• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Short-range Radar Detection with(M,N)-Coprime Array Configurations

    2016-10-09 11:03:19WangLonggangLiLianlin
    雷達(dá)學(xué)報 2016年3期
    關(guān)鍵詞:互質(zhì)穿墻空域

    Wang Longgang Li Lianlin

    (School of Electronics Engineering and Computer Science,Peking University,Beijing 100871,China)

    Short-range Radar Detection with(M,N)-Coprime Array Configurations

    Wang LonggangLi Lianlin*

    (School of Electronics Engineering and Computer Science,Peking University,Beijing 100871,China)

    An(M,N)-coprime array comprises two well-organized subarrays:an M-element and an N-element.This sparse array configuration is capable of resolving a number of remote sources up to O(MN)solely with the use of an M+N-1 sensors,which allows the identification of more targets with fewer transceivers while maintaining high resolution.In this way,the coprime array theory can significantly help to simplify the configuration of traditional transceiver systems.However,to date,the coprime array approaches reported in the literature rely strongly on far-field approximation,which is associated with significant error when dealing with the problem of short-range radar detection because the probed objects are nearby the sensors.To solve this problem,we extend the theory of the standard coprime array to short-range detection,whereby the probed object is located NOT far away from the sensors(either the transmitter or receiver).We demonstrate that the(M,N)-coprime array configuration can retrieve the object spectrum over [-2τk0,2τk0] with a resolution of 4τk0/MN,where k0denotes the free space wavenumber and τ is a scenario-dependent factor.As a consequence,the(M,N)-coprime array allows for the resolution of O(MN)objects nearby sensors,with a spatial resolution of λ/4τ.We also examined the performance of the coprime array with respect to the through-wall-imaging problem.Finally,we verified the usefulness of the coprime array for short-range radar detection with a selected number of numerical experiments.

    Coprime array; Radar detection; Through-Wall-Imaging(TWI); Short-range

    Reference format:Wang Longgang and Li Lianlin.Short-range radar detection with(M,N)-coprime array configurations[J].Journal of Radars,2016,5(3):244-253.DOI:10.12000/JR16022.

    引用格式:王龍剛,李廉林.基于互質(zhì)陣列雷達(dá)技術(shù)的近距離目標(biāo)探測方法[J].雷達(dá)學(xué)報,2016,5(3):244-253.DOI:10.12000/JR16022.

    1 Introduction

    The coprime array is an attractive technique of sparse array construction,which has gained researchers' intensive attentions over the past several years in the Direction-Of-Arrival(DOA)estimation,the MIMO communication,and so on.The coprime array has been demonstrated to be able to achieve O(MN)degree-of-freedoms with only O(M+N)sensors[1,2].An(M,N)-coprime array consists of two Uniform Linear subArrays(ULA):one is of M elements having inter-element spacing Nλ/2,and the other is of N sensors having spacing Mλ/2,where M and N are chosen to be coprime,λ is operational wavelength.It is worthy of noting that the inter-element spacing of coprime array is much larger than the half-wavelength typically required in conventional array configuration.For this reason,the coprime array is rather attractive in the sense of reducing mutual coupling between antenna elements.Additionally,there are situations that such half-wavelength minimum spacing is infeasible or impractical,for instance,the physical size of antenna sensors,such as many parabola antenna,is probably large than half-wavelength.Most recently,several helpful extensions of the original coprime array developed in Refs.[1,2] have also been attempted,for instance,S.Qin et al.generalized the concept of coprime array with the use of two strategies:one is the compression of the inter-element of spacing of one constituting subarray,and the other is the displacement of two subarrays[3].As such,one can get the flexibility of trading-off between unique lags and consecutive lags for DOA estimation while keeping a larger minimum inter-element spacing as large as possible.Tan et al.incorporated more advanced algorithm of sparse reconstruction into coprime array technique together,which leads to important improved performances in the aspects of DOA estimation accuracy,resolution ability,and others[4,5].

    Fig.1 The illustrated map of far-field approximation

    For the purpose of short-range imaging,above far-field approximation cannot be satisfied since the distance between probed objects and antennas is usually smaller than 10λ,which brings significant error for locating the objects under investigation.To show this point,a numerical simulation is implemented and its corresponding result achieved by running the strategy of traditional coprime array is shown in Fig.2,where one near-field point target is located at(0,λ).

    Fig.2 The result achieved by using the standard coprime array developed in Ref.[1],where the probed object is a point target located at(0,λ)and λ=1 m.The x-axis corresponds to the azimuth angle ranging within(-π,π)rad,while y-axis denotesecho intensity

    The rest of this paper is organized as follows.A brief overview of standard co-prime array is made in Subsection 2.1,followed by presenting our methodology of coprime array for the problem of short-range radar detection in Subsection 2.2.Afterwards,the performance of proposed methodology for the TWI application is investigated in Subsection 2.3.Section 3 presents a selected number of numerical simulations to demonstrate the usefulness of proposed methodology.Finally,some conclusions are summarized in Section 4.

    2 Problem Statement and Proposed Methodology

    This section is devoted to present the operational principal of the(M,N)-coprime array for resolving the problem of short-range radar imaging.To proceed our discussion,the basic concepts of co-prime array is briefly overviewed for following comparison.

    2.1Basic properties of P.P.Vaidyanathan and P.Pal's coprime array[1]

    Following notations adopted in Ref.[1],the(M,N)-coprime array consists of a coprime pair of ULAs,where one is of M sensors with an interelement spacing of Nλ/2,whereas the other is of N elements with an inter-element spacing of Mλ/2.For the purpose of active coprime sensing,one of two constituting subarrays of(M,N)-coprime array configuration is used for the purpose of transmitting signal,and the other is for receiving signal.The transmitting array with M taps h(n)has a beam pattern(or called antenna pattern):

    where α=2πdsinθ/λ,and ω=πsinθ.Taking the inter-element spacing denoted by d to be d=Nλ/2,the resulting beam pattern becomes:

    Assuming that H(ω)is ideal low-pass,specifically,

    Introducing two sets of array-banks:

    Fig.3 Hk(Z)and Gl(Z)are shifted versions ofandin increment of 2π/MN,respectively.Here,M=4 and N=3 are considered[1]

    Note that above conclusion relies on the assumption of ideal low-pass filter,as demonstrated by Eqs.(3)and(4).However,this kind of filter is obviously infeasible in practice.To bypass this issue,a little bit more sensors are utilized[1].To characterized this issue mathematically,a scenario-dependent factor denoted by τ is introduced,in particular,

    where τ is decided by angle θ of target and antennas,which will be detailed below.

    To numerically demonstrate this argument,we conducted a set of simple simulations,where M=9 and N=7 are used.From Fig.4 we can notice that the bandwidth of constructed filter(denoted by red line)is greater than the ideal one,which implies that more sensors,correspondingly,τ=0.64 and 0.5,are required to achieve the desirable resolution.

    Fig.4 The blue curve stands for the ideal filter when M=9 and N=7.The red curve corresponds to the filter designed with τ=1(M=9 and N=7).In addition,the filters with τ=0.64(M=14 and N=11)and τ=0.5(M=18 and N=14)are denoted by the black and green curve,respectively

    2.2Short-range radar imaging using the(M,N)-coprime array

    In this subsection,we turn to the discussion of the performance of coprime array for shortrange detection.For the purpose of illustrating operational principle,we restrict the discussion within Two-Dimensional(2D)case where targets are assumed to be infinitely long and invariance along the y-axis.With reference to Fig.5,the coprime array configuration is set as follows:M transmitters and N receivers are uniformly distributed with the intervals of Nλ/4τ and Mλ/4τ,respectively,along the line z=0.The probed ob-ject falls into the investigation domain denoted by Dinv,and f means working frequency.

    Fig.5 The structure is demonstrated with the background medium being free space.θ is denoted as the angle of targets and antennas

    As pointed out previously,the theory of coprime array in literatures relies on the far-field assumption,as implied in Eq.(1).Apparently,such theory should be modified for the shortrange scenario.For this purpose,instead of Eq.(1),the beam pattern arising from an M-elements ULA can be formulated as:

    Similarly,the beam pattern of N-element receiving subarray can be formulated as:

    and corresponding receiver N-filter array-banks:

    where L denotes the view length on of sensors,and z is the vertical location of targets center.It can be deduced from Eq.(16)that the imaging resolution is proportional to the working wavelength and the distance between probed object and sensors.In addition,the resolution Δx is inverse proportional to the values of M and N,which really makes sense since the more sensors provide more independent measurements.

    2.3TWI application of coprime array

    This subsection investigates the performance of coprime array for TWI imaging.A simple TWI scenario is illustrated in Fig.6.M transmitters and N receivers are along the line z=znand uniformly distributed with the intervals of Nλ/4τ and Mλ/4τ,respectively.τ can be determined by performing the so-called stationary phase method[8].

    Similar to above,the radiation pattern arising from M-elements transmitting array reads:

    Fig.6 Regions I and III are free space in which the wavenumber is k1and is equal to the free-space wavenumber k0.Region II is the wall whose relative permittivity,and thickness are denoted as εband d,where the wavenumber is k2.The targets are located in the investigated region Dinvbeing parallel to x-axis at vertical range-z.f is the working frequency[8]

    Here,as opposed to Eq.(7),the Green's function takes the one for the three-layered medium sketech in Fig.6,in particular[7],

    Similarly,the beam pattern of N-element receiving array is:

    and the transmitting M-filter and receiving N-filter array-bank are respectively introduced as

    3 Numerical Results

    In order to demonstrate the usefulness of coprime array configuration for short-range radar detection,some numerical simulations achieved by performing the method described in Subsection 2.2 and Subsection 2.3 are provided in this section.

    3.1Results for free-space scenario

    Firstly,the imaging resolution of coprime array is investigated for different distance denoted by z between sensors and probed object.For this set of simulations,simulation parameters are set as follows:the working frequency is set to be 300 MHz,and the number of transmitter and receiver is M=9 and N=7 respectively.

    In comparison to that in Fig.7(a),we can immediately observe that the targets in Fig.7(b)can be identified more easily and clearly.the prediction made in Subsection 2.2 can be justified:the closer the object ranges from sensor,the better the achieveable resolution is while the detected area decreased.

    Fig.7 The simulation results when different z between sensors and probed objectis set.Each peak point corresponds to one target.The xaxis denotes the location of object along x-axis(in m)while y-axis for the normalized intensity of targets

    Secondly,we would like to investigate the effect of working frequency on imaging resolution,where simulation parameters are the same as those adopted above unless otherwise stated.For these two cases,the system parameters are set as follows:the number of transmitter and receiver are with same as above,but with inter-element space 0.3 m.Additionally,comparing Fig.8(a)with Fig.8(b),we can observe that the higher the operational frequency is,the better the achievable resolution is,and the smaller the detected area is.

    3.2Results for TWI scenario

    Some simulations have been done in flowing subsection for TWI scenario,which is regarded as an important application for our proposed method.Assuming the working frequency is 2.5 GHz.The number of transmitter and receiver are M=9 and N=7 respectively.The antennas are located at z=0.1 m.The permittivity and thickness of the wall are denoted as εr=9 and d=0.3 m.From simulation results of Fig.10,the conclusion predicted in previous section can be verified.

    Fig.8 simulation results when different work frequency f is set

    Fig.9 Demonstrates that the normalized SVD of A matrix when objects are set with different ranges z=1 m,5 m,10 m,20 m,50 m ,and 100 m

    Fig.10 The simulation results when different parameters are set for TWI scenario

    4 Conclusion

    Appendix:

    Firstly,we prove the completeness by showing that there is no holes in the achievable spectrum of object(see Fig.A-1).To that end,we would like to build more general notations involved in Subsection 2.2 as following:

    From Eq.(1)one can deduce into

    Fig.A-1 When N.m+q=0 and M.n+p=0,can cover [0,MN-1] and [-MN+1,0] shown in Fig.A1(a)and Fig.A1(b)respectively.So the(M,N)-coprime array can obtain all the information of spatial spectrum of objects inIt is demonstrated for M=4 and N=3

    References

    [1]Vaidyanathan P P and Pal P.Sparse sensing with co-prime samples and arrays[J].IEEE Transactions on Signal Processing,2011,59(2):573-586.

    [2]Vaidyanathan P P and Pal P.Theory of sparse coprime sensing in multiple dimensions[J].IEEE Transactions on Signal Processing,2011,59(8):3592-3608.

    [3]Qin S,Zhang Y D,and Amin M G.Generalized coprime array configurations for direction-of-arrival estimation[J].IEEE Transactions on Signal Processing,2015,63(6):1377-1390.

    [4]Tan Z,Eldar Y C,and Nehorai A.Direction of arrival estimation using co-prime arrays:a super resolution viewpoint[J].IEEE Transactions on Signal Processing,2014,62(21):5565-5576.

    [5]Tan Z and Nehorai A.Sparse direction of arrival estimation using co-prime arrays with off-grid targets[J].IEEE Signal Processing Letters,2014,21(1):26-29.

    [6]Wang L and Li L.Through-the-wall target localization and tracking using co-prime array[C].The 5th Asia-Pacific Conference on Synthetic Aperture Radar,Singapore,2015.

    [7]Chew W C.Waves and Fields in Inhomogeneous Media[M].Wiley-IEEE Press,1995:20-23.

    [8]Li L,Zhang W,and Li F.A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(1):423-431.

    Wang Longgang was born in 1988.He received his B.Eng degree in communication engineering from the Tianjin University.He is currently working toward the Ph.D.degree in Peking University.His research interest is highresolution microwave imaging methods.

    E-mail:longgang.wang@pku.edu.cn

    Li Lianlin was born in 1980.He received his Ph.D.degree from the Institute of Electronics,Chinese Academy of Sciences in 2006.He is currently a hundred talented program professor with Peking University.His research interests are super-resolution imaging,microwave imaging,sparse signal processing,and ultrawideband radar systems.

    10.12000/JR16022

    基于互質(zhì)陣列雷達(dá)技術(shù)的近距離目標(biāo)探測方法

    王龍剛李廉林

    (北京大學(xué)信息科學(xué)技術(shù)學(xué)院北京100871)

    一組(M,N)互質(zhì)陣列由兩組結(jié)構(gòu)化排列的子陣列構(gòu)成:一組包括M個天線單元,另一組包括N個天線單元?;ベ|(zhì)陣列稀疏天線僅需要M+N-1個收發(fā)天線單元就可實(shí)現(xiàn)對O(MN)個遠(yuǎn)距離目標(biāo)的識別。在相同分辨條件下,互質(zhì)陣列雷達(dá)技術(shù)可利用更少的收發(fā)單元來識別更多的雷達(dá)目標(biāo)。因此互質(zhì)陣列雷達(dá)技術(shù)能夠極大地降低傳統(tǒng)雷達(dá)收發(fā)系統(tǒng)的復(fù)雜度。但是,現(xiàn)有文獻(xiàn)中所討論的互質(zhì)陣列雷達(dá)技術(shù)均基于遠(yuǎn)場近似假設(shè),當(dāng)探測近距離目標(biāo)時,會由于目標(biāo)鄰近天線單元而產(chǎn)生嚴(yán)重的探測誤差。為了解決上述問題,該文將標(biāo)準(zhǔn)的互質(zhì)陣列雷達(dá)技術(shù)的適用范圍擴(kuò)展到用于解決近距離目標(biāo)探測。該文論證了(M,N)互質(zhì)陣列雷達(dá)技術(shù)能夠以4τk0/MN空域分辨率恢復(fù)[-2τk0,2τk0]空域范圍內(nèi)的目標(biāo)信息,其中k0表示自由空間波數(shù),τ是場景因子。由此可見(M,N)互質(zhì)陣列能夠以λ/4τ的方位向分辨率獲得O(MN)個近距離目標(biāo)方位向位置信息。該文進(jìn)一步論證了互質(zhì)陣列雷達(dá)技術(shù)在穿墻成像中的適用性。最后,該文提供了一組數(shù)值仿真實(shí)驗(yàn)結(jié)果,驗(yàn)證了互質(zhì)陣列雷達(dá)技術(shù)對于近距離目標(biāo)探測的有效性。

    互質(zhì)陣列;雷達(dá)探測;穿墻成像;近距離

    TN957.51

    A

    2095-283X(2016)03-0244-10

    Manuscript received Janurary 27,2016; Revised May 17,2016.Published online June 15,2016.Foundation Item:The National Natural Science Foundation of China(61471006).

    *Communication author:Li Lianlin.

    E-mail:lianlin.li@pku.edu.cn.

    猜你喜歡
    互質(zhì)穿墻空域
    基于互質(zhì)陣列的信號波達(dá)方向估計算法
    航空兵器(2023年2期)2023-06-25 03:04:39
    35kV穿墻套管絕緣擊穿分析與探討
    我國全空域防空體系精彩亮相珠海航展
    關(guān)于不定方程x2+y2+z2=2(xy+yz+xz)解及其性質(zhì)的研究
    基于貝葉斯估計的短時空域扇區(qū)交通流量預(yù)測
    淺談我國低空空域運(yùn)行管理現(xiàn)狀及發(fā)展
    基于能量空域調(diào)控的射頻加熱花生醬均勻性研究
    基于LTCC 的高集成度微波穿墻傳輸電路設(shè)計
    基于LTCC的高集成度微波穿墻傳輸電路設(shè)計
    充氣柜穿墻套管碎裂故障分析與處理
    亚洲一级一片aⅴ在线观看| 午夜日本视频在线| 婷婷色综合大香蕉| 看十八女毛片水多多多| 欧美+日韩+精品| 国产伦在线观看视频一区| 国产免费又黄又爽又色| 青春草视频在线免费观看| 麻豆乱淫一区二区| 亚洲av男天堂| 日日摸夜夜添夜夜添av毛片| 国产免费又黄又爽又色| 久久久久久久久久久丰满| 青春草国产在线视频| 亚洲四区av| 久久久久久久午夜电影| 亚洲美女视频黄频| 亚洲自拍偷在线| 国产亚洲5aaaaa淫片| 我的老师免费观看完整版| 高清午夜精品一区二区三区| 一个人看的www免费观看视频| 亚洲国产色片| 日本爱情动作片www.在线观看| 我要搜黄色片| 精品久久久久久久末码| 26uuu在线亚洲综合色| 久久久久久久久久久免费av| 欧美另类亚洲清纯唯美| 床上黄色一级片| 熟女电影av网| 高清在线视频一区二区三区 | 精品久久久久久电影网 | 免费搜索国产男女视频| 欧美一区二区亚洲| 天堂√8在线中文| 亚洲熟妇中文字幕五十中出| 久久久久久九九精品二区国产| 91久久精品电影网| 人体艺术视频欧美日本| 亚洲av二区三区四区| av黄色大香蕉| 如何舔出高潮| 视频中文字幕在线观看| 国产成人91sexporn| 日韩欧美 国产精品| 中文字幕亚洲精品专区| videossex国产| 九色成人免费人妻av| 26uuu在线亚洲综合色| 午夜福利高清视频| 国产精品.久久久| 美女被艹到高潮喷水动态| 韩国av在线不卡| 国产高清有码在线观看视频| 五月玫瑰六月丁香| 国产免费福利视频在线观看| 国产成人午夜福利电影在线观看| 久久人妻av系列| 国产色婷婷99| av黄色大香蕉| 天堂网av新在线| 日韩视频在线欧美| 日本一本二区三区精品| 亚洲图色成人| 乱码一卡2卡4卡精品| 国产色爽女视频免费观看| 国产精品永久免费网站| 狂野欧美白嫩少妇大欣赏| 天美传媒精品一区二区| 嫩草影院精品99| 一级毛片久久久久久久久女| 性插视频无遮挡在线免费观看| 69av精品久久久久久| 我要搜黄色片| 欧美性猛交黑人性爽| 国产精品三级大全| 欧美性猛交╳xxx乱大交人| 一夜夜www| 国产成人a∨麻豆精品| 97热精品久久久久久| 亚洲最大成人手机在线| 最近视频中文字幕2019在线8| 国产不卡一卡二| 亚洲怡红院男人天堂| 亚洲av.av天堂| 国产欧美另类精品又又久久亚洲欧美| 免费不卡的大黄色大毛片视频在线观看 | 男人的好看免费观看在线视频| 少妇被粗大猛烈的视频| 欧美区成人在线视频| 国产伦一二天堂av在线观看| 国产麻豆成人av免费视频| 国产亚洲最大av| 亚洲伊人久久精品综合 | 亚洲av中文av极速乱| 午夜福利网站1000一区二区三区| 特级一级黄色大片| 少妇高潮的动态图| av在线蜜桃| 国产一区二区三区av在线| 国产精品,欧美在线| 国国产精品蜜臀av免费| 少妇裸体淫交视频免费看高清| 91久久精品国产一区二区成人| 在线免费十八禁| 国产精品国产三级国产专区5o | 身体一侧抽搐| 亚洲激情五月婷婷啪啪| 26uuu在线亚洲综合色| 变态另类丝袜制服| 成人午夜高清在线视频| 中文乱码字字幕精品一区二区三区 | 伦理电影大哥的女人| 高清午夜精品一区二区三区| 欧美最新免费一区二区三区| 最近中文字幕2019免费版| 欧美最新免费一区二区三区| 可以在线观看毛片的网站| 亚洲人成网站高清观看| 别揉我奶头 嗯啊视频| 99热这里只有是精品在线观看| 99久久精品国产国产毛片| 91久久精品国产一区二区成人| 听说在线观看完整版免费高清| 久久精品影院6| 国产男人的电影天堂91| 国产精品,欧美在线| 国产高清视频在线观看网站| 少妇丰满av| av播播在线观看一区| 国产免费一级a男人的天堂| 国产精品一区二区性色av| 欧美最新免费一区二区三区| 精品不卡国产一区二区三区| av.在线天堂| 午夜福利高清视频| 亚洲精品乱码久久久久久按摩| 成人三级黄色视频| 精品久久久久久电影网 | 一卡2卡三卡四卡精品乱码亚洲| 国产又黄又爽又无遮挡在线| 18+在线观看网站| 亚洲成av人片在线播放无| 欧美潮喷喷水| 99久久精品一区二区三区| 国产成人freesex在线| 网址你懂的国产日韩在线| 免费观看在线日韩| av在线蜜桃| 日韩av不卡免费在线播放| 国产不卡一卡二| 国产av不卡久久| 成人午夜高清在线视频| 人妻少妇偷人精品九色| 女的被弄到高潮叫床怎么办| 久久久a久久爽久久v久久| 国产精品不卡视频一区二区| 人妻制服诱惑在线中文字幕| 大话2 男鬼变身卡| 只有这里有精品99| 日本wwww免费看| 亚洲18禁久久av| 日本免费a在线| 最后的刺客免费高清国语| 精品一区二区三区视频在线| 久久精品久久久久久久性| 女人十人毛片免费观看3o分钟| 男女视频在线观看网站免费| 天堂√8在线中文| 免费播放大片免费观看视频在线观看 | 老师上课跳d突然被开到最大视频| 亚洲欧美一区二区三区国产| 日韩一区二区三区影片| 午夜福利在线观看吧| 午夜精品在线福利| 桃色一区二区三区在线观看| 乱码一卡2卡4卡精品| 欧美高清成人免费视频www| 三级经典国产精品| 日本免费在线观看一区| 2021天堂中文幕一二区在线观| 日本-黄色视频高清免费观看| av在线亚洲专区| av天堂中文字幕网| 国产真实伦视频高清在线观看| 亚洲精品色激情综合| 免费观看性生交大片5| 能在线免费看毛片的网站| 亚洲人与动物交配视频| 日本三级黄在线观看| 乱码一卡2卡4卡精品| 日韩视频在线欧美| 高清视频免费观看一区二区 | 国产v大片淫在线免费观看| 国产精品蜜桃在线观看| 国产黄色视频一区二区在线观看 | 日本黄色视频三级网站网址| 国产精品综合久久久久久久免费| 日产精品乱码卡一卡2卡三| 少妇人妻一区二区三区视频| 男人舔女人下体高潮全视频| 菩萨蛮人人尽说江南好唐韦庄 | 青春草亚洲视频在线观看| 国产精品久久久久久精品电影| 亚洲av免费在线观看| 一级毛片电影观看 | 一区二区三区乱码不卡18| 一本久久精品| 99久久成人亚洲精品观看| 免费观看精品视频网站| 日本熟妇午夜| 久久国产乱子免费精品| 一个人免费在线观看电影| 熟女人妻精品中文字幕| 免费黄网站久久成人精品| 欧美日本视频| 久久久久久九九精品二区国产| 亚洲av免费在线观看| 99久久无色码亚洲精品果冻| 国产成人aa在线观看| 日本一本二区三区精品| 精品国产露脸久久av麻豆 | 精品无人区乱码1区二区| 成人二区视频| 可以在线观看毛片的网站| 人妻制服诱惑在线中文字幕| 在线观看av片永久免费下载| 亚洲av男天堂| 99九九线精品视频在线观看视频| 美女cb高潮喷水在线观看| 嘟嘟电影网在线观看| 国产精品不卡视频一区二区| 日韩欧美 国产精品| 亚洲一级一片aⅴ在线观看| 日日摸夜夜添夜夜爱| 建设人人有责人人尽责人人享有的 | 亚洲av成人精品一二三区| 我要看日韩黄色一级片| 成人无遮挡网站| 国产精品蜜桃在线观看| 尾随美女入室| 中文天堂在线官网| 久久国产乱子免费精品| or卡值多少钱| 综合色丁香网| 狂野欧美激情性xxxx在线观看| 淫秽高清视频在线观看| 深爱激情五月婷婷| 麻豆国产97在线/欧美| 日日摸夜夜添夜夜爱| 69人妻影院| 一区二区三区四区激情视频| 狠狠狠狠99中文字幕| 一级毛片久久久久久久久女| 好男人在线观看高清免费视频| 国产麻豆成人av免费视频| 亚洲在线观看片| 夫妻性生交免费视频一级片| 少妇丰满av| 天天躁日日操中文字幕| 中文字幕制服av| 国产伦理片在线播放av一区| 国产三级中文精品| 国产亚洲91精品色在线| 午夜免费激情av| 久久久久久久久久久丰满| 国产白丝娇喘喷水9色精品| 国产精品福利在线免费观看| 乱人视频在线观看| 成人av在线播放网站| 日本一本二区三区精品| 久久久久久久久久久免费av| 久久久午夜欧美精品| 国产成人91sexporn| 久久久久久久久大av| 久久99热这里只频精品6学生 | 久久精品夜色国产| 午夜福利成人在线免费观看| 美女被艹到高潮喷水动态| 国产精品1区2区在线观看.| 日产精品乱码卡一卡2卡三| 免费不卡的大黄色大毛片视频在线观看 | 夫妻性生交免费视频一级片| 男插女下体视频免费在线播放| 美女内射精品一级片tv| 国产黄色视频一区二区在线观看 | 久久99蜜桃精品久久| 亚州av有码| av在线播放精品| 国产黄色视频一区二区在线观看 | 午夜福利在线在线| 精品久久久久久电影网 | 亚洲国产精品国产精品| 搞女人的毛片| www日本黄色视频网| 丝袜美腿在线中文| 欧美另类亚洲清纯唯美| 岛国毛片在线播放| 男人舔女人下体高潮全视频| 一边摸一边抽搐一进一小说| 国产大屁股一区二区在线视频| 国内精品美女久久久久久| 五月玫瑰六月丁香| 亚洲人与动物交配视频| 小蜜桃在线观看免费完整版高清| 午夜日本视频在线| 日本av手机在线免费观看| 建设人人有责人人尽责人人享有的 | 国产成人精品久久久久久| 最新中文字幕久久久久| 久久99热这里只频精品6学生 | 日韩视频在线欧美| 天堂av国产一区二区熟女人妻| 久久久欧美国产精品| 亚洲精品成人久久久久久| 草草在线视频免费看| 久久精品夜夜夜夜夜久久蜜豆| 日韩强制内射视频| 免费搜索国产男女视频| 午夜福利成人在线免费观看| 不卡视频在线观看欧美| 男女下面进入的视频免费午夜| 69av精品久久久久久| 欧美另类亚洲清纯唯美| 日韩国内少妇激情av| 日本午夜av视频| 久久99热这里只频精品6学生 | 亚洲人成网站高清观看| 亚洲欧美精品自产自拍| 久久精品影院6| 国产片特级美女逼逼视频| 国产伦精品一区二区三区四那| 蜜臀久久99精品久久宅男| 一级毛片久久久久久久久女| 欧美激情在线99| 色尼玛亚洲综合影院| 中文字幕久久专区| 日本免费在线观看一区| 蜜臀久久99精品久久宅男| 国产高清视频在线观看网站| 国产精品精品国产色婷婷| 亚洲国产精品成人久久小说| 男人狂女人下面高潮的视频| 人人妻人人看人人澡| 99久久九九国产精品国产免费| 亚洲精品日韩av片在线观看| 国产成人福利小说| 久久精品夜色国产| 小蜜桃在线观看免费完整版高清| 亚洲av中文av极速乱| 一个人免费在线观看电影| 欧美另类亚洲清纯唯美| 国产一区有黄有色的免费视频 | 国产乱人偷精品视频| av福利片在线观看| 免费av毛片视频| 国语对白做爰xxxⅹ性视频网站| 国产一区有黄有色的免费视频 | videos熟女内射| 你懂的网址亚洲精品在线观看 | 午夜免费激情av| 日本黄色片子视频| 秋霞伦理黄片| 国产极品天堂在线| 国产精品国产三级国产av玫瑰| 校园人妻丝袜中文字幕| 99热全是精品| 国产午夜精品论理片| 男的添女的下面高潮视频| 99久久中文字幕三级久久日本| 色播亚洲综合网| 亚洲av电影不卡..在线观看| 久久久久久久久久成人| 日本色播在线视频| 搡老妇女老女人老熟妇| 亚洲一区高清亚洲精品| 欧美日韩国产亚洲二区| 欧美日韩在线观看h| 69人妻影院| 一卡2卡三卡四卡精品乱码亚洲| 久久鲁丝午夜福利片| 美女大奶头视频| 免费看美女性在线毛片视频| 欧美成人精品欧美一级黄| 日韩,欧美,国产一区二区三区 | 欧美成人a在线观看| 人妻系列 视频| 国产精品电影一区二区三区| 亚洲乱码一区二区免费版| 亚洲四区av| 国产精品乱码一区二三区的特点| 爱豆传媒免费全集在线观看| 在线免费观看不下载黄p国产| 欧美成人午夜免费资源| 成人毛片a级毛片在线播放| 男女国产视频网站| 男人和女人高潮做爰伦理| 美女被艹到高潮喷水动态| 亚洲欧美成人综合另类久久久 | 人体艺术视频欧美日本| 一夜夜www| 青春草视频在线免费观看| 久久精品久久久久久噜噜老黄 | 欧美最新免费一区二区三区| 床上黄色一级片| 国产精品久久久久久久久免| 三级男女做爰猛烈吃奶摸视频| 综合色av麻豆| av线在线观看网站| av.在线天堂| 中文字幕熟女人妻在线| 亚洲av免费高清在线观看| 成人午夜精彩视频在线观看| 少妇熟女aⅴ在线视频| 亚洲国产精品专区欧美| 国产美女午夜福利| 久久久久国产网址| 国产欧美另类精品又又久久亚洲欧美| 少妇熟女欧美另类| 在线观看66精品国产| 亚洲18禁久久av| 美女高潮的动态| 色网站视频免费| 亚洲欧美成人综合另类久久久 | 少妇熟女aⅴ在线视频| 免费av毛片视频| 青春草国产在线视频| 看十八女毛片水多多多| 麻豆国产97在线/欧美| 蜜桃亚洲精品一区二区三区| 精品熟女少妇av免费看| 日本av手机在线免费观看| 老师上课跳d突然被开到最大视频| 国产精品国产三级专区第一集| 两个人视频免费观看高清| 国产av一区在线观看免费| 蜜桃久久精品国产亚洲av| 日韩欧美 国产精品| 国产黄片视频在线免费观看| 精品人妻一区二区三区麻豆| 波多野结衣高清无吗| 亚洲国产精品成人综合色| 男女那种视频在线观看| 黄片无遮挡物在线观看| 成年免费大片在线观看| 成人美女网站在线观看视频| av播播在线观看一区| 免费大片18禁| 最近最新中文字幕大全电影3| 亚洲真实伦在线观看| 一二三四中文在线观看免费高清| 久久精品熟女亚洲av麻豆精品 | 国产成人精品一,二区| 永久免费av网站大全| 国产精品久久久久久av不卡| 成人美女网站在线观看视频| www日本黄色视频网| 水蜜桃什么品种好| 看十八女毛片水多多多| 久久久久久久久久黄片| 国产精品一二三区在线看| av福利片在线观看| 色网站视频免费| 国产一区二区亚洲精品在线观看| 99久国产av精品| 三级国产精品欧美在线观看| 青春草亚洲视频在线观看| 在线播放国产精品三级| 中文天堂在线官网| 精品免费久久久久久久清纯| 在线播放国产精品三级| 国内少妇人妻偷人精品xxx网站| 国产高清有码在线观看视频| 国产成人精品一,二区| 中文欧美无线码| 男插女下体视频免费在线播放| 欧美激情国产日韩精品一区| 免费电影在线观看免费观看| 久久99热6这里只有精品| 在线a可以看的网站| 亚洲最大成人av| 国产亚洲av片在线观看秒播厂 | 国产精品一区www在线观看| 亚洲无线观看免费| 亚洲伊人久久精品综合 | 国产 一区 欧美 日韩| 在线观看一区二区三区| 国产69精品久久久久777片| 91午夜精品亚洲一区二区三区| 日韩高清综合在线| 人妻制服诱惑在线中文字幕| 中国国产av一级| 国产精品野战在线观看| 亚洲国产欧洲综合997久久,| 最近最新中文字幕大全电影3| 久久精品夜夜夜夜夜久久蜜豆| 久久精品久久久久久久性| 我的老师免费观看完整版| 亚洲高清免费不卡视频| 岛国毛片在线播放| 亚洲av一区综合| 亚洲av中文字字幕乱码综合| 国产欧美另类精品又又久久亚洲欧美| 国产乱人偷精品视频| 免费播放大片免费观看视频在线观看 | 国产精品精品国产色婷婷| 国产大屁股一区二区在线视频| 日本与韩国留学比较| 在现免费观看毛片| 欧美日韩综合久久久久久| 欧美一区二区亚洲| 日韩欧美在线乱码| 高清av免费在线| 丝袜喷水一区| 搡女人真爽免费视频火全软件| 婷婷色av中文字幕| 亚洲真实伦在线观看| 国产精品熟女久久久久浪| 国产黄片美女视频| 国产黄色小视频在线观看| 中国美白少妇内射xxxbb| 亚洲综合色惰| 欧美成人免费av一区二区三区| 国产女主播在线喷水免费视频网站 | 国产不卡一卡二| 欧美丝袜亚洲另类| 国内少妇人妻偷人精品xxx网站| 久久国内精品自在自线图片| 欧美区成人在线视频| av卡一久久| 黄色一级大片看看| 最近中文字幕高清免费大全6| 国产午夜精品论理片| a级毛片免费高清观看在线播放| 一级毛片aaaaaa免费看小| av又黄又爽大尺度在线免费看 | 久久精品国产亚洲av涩爱| 亚洲av福利一区| 国产在线一区二区三区精 | 国产国拍精品亚洲av在线观看| 99热这里只有精品一区| 亚洲欧美精品专区久久| 国产精品美女特级片免费视频播放器| 国产精品国产高清国产av| 精品久久国产蜜桃| 可以在线观看毛片的网站| 午夜a级毛片| 99热6这里只有精品| 亚洲av中文av极速乱| 最后的刺客免费高清国语| 麻豆成人av视频| 亚洲av电影在线观看一区二区三区 | 99久久成人亚洲精品观看| 日本五十路高清| 日本欧美国产在线视频| 亚洲国产精品合色在线| 91久久精品国产一区二区三区| 国产色爽女视频免费观看| 搡女人真爽免费视频火全软件| 特大巨黑吊av在线直播| 久久精品人妻少妇| 人妻少妇偷人精品九色| 22中文网久久字幕| 一个人观看的视频www高清免费观看| 麻豆一二三区av精品| 99在线人妻在线中文字幕| 国产伦精品一区二区三区四那| 亚洲精品国产成人久久av| 少妇的逼水好多| 国产高清国产精品国产三级 | 高清视频免费观看一区二区 | 18禁在线播放成人免费| 中文资源天堂在线| 一级毛片久久久久久久久女| 国产伦一二天堂av在线观看| 超碰av人人做人人爽久久| 熟妇人妻久久中文字幕3abv| 视频中文字幕在线观看| 不卡视频在线观看欧美| 深爱激情五月婷婷| 亚洲性久久影院| 观看美女的网站| 亚洲av电影在线观看一区二区三区 | 婷婷六月久久综合丁香| 国产淫片久久久久久久久| 亚洲中文字幕一区二区三区有码在线看| 毛片女人毛片| ponron亚洲| 午夜激情欧美在线| ponron亚洲| 国产乱来视频区| 欧美又色又爽又黄视频| 成人二区视频| 久久精品国产自在天天线| av线在线观看网站| 精品人妻视频免费看| a级毛片免费高清观看在线播放| 18+在线观看网站| 18禁在线播放成人免费| 啦啦啦韩国在线观看视频| 国产亚洲91精品色在线| 中文字幕久久专区| 国产黄a三级三级三级人| 亚洲精华国产精华液的使用体验| 搡老妇女老女人老熟妇| 国产精品国产高清国产av| 天天躁日日操中文字幕| 精品国产露脸久久av麻豆 | or卡值多少钱| 亚洲欧美日韩东京热| 色播亚洲综合网| 九九在线视频观看精品| 国产精品熟女久久久久浪| 国产免费一级a男人的天堂|