• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized Sheffer-stroke Based Analytic Modal Axiomatic System for GL*

    2016-10-09 07:30:28FangfangTang
    邏輯學(xué)研究 2016年2期

    Fangfang Tang

    Institution of Marxism Research,Chinese Academy of Social Sciences tangff@cass.org.cn

    ?

    Generalized Sheffer-stroke Based Analytic Modal Axiomatic System for GL*

    Fangfang Tang

    Institution of Marxism Research,Chinese Academy of Social Sciences tangff@cass.org.cn

    Abstract.Based on Generalized Sheffer-stroke,this paper proposes modal tableau and analytic axiomatic system for the modal logic GL.Generalized Sheffer-stroke is a kind of n-ary operator which provides a new notation for formulas of modal logic,and makes it convenient to express the analytic axiomatic systems.The rules of modal tableau based on the new operator are different from the ones based on ordinary connectives and modality.The analytic axiomatic system has simple proof procedure.The correspondence between modal tableau and analytic axiomatic system makes it easy to show the completeness of the analytic axiomatic system for GL in terms of the results of modal tableau GL.The proof of Completeness Theorem of modal system for GL is special,for the method of canonical model can not be used directly,and then we use a method to filter some possible worlds and get a finite model.

    1 Introduction and Overview

    An axiomatic system is called analytic,if the premises and consequences of its primitive inferential rules share propositional variables.Analytic axiomatic system (AAS)of propositional logic was originally proposed by Anderson and Belnap([1])and named AB by Hunter([3]).The system AB is special,for its inferential rules based on its primitive connectives,negation and disjunction,and although it has no the Rule of Modus Ponens(sometimes also called the Rule of Detachment:if A and ?A∨B are theorems,so is B),it has simple proof procedure.Qingyu Zhang proposed an analytic axiomatic system of propositional logic named Z,which modified the system AB with a kind of new n-ary operator(Generalized NAND)as the only primitive connective and showed that the proofs of Completeness Theorem,Independence Theorem and Interpolation Theorem are simple.([6,7])We try to extend analytic axiomatic systems from propositional logic to modal logic.We have defined a new n-ary operator named Generalized Sheffer-stroke,which is a hybrid of Generalized NAND and modality,and propose analytic axiomatic systems for some normal modal logics K,T,D,K4,D4,S4([5])and S5([4]),which are a variant of modal tableaus of Fitting and hypersequents of Arnon Avron.([2])

    This paper will propose modal tableau and the AAS for the modal logic GL basedonGeneralizedSheffer-stroke,andshowthattheAAS forGLhassimpleproof procedure.Since Generalized Sheffer-stroke is a new operator,on which the rules of modal tableau system GL based are different from the ones based on ordinary connectives and modality.([2])The proof of Completeness Theorem of system GL isspecial,forthemethodofcanonicalmodelcannotbeuseddirectly.ModallogicGL is a proper extension of modal logic K(or K4),containing the L?b formula□(□p→p)→ □p.The formulas of GL are valid on two classes of frames,the class of transitive and upwards well-found frames,noted GLω,and the class of transitive,irreflexive and finite frames,noted GLf.Because a frame of GLfis finite,and the canonical model is infinite,the canonical model of GL is not a model on a frame of GLf.Then we use a method of filter to pick out some possible worlds,and get a finite model.

    2 Basic Syntax and Semantics

    The formal language of modal logic defined in this paper,named bracket modal language,has two kinds of primitive symbols:

    1.Propositional variables:p0,p1,...

    2.Modal bracket:[;].

    Definition 1Modal bracket[;]is a n-ary operator and n is not fixed.

    The following is the definition of well-formed formulas of the basic modal language:

    where p ranges over elements of the set of propositional variables P,and n≥0,m≥0.

    By this definition,when n,m=0,we get a modal formula[;].When m=0,modal formulas have the form[A0...An?1;]and let them be simplified as[A0... An?1].When n=0,modal formulas have the form[;B0...Bm?1]and let them be simplifiedas〈B0...Bm?1〉.LetΓ(or?)refertoasequenceofformulasA0...An?1,and then formulas[A0...An?1;B0...Bm?1]could be abbreviated as[Γ;?].

    Definition 2For any formulas,the sum of left brackets occur in it is equal to the sumoftherightbracketsoccur,whichisusedtodecidethedegreeoftheformula.The degree of a formula A,noted Dg(A),is inductively defined by the following rules

    Definition3Awell-formedformulaB whichoccursasaconsecutivepartofawellformed formula A,will be known as a subformula of A,which is noted B∈sub(A). Thedirectsubformulasofformula[A0...An?1;B0...Bm?1]areA0,...,An?1,B0,...,Bm?1.The set of subformulas of a formula A,noted sub(A),is inductively defined by the following rules:

    A Kripke frame is a pair(W,R),where W(set of worlds)is a non-empty set and R(accessibility)is a binary relation,i.e.R?W×W.If F=(W,R)is a Kripke frame,then M=(W,R,V)is a Kripke model on the frame F,where V(valuation)is a map from the set of propositional variables P to the power set of the set W.

    Definition 4(Truth Condition)Suppose M=(W,R,V)is a Kripke model,and w∈W.

    1.M,w|=p iff w∈V(p);

    2.M,w|=[A0...An?1;B0...Bm?1]iff there is i<n,s.t.M,w?Ai,or there are j<m and w?∈W,s.t.wRw?and M,w??Bj.

    Bydefinitionabove,GeneralizedSheffer-strokecandefineconnectivesandmodalities:

    All ordinary formulas of basic modal language could be translated to formulas of bracket modal language.For example,the L?b formula□(□p→p)→□p could be translated to a formula of bracket modal language step by step:

    And by the definition above,[[〈[[〈p〉][p]]〉][[〈p〉]]]is semantically equivalent with[[〈[[〈p〉][p]]〉]〈p〉],and then semantically equivalent with[〈p〉;[[〈p〉][p]]].

    3 Modal Tableau System for GL

    This section will propose a modal tableau system for modal logic GL.Analytic axiomatic system for GL in the next section is based on modal tableau for GL. Tableaus usually are analytic,i.e.all formulas occurring in a proof share the same propositionalvariablesoccurringintheformulasbeingproved,whichmakesthefinding of proofs a simple thing.Tableaus take the form of trees with the root at the top and branching downward.Formulas added at the end of a branch of a tableau are all be obtained by applying a tableau rule on formulas occurring in the same branch.

    BasedonthenewoperatorGeneralizedSheffer-stroke,modaltableausaredifferentfromonesbasedonordinaryconnectivesandmodality.ThemodaltableauforGL includes three tableau rules:[;]-rule(figure 1),[[;]]-rule(figure 2)and〈〉-GL rule (table 1).The〈〉-GL rule is destructive:any branch S which includes formulas with the form〈A0...An?1〉is replaced with a new branch S#∪{[〈A0...An?1〉],[A0... An?1]},where the definition of S#for GL follows such that for a Kripke model M=(W,R,V),for any w,w?∈W,if M,w|=S and wRw?,then M,w?|=S#.

    Definition 5S#={[[A0...An?1]],[〈A0...An?1〉]|[〈A0...An?1〉]∈S}.

    By the definition above,we have some facts:

    1.If S1?S2,then S#1?S#2.

    2.S#?S##.

    Figure 1:[;]-rule

    Figure 2:[[;]]-rule

    Table 1:〈〉-GL rule

    Figure 3:A Proof in tableau system of GL

    Theorem 1Suppose M=(W,R,V)is a Kripke model,S is a set of formulas,w?∈W is a possible world accessible from w.We have:

    1.If M,w|=S,then M,w?|={[[A0...An?1]]|[〈A0...An?1〉]∈S}.

    2.If R is transitive,then

    3.If M is a Kripke model of GL,then if M,w|=S,then M,w?|=S#.

    Proof1.By truth condition.

    2.Given any w1∈W,s.t.w?Rw1.Because R is transitive,wRw1.

    Suppose M,w|=S.Given[〈A0...An?1〉]∈S,we have

    M,w|=[〈A0...An?1〉].Then M,w1|=[[A0...An?1]]by(1).

    Hence,M,w?|=[〈A0...An?1〉].

    3.By the definition of S#,from(1)and(2).

    A GL-tableau proof of the L?b formula[[〈[[〈p〉][p]]〉]〈p〉]is shown in figure 3,where formula 2 and formula 3 are added to the branch by[[;]]-rule from formula 1.Since formula 3 has the form〈A0...An?1〉and n=1,the〈〉-GL rule could be applied on it.Then the branch is replaced with a new branch including formulas 4,5,6 and 7.Then 8 is added to the new branch by[[;]]-rule from 7.By applying[;]-rule on 8,two branches grow,at the end of which formulas 9 and 10 are added respectively,and then both of the branches are closed.

    Theorem 2Suppose T is a GLω-satisfiable tableau,and T′is a tableau which is obtained by applying a tableau rule once on the tableau T,then T′is also GLωsatisfiable.

    ProofSuppose T is a GLω-satisfiable tableau,then there is a branch θ in T is GLωsatisfiable.Let a GL-tableau rule is applied on this branch.It will show that each of GL-tableau rules preserve GLω-satisfiable.

    ·The[;]-rule case.Suppose the set of all formulas in the branch θ is S∪{[A0... An?1;B0...Bm?1]}.Then[;]-rulecouldbeappliedonthisbranch,fromwhichn+ 1newbranchesgrow,notedθi,where0≤i<n+1.Inthenewbranches,thesetofall formulas in a new branch θi<nis S∪{[A0...An?1;B0...Bm?1],[Ai]},and the set ofallformulasinnewbranchθnisS∪{[A0...An?1;B0...Bm?1],〈B0...Bm?1〉}. Because θ is GLω-satisfiable,there is a GL-model M=(W,R,V)and a possible world w∈W,s.t.M,w|=S∪{[A0...An?1;B0...Bm?1]}.

    Because M,w|=[A0...An?1;B0...Bm?1],by truth condition,there is 0≤i<n,s.t.M,w|=[Ai]or M,w|=〈B0...Bm?1〉.

    Then,there is i<n,s.t.M,w|=S∪{[A0...An?1;B0...Bm?1],[Ai]}or M,w|= S∪{[A0...An?1;B0...Bm?1],〈B0...Bm?1〉}.

    ·The[[;]]-rule case.By truth condition,similarly.

    ·The〈〉-GL rule case.If a GLω-satisfiable branch θ of tableau T includes a formula 〈A0...An?1〉,and the set of all formulas in the branch θ is noted S,then〈〉-GL rule may be applied on this branch,which is then replaced with a new branch θ′.The set of all formulas in θ′is S#∪{[〈A0...An?1〉],[A0...An?1]}.We need to prove that if there is a GLω-model M=(W,R,V)and a world w∈W,such that M,w|=S and M,w|=〈A0...An?1〉,then there is v∈W,such that M,v|=S#,and

    SupposethereisaGLωmodelM=(W,R,V)andaworldw1∈W,s.t.M,w1|=S andM,w1|=〈A0...An?1〉,andanyv∈W,M,v?S#∪{[〈A0...An?1〉],[A0...An?1]}

    Because M,w1|=〈A0...An?1〉,by the definition of〈〉,we have:

    there is w2∈W,w1Rw2and M,w2|=[A0...An?1].

    Because M,w1|=S,w1Rw2and R is transitive,we have M,w2|=S#.Because M,w2?S#∪{[〈A0...An?1〉],[A0...An?1]},we have M,w2?[〈A0...An?1〉]. Hence M,w2|=〈A0...An?1〉.Therefore M,w2|=S#∪{〈A0...An?1〉,[A0... An?1]}.Because M,w2|=〈A0...An?1〉,by truth condition,we have:

    there is w3∈W,w2Rw3and M,w3|=[A0...An?1].Since M,w2|=S#,w2Rw3and R is transitive,M,w3|=S##.By the definition of S#for GL,S#?S##.Hence,M,w3|=S#.Therefore M,w3|=S#∪{〈A0...An?1〉,[A0...An?1]}.Similarly,there is w4,s.t.w3Rw4,and M,w4|= S#∪{〈A0...An?1〉,[A0...An?1]}.Then,there is an infinite chain

    ButGLω-modelsareallupwardswell-found.Contradition.Therefore,ifS∪{〈A0... An?1〉}is GLω-satisfiable,then S#∪{[〈A0...An?1〉],[A0...An?1]}is also GLωsatisfiable.

    Theorem 3(Soundness)If formula A has a GL-tableau proof,then A is valid on all of the GL-models(frames).

    ProofSupposeAisnotvalidonalloftheGL-models(frames),thenthereisamodel M=(W,R,V)based on a frame of GLωand a world w∈W,such that M,w?A. Then{[A]}is GLω-satisfiable.For any formula A,the GL-tableau proof of A is a tree growing from the root{[A]}.Since{[A]}is GLω-satisfiable,by the theorem above,tableaus constructed from{[A]}are all GLω-satisfiable.A GLω-satisfiable tableau is not closed.Therefore,formula A has no GL-tableau proof.

    Theorem 4(Completeness)If a formula Z is valid on all models based on GL-frames,then Z has a GL-tableau proof.

    ProofLet Z is a modal formula which has no GL-tableau proof.Define Sub(Z)= {A,[A]|A is a subformula of Z}.Sub(Z)is a finite set.A set of formulas is called GL-consistent,if there is no close GL-tableau for any finite subset of its subformulas.For any Sub(Z),its GL-consistent subset S could be extended to a maximally GL-consistent set by Lindenbaum construction.

    Define Wz={w|w is a maximally GL-consistent set which is extended from a GL-consistent subset of Sub(Z)}.For any w1,w2∈Wz,if w#1?w2,then let w1R0w2.For any w1,w2∈Wz,if w1R0w2and not w2R0w1,then let w1RZw2.Finally,if p∈w,then let w∈Vz(p).Then a model Mz=(Wz,Rz,Vz)is constructed. Clearly,Wzis finite.Rzis irreflexive by its definition.It is easy to prove that Rzis transitive,by the definition of R0and Rzand by the facts about w#.Therefore,Mzis a model based on a frame of GLf(a GLf-model).

    Now we prove the fact:for any w∈Wz,for any formula A∈Sub(Z),

    Induction on the degree of formula Z,namely Dg(Z):

    1.Suppose Dg(Z)=0,i.e.Z is p.Sub(Z)=Sub(p)={p,[p]}.

    If p∈w,by the definition of Vz,we have w∈Vz(p),then Mz,w|=p.

    If[p]∈w,since w is maximally GL-consistent,p/∈w.So w/∈Vz(p).Then Mz,w?p.Then Mz,w|=[p].

    2.Suppose Dg(Z)=n(n≥0),i.e.Z has the form[A0...An?1;B0...Bm?1],and

    If[A0...An?1;B0...Bm?1]∈w,thenby[;]-ruleandthemaximalGL-consistency of w,there is i<n,[Ai]∈w or〈B0...Bm?1〉∈w.

    If there is i<n,[Ai]∈w.By inductive hypothesis,we have Mz,w|=[Ai].

    If〈B0...Bm?1〉∈w,thenw#∪{[〈B0...Bm?1〉],[B0...Bm?1]}isGL-consistent,by〈〉-GL rule.Let w?is a maximally GL-consistent set extended from w#∪{[〈B0 ...Bm?1〉],[B0...Bm?1]},then w?∈W,w#? w?.By the definition of R0,wR0w?.Since[〈B0...Bm?1〉]∈w?,bydefinitionofw#,wehave[〈B0...Bm?1〉]∈w?#.Since〈B0...Bm?1〉∈w,and w is GL-consistent,we have[〈B0...Bm?1〉]/∈w.Hence not w?#? w,by definition of R0,not w?R0w.Then wRzw?.Since [B0...Bm?1]∈w?,by[;]-rule,there is j<m,w?∪{[Bj]}is GL-consistent. Then[Bj]∈w?.Hence by inductive hypothesis,Mz,w?|=[Bj].Therefore,

    If[[A0...An?1;B0...Bm?1]]∈w,then by[[;]]-rule,we have

    w∪{A0,...,An?1,[〈B0...Bm?1〉]}is GL-consistent.

    By the maximal GL-consistency of w,for any i<n,

    Ai∈w and[〈B0...Bm?1〉]∈w.

    Since Ai∈w,by inductive hypothesis,Mz,w|=Ai.

    Since[〈B0...Bm?1〉]∈w,[[B0...Bm?1]]∈w#by definition of w#.Let w?∈W,s.t.wRzw?.By definition of Rz,we have w#?w?.Then[[B0...Bm?1]]∈w?.

    By[[;]]-rule,for any j<m,we have Bj∈w?by the maximal GL-consistency of w?.By inductive hypothesis,Mz,w?|=Bj.Therefore,for any i<n,Mz,w|=Ai,and for any w?∈W,if wRzw?,then for any j<m,Mz,w?|=Bj.Hence,

    Since Z has no GL-tableau proof,then there is no closed GL-tableau of{[Z]},i.e.{[Z]}is GL-consistent.Because[Z]∈Sub(Z),{[Z]}is a GL-consistent subset of Sub(Z),which could be extended to a maximally GL-consistent set w∈Wz,[Z]∈w.Then Mz,w|=[Z],and then we have Mz,w?Z.Therefore,Z is not

    valid on all GLf-models.

    Therefore,Z is not valid on all models based on GL-frames.

    4 Analytic Axiomatic System for Modal Logic GL

    Based on the new notation,analytic axiomatic system AAS for modal logic GL couldbeconstructed.TheaxiomsoftheAAS forGLhavetwokindsofforms,where Γ or?,a sequence of modal formulas,could be an empty sequence:

    1.Axiom 1:[ΓA[A]?]

    2.Axiom 2:[Γ[;]?]

    The inferential rules of AAS for GL include the classical inferential rules,[;]-rule and[[;]]-rule(in table 2),and modal inferential rule,G-rule(in table 3).For the modal inferential rule G-rule(in table 3),Γ?is defined indirectly:

    Firstly,|Γ|is the set{Ai|Aiis a formula occurring in the sequence Γ}.

    Secondly,|Γ|?={[[A0...An?1]],[〈A0...An?1〉]|[〈A0...An?1〉]∈|Γ|}.

    Finally,Γ?is a sequence of all formulas in|Γ|?.

    Table 2:Classical Inferential Rules

    Table 3:Modal Inferential Rule:G-rule

    From the primitive inferential rules above(in table 2 and table 3),some useful derived rules follow(in table 4).The rule I and rule II are the special forms of the[;]-rule and the[[;]]-rule(in table 2)respectively.

    For any analytic axiomatic system L,the L-proof of is a sequence of formulas A0,...,An?1,where Aiis either an axiom of L or derived by a inferential rule of Lfrom a formula Aj(j<i).And formula A is L-provable,if there is an L-proof in which the final formula is[[A]](semantic equivalent to A).

    Table 4:Derived Rules

    An example of a GL-proof of the L?b formula[〈p〉;[[〈p〉][p]]]follows(table 5).

    Table 5:a GL-Proof Example

    The process of finding the proof is from bottom to top.Firstly,for the L?b formula A=[〈p〉;[[〈p〉][p]]],there are direct subformulas at the right side of the semicolon,then we could get[[A]]by the inferential[[;]]-rule.Hence,we could obtain formula 6 from formula 5.Secondly,because formula 5,[[〈[[〈p〉][p]]〉]〈p〉],has a direct subformula〈p〉,only G-rule could be applied.So we must get formula 4 before wegetformula5.Thirdly,wefoundthat[[[[〈p〉][p]]]]isadirectsubformulaofformula 4,which could be obtained by applying Derived Rule II,then we must get formula 3 before we get formula 4.Then,for formula[[〈p〉][p]]is a direct subformula of 3,the Derived Rule I could be applied,so the provability of formula 3 could be reduced to the provability of formula 1 and formula 2,which are both axioms.

    Now we prove the completeness theorem of system GL.

    Theorem 5(Completeness)Let A is a modal formula.

    1.If A is GL-provable,then A is valid on all models based on GL-frames.

    2.If A is valid on all models based on GL-frames,then A is GL-provable.

    Proof

    1.Axioms of GL are tautologies and so are valid on every model based on a frame of GLω.

    It's easy to prove that the classical inferential rules of analytic axiomatic system GL preserve GLω-validity.Only consider G-rule here.

    Suppose[Γ?[A0...An?1][〈A0...An?1〉]??]is valid on any model based on a frame of GLω(GLω-model),and there is a GLω-model M=(W,R,V),and w1∈W,s.t.

    By truth condition,M,w1|=|Γ|∪|?|∪{〈A0...An?1〉}.Then,there is an infinite chain:

    But GLω-models are all upwards well-found.Contradiction.Hence the G-rule preserve GLω-validity.

    2.Suppose formula A is valid on every model based on a frame of GLf.By the completeness theorem of the tableau system of GL,A has a GL-tableau proof,i.e. there is a closed GL-tableau of{[A]}.We define a mapping from a finite set of modal formulas to a modal formula

    Claim:Let S is a finite set of formulas.For S,if there is a closed GL-tableau of S,then Ssis GL-provable.

    Suppose there is a closed GL-tableau of S,using the tableau rules of GL for at least d times.Induction on d.

    If d=0,then some modal formula A and its negation[A]are both in the set S,or[;]∈S.Then Ssis a axiom of analytic axiomatic system of GL.Therefore,Ssis GL-provable.

    If d=k>0.Here only consider the tableau〈〉-rule case.

    Suppose〈A0...An?1〉∈S,and the closed tableau use the〈〉-rule of GL firstly,and using the tableau rules of GL for d times.Then there is a closed tableau of S?∪{[〈A0...An?1〉],[A0...An?1]},using the tableau rules less than d times.By inductive hypothesis,[Γ?[A0...,An?1][〈A0...An?1〉]??]is GL-provable,where |Γ?|∪|??|=S?.By the G-rule,[Γ〈A0...An?1〉?]is GL-provable,and|Γ|∪|?|= S.Therefore,Ssis GL-provable.

    5 Conclusion

    Generalized Sheffer-stroke is a kind of n-ary operator which provides a new notation for formulas of modal logic.The formulas which have the form[A0...An?1;]are formulas of propositional logic.The formula[A0...An?1;B0...Bm?1]is semantically equivalent to?A0∨...∨?An?1∨◇(?B0∨...∨?Bm?1).The new notation is convenient to express the analytic axiomatic systems(AAS),and the nary operator saves primitive connectives and parentheses,that is,the modal bracket[;]could define all propositional connectives such as negative and disjunctive,and the new notation needs no parentheses.

    Based on the Generalized Sheffer-stroke,I propose destructive modal tableau system and analytic axiomatic system for the modal logic GL in this paper.Since the Generalized Sheffer-stroke is a new operator,on which the rules of modal tableau GL based are different from the ones based on ordinary connectives and modality. The correspondence between modal tableau and analytic axiomatic system makes it easy to show the completeness of the analytic axiomatic system GL in terms of the results of modal tableau GL.The proof of Completeness Theorem of AAS for GL is special.Since the formulas of GL are valid in the class of frames GLf,on which the models are finite,and the canonical model is infinite,the method of canonical model can not be used directly in the proof.But we could use a method to filter some possible worlds,and get a finite model.

    In this paper,it is showed that AAS for modal logic GL based on Generalized Sheffer-stroke is concise.In such a system,a proof of a formula of modal logic GL is easy to be found,and based on the results of modal tableau,the proof the Completeness Theorem is simple.And the AAS could be extended from the system AB and Z for propositional logic to some modal logics,including the modal logic GL.

    References

    [1] A.R.AndersonandN.D.Belnap,1959,“Asimpletreatmentoftruthfunctions”,Journal of Symbolic Logic,24(4):301-302.

    [2] P.Blackburn,2007,Handbook of Modal Logic,Amsterdam:Elsevier.

    [3] G.Hunter,1971,Metalogic:An Introduction to the Metatheory of Standard First Order Logic,Berkeley:University of California Press.

    [4] F.Tang,2009,“Generalized Sheffer-stroke based analytical modal axiomatic systems”,Studies in Logic,2(3):37-49.

    [5] F.Tang,2009,“Modalaxiomaticsystemsbasedondestructivemodaltableaus”,Journal of Hunan University of Science and Technology(Social Science Edition),12(1):41-48.

    [6] Q.Zhang,1997,“An axiomatic system of classical propositional logic”,Philosophical Researches,8:51-58.

    [7] Q.Zhang,1999,“The normal form and interpolation theorem of system Z”,Philosophical Researches,12:74-78.

    2015-11-12

    *I would like to thank Professor QingYu Zhang for his efforts helping me to work on analytic axiomatic systems.

    全区人妻精品视频| 日韩欧美一区视频在线观看 | 成人无遮挡网站| 一级毛片我不卡| 欧美xxxx黑人xx丫x性爽| 国产精品久久久久成人av| 五月天丁香电影| 99热这里只有是精品在线观看| 特大巨黑吊av在线直播| 新久久久久国产一级毛片| 成人美女网站在线观看视频| av视频免费观看在线观看| 欧美高清成人免费视频www| www.av在线官网国产| 你懂的网址亚洲精品在线观看| 久久热精品热| 亚洲欧美日韩无卡精品| 日日撸夜夜添| 狂野欧美激情性xxxx在线观看| 高清不卡的av网站| 老司机影院成人| 国产视频首页在线观看| 成年美女黄网站色视频大全免费 | 在线免费观看不下载黄p国产| 深夜a级毛片| 午夜福利在线在线| 在线看a的网站| 99精国产麻豆久久婷婷| 欧美最新免费一区二区三区| 黄色配什么色好看| 精品视频人人做人人爽| 亚洲成人一二三区av| 91在线精品国自产拍蜜月| 国产黄色视频一区二区在线观看| 久久久久性生活片| 国产精品国产三级国产专区5o| 国产爽快片一区二区三区| 国产色婷婷99| 欧美日本视频| 夫妻性生交免费视频一级片| 日韩一本色道免费dvd| 男女下面进入的视频免费午夜| 中文精品一卡2卡3卡4更新| 成人特级av手机在线观看| av在线播放精品| 国产亚洲精品久久久com| 久久久久性生活片| 国产久久久一区二区三区| 老女人水多毛片| 久久久久视频综合| 美女xxoo啪啪120秒动态图| 亚洲成人手机| 日韩 亚洲 欧美在线| 成年av动漫网址| h视频一区二区三区| 黄色配什么色好看| 国产爱豆传媒在线观看| 深夜a级毛片| 亚洲自偷自拍三级| 久久久久久久精品精品| 亚洲国产精品成人久久小说| 欧美成人精品欧美一级黄| 男人添女人高潮全过程视频| 日韩,欧美,国产一区二区三区| 欧美精品一区二区大全| 欧美日韩精品成人综合77777| 欧美精品国产亚洲| 18禁在线播放成人免费| 99久久精品国产国产毛片| 国产精品久久久久久精品古装| 久久久久久久亚洲中文字幕| 伊人久久精品亚洲午夜| 午夜福利网站1000一区二区三区| 精品国产乱码久久久久久小说| 亚洲内射少妇av| 午夜福利视频精品| 狂野欧美激情性bbbbbb| 高清在线视频一区二区三区| 中国美白少妇内射xxxbb| 久久久久久久久久人人人人人人| 精品人妻偷拍中文字幕| 一区二区av电影网| 偷拍熟女少妇极品色| 美女cb高潮喷水在线观看| 免费看av在线观看网站| 夜夜爽夜夜爽视频| 99国产精品免费福利视频| 三级国产精品欧美在线观看| 久久国产乱子免费精品| 精品久久国产蜜桃| 97热精品久久久久久| 国产精品一区www在线观看| 欧美高清性xxxxhd video| 亚洲精品一二三| 高清午夜精品一区二区三区| 亚洲熟女精品中文字幕| 欧美国产精品一级二级三级 | 国产高清有码在线观看视频| 人妻少妇偷人精品九色| 日日啪夜夜爽| 欧美激情国产日韩精品一区| 22中文网久久字幕| 久久久久久伊人网av| 久久人人爽av亚洲精品天堂 | 中文天堂在线官网| 久久久成人免费电影| 偷拍熟女少妇极品色| 简卡轻食公司| 99久久人妻综合| 妹子高潮喷水视频| 亚洲av国产av综合av卡| 久久久久国产网址| 亚洲精品一区蜜桃| 久久精品国产亚洲av天美| freevideosex欧美| 天天躁夜夜躁狠狠久久av| 91久久精品电影网| 久久久午夜欧美精品| 日韩av不卡免费在线播放| 欧美亚洲 丝袜 人妻 在线| 欧美xxⅹ黑人| 人妻 亚洲 视频| tube8黄色片| 黄色欧美视频在线观看| 亚洲av不卡在线观看| 日本黄色片子视频| 黄色视频在线播放观看不卡| 97热精品久久久久久| av国产精品久久久久影院| 久久97久久精品| 亚洲国产欧美人成| 国产欧美另类精品又又久久亚洲欧美| 亚州av有码| 国产精品秋霞免费鲁丝片| 五月伊人婷婷丁香| 国内少妇人妻偷人精品xxx网站| 男人舔奶头视频| 日本黄大片高清| 亚洲精品中文字幕在线视频 | 久久精品国产亚洲av涩爱| 80岁老熟妇乱子伦牲交| 久久久久久久久久久丰满| 乱码一卡2卡4卡精品| 99久久人妻综合| 国产一级毛片在线| 夜夜骑夜夜射夜夜干| 少妇被粗大猛烈的视频| 亚洲真实伦在线观看| 大片电影免费在线观看免费| 一区二区三区免费毛片| 纯流量卡能插随身wifi吗| 蜜桃久久精品国产亚洲av| 少妇的逼水好多| 国产成人精品久久久久久| 久久99热这里只有精品18| 久久 成人 亚洲| 亚洲精品中文字幕在线视频 | 麻豆精品久久久久久蜜桃| 国产免费又黄又爽又色| 黄色日韩在线| 少妇被粗大猛烈的视频| 日本爱情动作片www.在线观看| 麻豆乱淫一区二区| 久久精品熟女亚洲av麻豆精品| 成年美女黄网站色视频大全免费 | 亚洲色图av天堂| 免费观看a级毛片全部| 免费大片18禁| 亚洲欧美日韩另类电影网站 | 黄片无遮挡物在线观看| 成人漫画全彩无遮挡| 国产美女午夜福利| 久久这里有精品视频免费| 两个人的视频大全免费| 成人黄色视频免费在线看| 中国国产av一级| 韩国av在线不卡| 国产在线男女| 欧美精品一区二区大全| 一级片'在线观看视频| 中文字幕精品免费在线观看视频 | av网站免费在线观看视频| 一级片'在线观看视频| 女性被躁到高潮视频| 观看免费一级毛片| 成人亚洲欧美一区二区av| 少妇人妻 视频| 国产免费视频播放在线视频| 中文字幕免费在线视频6| 国产在线视频一区二区| 欧美日韩精品成人综合77777| 国产黄片视频在线免费观看| 亚洲成人一二三区av| 久久精品国产亚洲av涩爱| 亚洲精品日韩av片在线观看| 青青草视频在线视频观看| 少妇人妻精品综合一区二区| 成年女人在线观看亚洲视频| 中文天堂在线官网| 久久久精品94久久精品| 日韩 亚洲 欧美在线| 久久毛片免费看一区二区三区| 亚洲av国产av综合av卡| 舔av片在线| 性色av一级| 人人妻人人看人人澡| 男女边摸边吃奶| 99热网站在线观看| 又黄又爽又刺激的免费视频.| 特大巨黑吊av在线直播| 亚洲成人一二三区av| 久久久久精品性色| 2018国产大陆天天弄谢| 黄色怎么调成土黄色| 韩国av在线不卡| 亚洲欧美成人精品一区二区| av播播在线观看一区| 精品人妻偷拍中文字幕| 久久99精品国语久久久| 一级a做视频免费观看| 免费观看无遮挡的男女| 精品人妻熟女av久视频| 妹子高潮喷水视频| 中国美白少妇内射xxxbb| 日韩av在线免费看完整版不卡| 国产成人精品婷婷| 18禁在线无遮挡免费观看视频| 久久久色成人| 黄色欧美视频在线观看| 亚洲高清免费不卡视频| 亚洲人与动物交配视频| 亚洲精华国产精华液的使用体验| 国产极品天堂在线| 美女xxoo啪啪120秒动态图| 亚洲精品中文字幕在线视频 | 如何舔出高潮| 亚洲av二区三区四区| 色婷婷av一区二区三区视频| 精品久久久精品久久久| 成人美女网站在线观看视频| 男的添女的下面高潮视频| 免费久久久久久久精品成人欧美视频 | av播播在线观看一区| 啦啦啦中文免费视频观看日本| 欧美高清性xxxxhd video| 99视频精品全部免费 在线| xxx大片免费视频| 中文乱码字字幕精品一区二区三区| 日韩欧美一区视频在线观看 | 我的女老师完整版在线观看| 中文字幕精品免费在线观看视频 | 国产真实伦视频高清在线观看| 在线观看美女被高潮喷水网站| 女的被弄到高潮叫床怎么办| 国产男女超爽视频在线观看| 国产男人的电影天堂91| a 毛片基地| 亚洲,欧美,日韩| av在线观看视频网站免费| 欧美老熟妇乱子伦牲交| 精品国产露脸久久av麻豆| 日韩三级伦理在线观看| 亚洲av福利一区| 久久久久人妻精品一区果冻| 国产成人免费无遮挡视频| 妹子高潮喷水视频| 在线播放无遮挡| 久久久亚洲精品成人影院| 一级a做视频免费观看| 日本av手机在线免费观看| 国产精品99久久99久久久不卡 | 国产亚洲午夜精品一区二区久久| 五月伊人婷婷丁香| 国产精品三级大全| 美女福利国产在线 | 51国产日韩欧美| 久久久久久久大尺度免费视频| 精品一区二区三卡| 99国产精品免费福利视频| 国产爱豆传媒在线观看| 欧美bdsm另类| 欧美少妇被猛烈插入视频| 久久午夜福利片| 啦啦啦啦在线视频资源| 老女人水多毛片| 亚洲色图av天堂| 这个男人来自地球电影免费观看 | 亚洲av中文av极速乱| 最近最新中文字幕免费大全7| 青青草视频在线视频观看| 最近2019中文字幕mv第一页| 国产成人精品一,二区| 欧美人与善性xxx| 日韩一本色道免费dvd| 又粗又硬又长又爽又黄的视频| 精品久久久精品久久久| 欧美性感艳星| 黄色视频在线播放观看不卡| 伊人久久精品亚洲午夜| 成人国产av品久久久| 亚洲av免费高清在线观看| 少妇的逼水好多| 在线观看一区二区三区| 亚洲av免费高清在线观看| 亚洲国产精品999| 国产成人91sexporn| 久久久久精品性色| 日韩,欧美,国产一区二区三区| 最近最新中文字幕免费大全7| 午夜激情福利司机影院| 亚洲国产日韩一区二区| 日韩三级伦理在线观看| 99热这里只有是精品在线观看| 欧美最新免费一区二区三区| 亚洲欧洲日产国产| 中文字幕制服av| 国产免费一级a男人的天堂| 久久综合国产亚洲精品| 国产在线一区二区三区精| 在线观看av片永久免费下载| 日本爱情动作片www.在线观看| 一个人免费看片子| 日日啪夜夜撸| 能在线免费看毛片的网站| 国产又色又爽无遮挡免| 亚洲怡红院男人天堂| 久久久久国产精品人妻一区二区| 久久婷婷青草| 久热久热在线精品观看| 91狼人影院| 日本免费在线观看一区| 99re6热这里在线精品视频| 亚洲精品,欧美精品| 草草在线视频免费看| 亚洲国产精品成人久久小说| 内射极品少妇av片p| 一级毛片 在线播放| 最近中文字幕高清免费大全6| 国产69精品久久久久777片| 亚洲国产日韩一区二区| 少妇被粗大猛烈的视频| 校园人妻丝袜中文字幕| 99热这里只有精品一区| 夫妻性生交免费视频一级片| 国产成人免费观看mmmm| 啦啦啦中文免费视频观看日本| 舔av片在线| av线在线观看网站| 亚洲精品亚洲一区二区| 成人无遮挡网站| 91狼人影院| 日韩中文字幕视频在线看片 | 黑丝袜美女国产一区| 我要看日韩黄色一级片| 一个人免费看片子| 精品人妻视频免费看| 在线 av 中文字幕| 日韩,欧美,国产一区二区三区| 2018国产大陆天天弄谢| 内地一区二区视频在线| 天天躁夜夜躁狠狠久久av| 毛片一级片免费看久久久久| 少妇的逼水好多| 最近最新中文字幕免费大全7| 超碰97精品在线观看| 永久网站在线| 久久 成人 亚洲| 80岁老熟妇乱子伦牲交| 一级毛片 在线播放| 国产一区亚洲一区在线观看| 啦啦啦中文免费视频观看日本| 色视频www国产| 欧美最新免费一区二区三区| 我的女老师完整版在线观看| 亚洲精品乱码久久久久久按摩| 国产成人精品久久久久久| 男女下面进入的视频免费午夜| 天天躁日日操中文字幕| 久久久久久人妻| 久久女婷五月综合色啪小说| 午夜福利影视在线免费观看| 老熟女久久久| 一个人看的www免费观看视频| 少妇丰满av| 五月天丁香电影| 80岁老熟妇乱子伦牲交| 亚洲成人中文字幕在线播放| 91在线精品国自产拍蜜月| 极品教师在线视频| 成人免费观看视频高清| 色吧在线观看| 亚洲精品456在线播放app| 在线观看免费视频网站a站| 午夜日本视频在线| 少妇裸体淫交视频免费看高清| 干丝袜人妻中文字幕| 亚洲成色77777| 精品人妻视频免费看| 久久久精品94久久精品| 久热久热在线精品观看| 高清午夜精品一区二区三区| 国产精品人妻久久久影院| 国产精品熟女久久久久浪| 日本黄色片子视频| 日韩国内少妇激情av| av播播在线观看一区| 日本一二三区视频观看| 国产深夜福利视频在线观看| 国产高清不卡午夜福利| 国产 一区精品| 午夜老司机福利剧场| h视频一区二区三区| 欧美日韩精品成人综合77777| 性色avwww在线观看| 99热这里只有是精品50| 久久精品人妻少妇| 亚洲精品国产色婷婷电影| 久久久久性生活片| 看免费成人av毛片| 国产男人的电影天堂91| 99热6这里只有精品| 欧美精品亚洲一区二区| 一个人看的www免费观看视频| 少妇裸体淫交视频免费看高清| 成人午夜精彩视频在线观看| 亚洲自偷自拍三级| 伊人久久国产一区二区| 久久精品久久久久久噜噜老黄| 欧美3d第一页| 日韩av在线免费看完整版不卡| 国产精品久久久久成人av| 国产精品一区二区在线观看99| 日本爱情动作片www.在线观看| 欧美高清成人免费视频www| 国产精品国产三级国产av玫瑰| 欧美成人午夜免费资源| av国产免费在线观看| 亚洲精品成人av观看孕妇| 日韩欧美 国产精品| av不卡在线播放| 欧美区成人在线视频| 久久 成人 亚洲| 伊人久久精品亚洲午夜| 国产精品精品国产色婷婷| h视频一区二区三区| 黑人高潮一二区| xxx大片免费视频| 人妻少妇偷人精品九色| 国产精品99久久久久久久久| 男人爽女人下面视频在线观看| 国产毛片在线视频| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久久久久丰满| 日本午夜av视频| 热re99久久精品国产66热6| 国产黄色免费在线视频| 精品一区二区三区视频在线| 久久人妻熟女aⅴ| 一级毛片我不卡| av天堂中文字幕网| 91精品国产国语对白视频| 99re6热这里在线精品视频| 青春草亚洲视频在线观看| 国产午夜精品一二区理论片| 有码 亚洲区| 久久精品熟女亚洲av麻豆精品| 五月玫瑰六月丁香| 少妇精品久久久久久久| 十分钟在线观看高清视频www | 好男人视频免费观看在线| 女人久久www免费人成看片| 亚洲国产精品一区三区| 另类亚洲欧美激情| 十八禁网站网址无遮挡 | 性高湖久久久久久久久免费观看| 夫妻午夜视频| 国产精品一二三区在线看| 丝袜脚勾引网站| 亚洲国产精品999| av一本久久久久| 国产精品久久久久久精品古装| 亚洲欧美一区二区三区黑人 | 午夜精品国产一区二区电影| 久久女婷五月综合色啪小说| 国产精品欧美亚洲77777| 欧美极品一区二区三区四区| 伦理电影大哥的女人| 中国三级夫妇交换| 女的被弄到高潮叫床怎么办| av.在线天堂| 久久久久人妻精品一区果冻| 日日啪夜夜爽| 国产av码专区亚洲av| 黑人猛操日本美女一级片| 久久久久久久国产电影| 大话2 男鬼变身卡| 天堂8中文在线网| 成人综合一区亚洲| 国产一区二区在线观看日韩| 亚洲欧美一区二区三区国产| 少妇高潮的动态图| 国产精品欧美亚洲77777| 国产69精品久久久久777片| 国产白丝娇喘喷水9色精品| 亚洲欧洲日产国产| 中文在线观看免费www的网站| 男人舔奶头视频| 久久久久久伊人网av| 我要看黄色一级片免费的| 精品国产一区二区三区久久久樱花 | 99精国产麻豆久久婷婷| 一级a做视频免费观看| 新久久久久国产一级毛片| 国产 一区精品| 麻豆精品久久久久久蜜桃| 高清黄色对白视频在线免费看 | 狂野欧美激情性xxxx在线观看| 99久久人妻综合| 免费观看a级毛片全部| 亚洲国产精品成人久久小说| 99精国产麻豆久久婷婷| 综合色丁香网| h视频一区二区三区| 亚州av有码| 成年av动漫网址| 26uuu在线亚洲综合色| 国产精品蜜桃在线观看| 亚洲av中文字字幕乱码综合| 蜜臀久久99精品久久宅男| a级毛色黄片| 亚洲天堂av无毛| 久久久久久久国产电影| 日本wwww免费看| 97在线人人人人妻| 99久久中文字幕三级久久日本| 在线观看一区二区三区激情| 麻豆国产97在线/欧美| 97超碰精品成人国产| 综合色丁香网| 三级经典国产精品| 18禁裸乳无遮挡免费网站照片| 寂寞人妻少妇视频99o| 51国产日韩欧美| 街头女战士在线观看网站| 中文字幕制服av| 日本vs欧美在线观看视频 | 蜜桃久久精品国产亚洲av| 七月丁香在线播放| 国产色婷婷99| 成人影院久久| 日本黄色日本黄色录像| 久久国产亚洲av麻豆专区| av福利片在线观看| 2021少妇久久久久久久久久久| 我的老师免费观看完整版| 久久99热这里只有精品18| 成年人午夜在线观看视频| 美女脱内裤让男人舔精品视频| 久久午夜福利片| 99热这里只有是精品50| 午夜福利网站1000一区二区三区| 日韩亚洲欧美综合| 久久久久久久久久人人人人人人| 啦啦啦中文免费视频观看日本| 日韩国内少妇激情av| 久久 成人 亚洲| 国产精品.久久久| 亚洲成人手机| 网址你懂的国产日韩在线| 91久久精品国产一区二区成人| 岛国毛片在线播放| 观看美女的网站| 少妇高潮的动态图| 好男人视频免费观看在线| 日本-黄色视频高清免费观看| 美女cb高潮喷水在线观看| 午夜福利在线观看免费完整高清在| videossex国产| 性高湖久久久久久久久免费观看| 免费观看无遮挡的男女| 色网站视频免费| 精品久久久精品久久久| 久久精品国产亚洲网站| 交换朋友夫妻互换小说| 青春草国产在线视频| 免费播放大片免费观看视频在线观看| 国产高清三级在线| 伦理电影免费视频| 欧美激情极品国产一区二区三区 | 国产无遮挡羞羞视频在线观看| 亚洲美女视频黄频| 男人添女人高潮全过程视频| 我要看日韩黄色一级片| 亚洲色图av天堂| 2021少妇久久久久久久久久久| 婷婷色麻豆天堂久久| 亚洲av不卡在线观看| 日韩三级伦理在线观看| 在线播放无遮挡| 18禁在线无遮挡免费观看视频| 永久免费av网站大全| 欧美3d第一页| 我的女老师完整版在线观看| 赤兔流量卡办理| 啦啦啦中文免费视频观看日本| 日本免费在线观看一区| 亚洲人与动物交配视频| 少妇被粗大猛烈的视频| 亚洲国产毛片av蜜桃av| 成人漫画全彩无遮挡| 国产欧美亚洲国产| 夜夜骑夜夜射夜夜干| 午夜日本视频在线| 大片电影免费在线观看免费| 久久久a久久爽久久v久久|