| 国产单亲对白刺激| 国产野战对白在线观看| 免费看日本二区| 97人妻精品一区二区三区麻豆| 中出人妻视频一区二区| 色噜噜av男人的天堂激情| 狂野欧美白嫩少妇大欣赏| av福利片在线观看| 国产精品久久久人人做人人爽| 免费观看人在逋| 亚洲avbb在线观看| 又黄又爽又免费观看的视频| av国产免费在线观看| 色精品久久人妻99蜜桃| 法律面前人人平等表现在哪些方面| 老熟妇乱子伦视频在线观看| 草草在线视频免费看| 在线免费观看不下载黄p国产 | 午夜精品在线福利| 亚洲 欧美 日韩 在线 免费| 亚洲av第一区精品v没综合| 免费av观看视频| 99国产综合亚洲精品| 亚洲无线观看免费| 久久久久久大精品| 波多野结衣巨乳人妻| 欧美一区二区国产精品久久精品| 国产伦精品一区二区三区四那| 成年女人永久免费观看视频| 日本三级黄在线观看| 中文字幕人成人乱码亚洲影| 欧美3d第一页| 在线视频色国产色| xxxwww97欧美| 最好的美女福利视频网| 久久久久性生活片| 欧美又色又爽又黄视频| 老司机午夜十八禁免费视频| 午夜影院日韩av| 免费在线观看成人毛片| 日韩欧美 国产精品| 国产美女午夜福利| 久久久久久九九精品二区国产| 日韩av在线大香蕉| 日日摸夜夜添夜夜添小说| 九九热线精品视视频播放| 麻豆一二三区av精品| 午夜福利免费观看在线| av专区在线播放| 成人特级av手机在线观看| 少妇的逼水好多| 色综合站精品国产| 久久久久久久久中文| 乱人视频在线观看| 内射极品少妇av片p| 免费人成视频x8x8入口观看| 欧美精品啪啪一区二区三区| 中国美女看黄片| 黄色成人免费大全| 禁无遮挡网站| 国产高潮美女av| 久99久视频精品免费| 国产精品久久久久久亚洲av鲁大| 狂野欧美激情性xxxx| 欧美在线黄色| 日本在线视频免费播放| 亚洲国产欧洲综合997久久,| 国产一区在线观看成人免费| 99久久精品国产亚洲精品| 丁香欧美五月| 国产成人啪精品午夜网站| 精品国产美女av久久久久小说| 啦啦啦观看免费观看视频高清| 亚洲精品美女久久久久99蜜臀| 99久久精品一区二区三区| 亚洲无线在线观看| 色综合婷婷激情| 国产精品自产拍在线观看55亚洲| 天堂影院成人在线观看| 亚洲熟妇中文字幕五十中出| 中文字幕高清在线视频| 午夜福利免费观看在线| 欧美精品啪啪一区二区三区| 男女视频在线观看网站免费| 欧美最新免费一区二区三区 | 亚洲av美国av| 波多野结衣巨乳人妻|