劉煒,馮丙文,翁健
(暨南大學(xué)網(wǎng)絡(luò)空間安全學(xué)院,廣東 廣州 510632)
小型無(wú)人機(jī)安全研究綜述
劉煒,馮丙文,翁健
(暨南大學(xué)網(wǎng)絡(luò)空間安全學(xué)院,廣東 廣州 510632)
近年來(lái),隨著制造成本的降低和技術(shù)的發(fā)展,小型無(wú)人機(jī)正逐漸從軍用和高端商用走向大眾消費(fèi)級(jí)市場(chǎng),并引起了學(xué)界較為廣泛的關(guān)注。小型無(wú)人機(jī)在給人們生活帶來(lái)便利的同時(shí),也面臨日益嚴(yán)峻的安全問(wèn)題。從小型無(wú)人機(jī)面臨的安全威脅、利用小型無(wú)人機(jī)發(fā)起的攻擊以及無(wú)人機(jī)的認(rèn)證和溯源等方面總結(jié)和分析了國(guó)內(nèi)外無(wú)人機(jī)安全領(lǐng)域的研究現(xiàn)狀,并對(duì)小型無(wú)人機(jī)安全的未來(lái)發(fā)展趨勢(shì)進(jìn)行了展望。
小型無(wú)人機(jī);信息安全;安全威脅;隱私侵犯;認(rèn)證
隨著無(wú)人機(jī)行業(yè)爆炸式的發(fā)展,無(wú)人機(jī)頻繁地登上各大媒體的頭條,如大疆無(wú)人機(jī)被央視315晚會(huì)曝光存在安全漏洞[1]。在2015年的國(guó)際消費(fèi)類電子產(chǎn)品展覽會(huì)(CES,consumer electronics show)上,無(wú)人機(jī)被認(rèn)為是最吸引人眼球的展品。美國(guó)《航空與太空技術(shù)周刊》刊登的分析報(bào)告稱,自2014年起,在未來(lái)10年,世界無(wú)人機(jī)市場(chǎng)規(guī)模將達(dá)到673億美元。無(wú)人機(jī)在民事領(lǐng)域上的應(yīng)用也在近年來(lái)得到了迅速的發(fā)展,研究機(jī)構(gòu)EVTank發(fā)布的《2015年度民用無(wú)人機(jī)市場(chǎng)研究報(bào)告》顯示,2014年全球民用無(wú)人機(jī)銷量為37.8萬(wàn)架,到2020年全球無(wú)人機(jī)年銷售量預(yù)計(jì)將達(dá)到 433萬(wàn)架[3]。我國(guó)目前已經(jīng)有 300~400家民用無(wú)人機(jī)企業(yè)[4]。
如圖1所示,無(wú)人機(jī)系統(tǒng)一般由飛行系統(tǒng)(機(jī)體、動(dòng)力系統(tǒng)、導(dǎo)航系統(tǒng)、通信系統(tǒng)、飛機(jī)控制系統(tǒng))、任務(wù)載荷系統(tǒng)(云臺(tái)、相機(jī)、傳感器、其他)和地面控制系統(tǒng)(無(wú)線電控制、數(shù)據(jù)處理系統(tǒng)、監(jiān)控系統(tǒng)、輔助設(shè)備)3大部分組成。飛機(jī)系統(tǒng)和有任務(wù)載荷系統(tǒng)組成了整個(gè)飛行器,根據(jù)負(fù)載能力和實(shí)現(xiàn)任務(wù)的不同,一個(gè)平臺(tái)可以搭載多套有效載荷系統(tǒng),實(shí)現(xiàn)復(fù)雜功能。
圖1 無(wú)人機(jī)系統(tǒng)的組成
按照不同平臺(tái)構(gòu)型來(lái)分類,無(wú)人機(jī)主要分為固定翼無(wú)人機(jī)、無(wú)人直升機(jī)和多旋翼無(wú)人機(jī) 3大平臺(tái),其他無(wú)人機(jī)平臺(tái)還包括傘翼無(wú)人機(jī)、撲翼無(wú)人機(jī)和無(wú)人飛船等。按不同使用領(lǐng)域來(lái)劃分,無(wú)人機(jī)可分為軍用、民用和消費(fèi)級(jí) 3大類,對(duì)于無(wú)人機(jī)的性能要求各有偏重。本文主要關(guān)注小型無(wú)人機(jī),小型無(wú)人機(jī)一般采用多旋翼技術(shù),是消費(fèi)級(jí)和部分民用用途的首選平臺(tái),可以原地垂直起飛和懸停,操縱簡(jiǎn)單、機(jī)動(dòng)性靈活、成本較低[5]。
小型無(wú)人機(jī)的應(yīng)用場(chǎng)景越來(lái)越廣泛,如航拍、監(jiān)控、農(nóng)業(yè)植保、空中無(wú)線網(wǎng)絡(luò)、數(shù)據(jù)采集等領(lǐng)域均用到了小型無(wú)人機(jī)。小型無(wú)人機(jī)在給人們工作和生活帶來(lái)便利的同時(shí),也面臨越來(lái)越多的安全隱私問(wèn)題。本文將從小型無(wú)人機(jī)面臨的安全威脅、利用小型無(wú)人機(jī)發(fā)起的攻擊以及無(wú)人機(jī)的認(rèn)證和溯源等方面介紹和探討其現(xiàn)狀和相關(guān)解決方法。
目前,對(duì)無(wú)人機(jī)的常見(jiàn)攻擊包括無(wú)線信號(hào)劫持與干擾、GPS欺騙和針對(duì)傳感器網(wǎng)絡(luò)的攻擊等方面。
2.1無(wú)線信號(hào)劫持與干擾
由于無(wú)線信號(hào)是無(wú)人機(jī)和控制者之間的主要通信方式,對(duì)無(wú)線信號(hào)的攻擊可以直接影響無(wú)人機(jī)的正常運(yùn)作,乃至獲得無(wú)人機(jī)的控制權(quán)。AR.Drone把無(wú)人機(jī)作為公開(kāi)的Wi-Fi接入點(diǎn)并開(kāi)發(fā)21、23等重要端口,Childers[6]和Pleban等[7]利用這些不安全的設(shè)置,成功入侵無(wú)人機(jī)并取得完全權(quán)限,不僅可以控制無(wú)人機(jī)的飛行功能,而且可以任意瀏覽、拷貝、篡改無(wú)人機(jī)上存儲(chǔ)的數(shù)據(jù)。在2015年GeekPwn的開(kāi)場(chǎng)表演項(xiàng)目中,一架正在空中飛行的大疆精靈3代無(wú)人機(jī)在幾分鐘內(nèi)被“黑客”利用一系列漏洞成功劫持。“黑客”利用通信所用跳頻序列太短并且在出廠時(shí)已經(jīng)固化等弱點(diǎn),奪得了無(wú)人機(jī)的控制權(quán)[8]。對(duì)無(wú)線信號(hào)的干擾一般是對(duì)控制信號(hào)進(jìn)行干擾,迫使控制信號(hào)中斷。在丟失控制信號(hào)的情況下,無(wú)人機(jī)一般會(huì)原地降落、返回設(shè)定的航點(diǎn)或者繼續(xù)航行,黑客可以根據(jù)相應(yīng)情況進(jìn)行攻擊。
針對(duì)無(wú)線信號(hào)的劫持和干擾。Pleban等[7]為了解決 AR.Drone遭受入侵的問(wèn)題,把地面控制站作為接入點(diǎn),并使用WAP加密方式來(lái)保證信道的安全。在無(wú)人機(jī)與其他智能設(shè)備交互的應(yīng)用場(chǎng)景中,Won等[9]提出了基于無(wú)證書(shū)簽密密鑰封裝機(jī)制的eCLSC-TKEM通信協(xié)議,它不僅能安全地在無(wú)人機(jī)和智能設(shè)備之間分享密鑰,減少智能設(shè)備方面的開(kāi)銷,同時(shí)也使無(wú)人機(jī)機(jī)體被敵手捕獲后信息盡可能少地泄露。Birnbaum等[10]構(gòu)造了一個(gè)UAV監(jiān)控系統(tǒng),利用回歸最小二乘方法實(shí)時(shí)估計(jì)機(jī)身和控制參數(shù),利用估計(jì)參數(shù)的異常來(lái)判斷無(wú)人機(jī)是否被入侵者控制。Cabaniss等[11]提出了2種可用于移動(dòng)自組網(wǎng)(mobile ad hoc network)應(yīng)用的安全覆蓋網(wǎng)絡(luò),其擁有安全傳送消息、防竊聽(tīng)和消息替換能力,可用于無(wú)人機(jī)自組網(wǎng)的私密通信。
2.2GPS欺騙
攻擊者通過(guò)偽造GPS信號(hào),使無(wú)人機(jī)的導(dǎo)航系統(tǒng)得出錯(cuò)誤的位置、高度、速度等信息。文獻(xiàn)[12~14]成功地對(duì)多個(gè)GPS接收設(shè)備實(shí)施了GPS欺騙攻擊。Kerns等[15]從如下幾個(gè)方面進(jìn)行了詳細(xì)的探究:1)無(wú)人機(jī)受偽造 GPS信號(hào)欺騙的必要條件;2)GPS欺騙進(jìn)而控制無(wú)人機(jī)的可能性;3)GPS信號(hào)欺騙對(duì)無(wú)人機(jī)操作的影響。同時(shí)考慮了顯性和隱性欺騙策略來(lái)躲避目標(biāo) GPS接收器和導(dǎo)航系統(tǒng)狀態(tài)估計(jì)器的檢測(cè)。
針對(duì)GPS欺騙的解決方法也被廣泛地研究。需要接收機(jī)自主導(dǎo)向天線技術(shù)的方法如文獻(xiàn)[16~18],不需要特殊天線硬件的接收機(jī)自主導(dǎo)向信號(hào)處理的技術(shù)如文獻(xiàn)[19~21]。Chowdhary等[22]甚至使用視覺(jué)輔助導(dǎo)航系統(tǒng)來(lái)對(duì)抗GPS欺騙的問(wèn)題,但通過(guò)視覺(jué)輔助導(dǎo)航需要提前準(zhǔn)備相應(yīng)的地圖,并且受到環(huán)境限制,比如在黑夜的環(huán)境下就無(wú)法使用。
2.3針對(duì)傳感器網(wǎng)絡(luò)的攻擊
無(wú)人機(jī)通常作為一個(gè)節(jié)點(diǎn)和其他無(wú)人機(jī)或傳感器一起構(gòu)成無(wú)線傳感器網(wǎng)絡(luò)。因此無(wú)線傳感器網(wǎng)絡(luò)中節(jié)點(diǎn)暴露、脆弱、無(wú)人監(jiān)管等弱點(diǎn)也可被用于攻擊無(wú)人機(jī)。在數(shù)據(jù)層面上,無(wú)人機(jī)傳輸?shù)臄?shù)據(jù)如果缺乏有效的安全措施,攻擊者就能夠通過(guò)捕獲傳感器傳輸?shù)臄?shù)據(jù),對(duì)數(shù)據(jù)進(jìn)行分析或解密,來(lái)獲得無(wú)人機(jī)收集的大量信息[9]。在網(wǎng)絡(luò)層面上,對(duì)傳感器網(wǎng)絡(luò)的攻擊手段,如拒絕服務(wù)攻擊(DoS,denial of service)、對(duì)傳輸消息的攻擊(attacks on information in transit)、女巫攻擊(sybil attack)、黑洞/污水池攻擊(blackhole/sinkhole attack)、Hello泛洪攻擊(Hello flood attack)、蟲(chóng)洞攻擊(wormhole attack)等[23]都可以應(yīng)用于破壞無(wú)人機(jī)與其他設(shè)備或無(wú)人機(jī)群之間的通信。由于無(wú)人機(jī)傳輸信息容易被監(jiān)聽(tīng),且其用于通信的資源有限,攻擊者如果有足夠的處理資源,很容易中斷、攔截、篡改通信數(shù)據(jù)分組,發(fā)動(dòng)對(duì)傳輸消息的攻擊。而針對(duì)無(wú)人機(jī)群,攻擊者可以假冒為多出的節(jié)點(diǎn)發(fā)動(dòng)女巫攻擊[24]。
針對(duì)這些攻擊,可以使用傳感器網(wǎng)絡(luò)加密算法、安全協(xié)議、安全路由等技術(shù)進(jìn)行抵御。除對(duì)稱加密外,一些低開(kāi)銷的非對(duì)稱加密算法,如文獻(xiàn)[25~27]等,也可用于訪問(wèn)控制等特殊應(yīng)用。而應(yīng)用于傳感器網(wǎng)絡(luò)的安全協(xié)議 SPINS[28]也可被用來(lái)提供數(shù)據(jù)機(jī)密性、雙方數(shù)據(jù)鑒別、數(shù)據(jù)新鮮度等安全需求。安全路由一直是無(wú)線傳感器網(wǎng)絡(luò)安全研究最重要的內(nèi)容,安全路由協(xié)議可以通過(guò)多種手段實(shí)現(xiàn),如基于地理位置算法[29,30]、基于多路徑算法[31,32]、分簇安全路由協(xié)議算法[33]、基于密碼算法[32,34]、基于智能算法[35]等。在實(shí)際應(yīng)用中需要根據(jù)無(wú)人機(jī)實(shí)際性能和安全級(jí)別的平衡選擇合適的協(xié)議。除此之外,密鑰管理、身份認(rèn)證、入侵檢測(cè)、信任管理等安全技術(shù)也可應(yīng)用于無(wú)人機(jī)上,提供必要的安全性。
靈活的機(jī)動(dòng)性使無(wú)人機(jī)猶如“盜賊”一般可以侵入違禁或者私人的領(lǐng)空,配備的高清攝像頭可能會(huì)窺探到別人的隱私[36,37]。2015年,無(wú)人機(jī)闖入美國(guó)白宮成為各大媒體的頭條[38]。文獻(xiàn)[39~41]描述了無(wú)人機(jī)可能被不法分子應(yīng)用于恐怖主義、毒品走私、非常規(guī)武器(如生化武器)攻擊等。越來(lái)越多的人向警察抱怨,無(wú)人機(jī)帶著攝像頭堂而皇之地飛到家中庭院上方或窗戶附近。無(wú)人機(jī)成為高科技領(lǐng)域的“偷窺狂”。來(lái)自加利福尼亞州和佛羅里達(dá)州的一些報(bào)道稱,無(wú)人機(jī)俯沖到海灘和度假村中,拍攝人們穿比基尼或半裸曬太陽(yáng)浴的畫(huà)面,隨后這些視頻被發(fā)布在網(wǎng)絡(luò)上[42]。無(wú)人機(jī)搭載熱成像攝像頭更是讓這一問(wèn)題雪上加霜。即便是把無(wú)人機(jī)用作特定場(chǎng)合的監(jiān)控也存在侵犯隱私的問(wèn)題,比如停車場(chǎng)、道路、公園等的視頻監(jiān)控,其中的隱私問(wèn)題也被文獻(xiàn)[43~47]提及。
無(wú)人機(jī)用作定位和跟蹤的技術(shù)日趨成熟,也會(huì)使無(wú)人機(jī)成為新一代的“跟蹤狂”。Liu等[48]提出了基于等值地圖線的定位方法,并使用小型無(wú)人機(jī)實(shí)際測(cè)試對(duì)比了其他 5種不同的定位技術(shù)。文獻(xiàn)[49~51]通過(guò)攝像頭數(shù)據(jù)計(jì)算無(wú)人機(jī)與目標(biāo)的位移等信息,并自動(dòng)調(diào)整無(wú)人機(jī)的姿態(tài)和位置,從而跟蹤目標(biāo)。
當(dāng)無(wú)人機(jī)成為“盜賊”、“偷窺狂”和“跟蹤狂”時(shí),不同層次的防范、解決方案也被相繼提出。首先,監(jiān)管部門設(shè)定禁飛區(qū)。在發(fā)生無(wú)人機(jī)闖入白宮事件之后,大疆無(wú)人機(jī)立刻強(qiáng)制升級(jí)固件,禁止大疆無(wú)人機(jī)在華盛頓的禁飛區(qū)內(nèi)飛行。大疆無(wú)人機(jī)的禁飛區(qū)可以在其官方網(wǎng)站上查詢[52],圖2為其在中國(guó)北京的禁飛區(qū)。實(shí)際上,各國(guó)政府的相關(guān)監(jiān)管部門都出臺(tái)了相關(guān)監(jiān)管政策并劃定了禁飛區(qū),美國(guó)聯(lián)邦航空局(FAA,F(xiàn)ederal Aviation Administration)推出了無(wú)人機(jī)禁飛區(qū)標(biāo)識(shí),如圖 3所示。各大無(wú)人機(jī)廠商不僅要根據(jù)GPS來(lái)判定是否闖入禁飛區(qū),還需要加入圖像識(shí)別禁飛標(biāo)志的功能。一個(gè)自發(fā)的“No Fly Zone”組織也在嘗試解決無(wú)人機(jī)侵犯?jìng)€(gè)人隱私的問(wèn)題。根據(jù)文獻(xiàn)[53]的描述,該組織讓公眾在自己家周圍建立起禁飛區(qū),防止無(wú)人機(jī)窺探隱私?!癗o Fly Zone”網(wǎng)站[54]的使用方法非常簡(jiǎn)單。用戶只需輸入自己的家庭住址,并提供其他一些基本信息。“No Fly Zone”組織會(huì)對(duì)用戶提供的信息進(jìn)行驗(yàn)證和注冊(cè),進(jìn)而將GPS坐標(biāo)錄入該組織數(shù)據(jù)庫(kù)。然后這個(gè)組織會(huì)與一些無(wú)人機(jī)生產(chǎn)商合作,把相關(guān)坐標(biāo)上傳到無(wú)人機(jī)數(shù)據(jù)里,自動(dòng)阻止無(wú)人機(jī)飛越已注冊(cè)房屋,這項(xiàng)服務(wù)完全免費(fèi)。目前,已有多家硬件和軟件公司承諾尊重這些無(wú)人機(jī)禁飛區(qū),“No Fly Zone”組織的合作伙伴包括Ghost無(wú)人機(jī)、億航、Horizon Hobby和PixiePath等?!癗o Fly Zone”組織表示,并不能確保將家庭地址注冊(cè)到該網(wǎng)站之后就一定能阻止無(wú)人機(jī)抵近,因?yàn)檫@項(xiàng)禁令只適用于與該組織有合作協(xié)議的廠商生產(chǎn)的無(wú)人機(jī)。
圖2 大疆無(wú)人機(jī)在北京的禁飛區(qū)
圖3 無(wú)人機(jī)禁飛區(qū)標(biāo)識(shí)
其次,在無(wú)人機(jī)用作公共場(chǎng)合視頻監(jiān)控侵犯隱私的問(wèn)題上,隱私過(guò)濾方法也被廣泛研究。Bonetto等[55]從無(wú)人機(jī)在的停車場(chǎng)監(jiān)控視頻數(shù)據(jù)中得出基于典型的無(wú)人機(jī)監(jiān)控序列,并基于“眾包”的評(píng)估方法,在監(jiān)控可用和隱私保護(hù)的性能之間取得平衡,最終得到5個(gè)隱私保護(hù)過(guò)濾器。
最后,當(dāng)規(guī)則被打破,攻擊者繞過(guò)無(wú)人機(jī)自身對(duì)禁飛區(qū)的限定,比如使用姿態(tài)模式、系統(tǒng)破解、GPS欺騙等,那么就要使用強(qiáng)硬的方法來(lái)阻止無(wú)人機(jī),比如探測(cè)、入侵甚至捕獲來(lái)犯的無(wú)人機(jī)。Mezei等[56]通過(guò)無(wú)人機(jī)的聲音特征來(lái)識(shí)別無(wú)人機(jī)的存在。Moses等[57]設(shè)計(jì)出了一種輕巧的可以裝配在任意小型無(wú)人機(jī)上的雷達(dá)系統(tǒng),在該系統(tǒng)中,工作在10.5 GHz頻段的雷達(dá)可以探測(cè)并鑒別其他無(wú)人機(jī)。在合法的情況下,第2節(jié)中對(duì)無(wú)人機(jī)的攻擊手段可以轉(zhuǎn)化為防御無(wú)人機(jī)的手段,如在干擾、獲取無(wú)人機(jī)的控制權(quán)后,迫使無(wú)人機(jī)降落到安全地點(diǎn)。全球各大安防公司也加緊對(duì)無(wú)人機(jī)的防御進(jìn)行研發(fā)。文獻(xiàn)[58]報(bào)道了在2016年春晚分會(huì)場(chǎng)亮相的天網(wǎng)“低慢小”目標(biāo)攔截系統(tǒng)(簡(jiǎn)稱“天網(wǎng)”),該系統(tǒng)是中國(guó)航天科工二院206所為應(yīng)對(duì)低空、慢速、小目標(biāo)防控這一世界難題而研發(fā)的自主創(chuàng)新產(chǎn)品,該產(chǎn)品能夠?qū)娇漳P?、?dòng)力三角翼、動(dòng)力傘、風(fēng)箏等低空慢速小型飛行器進(jìn)行探測(cè)、預(yù)警、跟蹤定位與高效攔截。
無(wú)人機(jī)的認(rèn)證、溯源問(wèn)題以及相關(guān)解決方案如下。1)通信交互的身份認(rèn)證。例如,無(wú)人機(jī)用作傳感器網(wǎng)絡(luò)的數(shù)據(jù)收集,在傳感器上傳采集數(shù)據(jù)給無(wú)人機(jī)前,必須確認(rèn)無(wú)人機(jī)的合法身份。文獻(xiàn)[9]詳細(xì)對(duì)比了包括該文獻(xiàn)提出的安全通信協(xié)議的功能,如表1所示。Senthil和Ilango[59]提出了一種安全認(rèn)證和完整性校驗(yàn)技術(shù)。該技術(shù)利用共享密鑰提供身份認(rèn)證,并利用相互認(rèn)證技術(shù)實(shí)現(xiàn)收發(fā)雙方共享認(rèn)證密鑰。2)無(wú)人機(jī)飛入特定區(qū)域的認(rèn)證。例如,個(gè)人設(shè)置自己的住處為禁飛區(qū),然而快遞公司的無(wú)人機(jī)需要飛入該區(qū)域送貨;軍事區(qū)域只允許自己的無(wú)人機(jī)進(jìn)行巡航。目前并沒(méi)有很好的安全架構(gòu)對(duì)無(wú)人機(jī)飛入某個(gè)區(qū)域進(jìn)行認(rèn)證。3)事故追責(zé)的溯源。據(jù)文獻(xiàn)[60]報(bào)道,在澳大利亞Geraldton Endure Batavia 3項(xiàng)全能比賽上,一架用于記錄賽況的無(wú)人機(jī)撞向運(yùn)動(dòng)員,造成其頭部輕微受傷,需要進(jìn)行縫針治療。無(wú)人機(jī)的操作人員表示,引發(fā)此次事故的原因是觀眾偷走了控制器。2015年7 月,大疆生產(chǎn)的“精靈3”無(wú)人機(jī)墜毀在巴控克什米爾地區(qū),圍繞此事印度和巴基斯坦兩國(guó)互相指責(zé)。在這些事故中,無(wú)人機(jī)記錄的數(shù)據(jù)能給責(zé)任的鑒定提供重要的幫助。
表1 不同通信協(xié)議的安全功能對(duì)比
當(dāng)無(wú)人機(jī)拍攝的隱私視頻泄露到網(wǎng)上,為了追查拍攝的無(wú)人機(jī)也需要對(duì)無(wú)人機(jī)包括攝像頭在內(nèi)的物理配件特征進(jìn)行鑒定。攝像頭拍攝的照片、視頻的噪聲包含了該設(shè)備大量的指紋信息,這是因?yàn)閿z像頭處理信號(hào)時(shí),有許多因素會(huì)導(dǎo)致噪聲,如傳感器有壞點(diǎn)形成的固定模式噪聲(FPN),但更為普遍的來(lái)源是光電響應(yīng)非均勻特性(PRNU)。如果把圖片、視頻的噪音看成攝像頭的水印,那么可以從這些水印來(lái)辨別相應(yīng)的攝像頭。Lukas等[64]首次利用模式噪聲提出了圖像的攝像頭來(lái)源鑒別方法。在這個(gè)基礎(chǔ)上,研究人員對(duì)特征的提?。?5]、特征在大規(guī)模照片檢測(cè)情況下的有效性[66,67]、特征信息的高效使用[68,69]等方面進(jìn)行了改進(jìn)。鑒定圖像、視頻來(lái)源的技術(shù)可以配合無(wú)人機(jī)飛行數(shù)據(jù),從而得出更準(zhǔn)確的判斷。
隨著制造成本的降低和技術(shù)發(fā)展和成熟,小型無(wú)人機(jī)正逐步走向大眾消費(fèi)級(jí)市場(chǎng)。小型無(wú)人機(jī)在給人們生活帶來(lái)便利的同時(shí),也面臨日益嚴(yán)峻的安全問(wèn)題。本文從小型無(wú)人機(jī)面臨的安全威脅、利用小型無(wú)人機(jī)發(fā)起的攻擊以及無(wú)人機(jī)的認(rèn)證和溯源等方面總結(jié)和分析了國(guó)內(nèi)外無(wú)人機(jī)安全領(lǐng)域的研究進(jìn)展。基于對(duì)目前研究現(xiàn)狀的總結(jié)和分析,認(rèn)為小型無(wú)人機(jī)未來(lái)安全發(fā)展趨勢(shì)主要有如下特點(diǎn)。
1)基于無(wú)人機(jī)自身的特點(diǎn)存在的安全問(wèn)題。例如,無(wú)人機(jī)的操控和巡航需要無(wú)線信號(hào)的操控以及GPS信號(hào)的導(dǎo)航,對(duì)無(wú)線信號(hào)的干擾、入侵、GPS欺騙等攻防的研究將會(huì)不斷深入。
2)無(wú)人機(jī)與應(yīng)用結(jié)合存在的安全問(wèn)題。如使用高清攝像頭、甚至熱成像攝像頭的無(wú)人機(jī)航拍侵犯隱私的問(wèn)題;無(wú)人機(jī)作為傳感器網(wǎng)絡(luò)的數(shù)據(jù)采集點(diǎn),需要安全協(xié)議在和傳感器交互的過(guò)程中確保身份的認(rèn)證、數(shù)據(jù)的安全傳輸?shù)裙δ艿膯?wèn)題;無(wú)人機(jī)自組網(wǎng)或者作為網(wǎng)絡(luò)節(jié)點(diǎn)的安全問(wèn)題。
3)政策、法規(guī)監(jiān)管盲區(qū)所存在的安全問(wèn)題。如對(duì)非法無(wú)人機(jī)的探測(cè)、攻擊、捕獲的問(wèn)題;無(wú)人機(jī)事故追責(zé)、泄露隱私數(shù)據(jù),需要獲取電子證據(jù)進(jìn)行鑒定的問(wèn)題。
[1]2016年3·15晚會(huì)[EB/OL]. http://315.cntv.cn/special/2016/index. shtml. The 3·15 gala of China 2016[EB/OL]. http://315.cntv.cn/special/2016/index.shtml.
[2]CES 2015:why the future of drones is up in the air[EB/OL]. http://www.bbc.com/news/technology-30721339.
[3]EVTank. 2015年度民用無(wú)人機(jī)市場(chǎng)研究[EB/OL]. http://www. 199it.com/archives/345432.html. EVTank. 2015 market research on civilian drones[EB/OL]. http://www.199it.com/archives/345432.html.
[4]2015-2020年中國(guó)無(wú)人機(jī)行業(yè)市場(chǎng)分析與投資前景預(yù)測(cè)報(bào)告[EB/OL].http://wenku.baidu.com/view/51a21dd0f121dd36a32d82f 3.html?from=search. Market research and prediction on China's drone industry of 2015-2020[EB/OL].http://wenku.baidu.com/view/51a21dd0f121dd 36a32d82f3.html?from=search.
[5]關(guān)于無(wú)人機(jī),你需要知道的都在這里了[EB/OL]. http://36kr.com/p/220702.html. All you need to know about drones[EB/OL]. http://36kr.com/p/220702.html.
[6]CHILDERS B. Hacking the Parrot AR drone[J]. Linux Journal,2014,2014(241):1.
[7]PLEBAN J S,BAND R,CREUTZBURG R. Hacking and securing the AR. Drone 2.0 quadcopter:investigations for improving the security of a toy[C]//SPIE International Conference on Mobile Devices and Multimedia:Enabling Technologies,Algorithms,and Applications,San Francisco. c2014(9030):271-283.
[8]3·15晚會(huì)報(bào)道的無(wú)人機(jī)是怎么被劫持的?[EB/OL]. https://security. tencent.com/index.php/blog/msg/103. The 3·15 gala of China report on how did drones got hijacked[EB/OL]. https://security.tencent.com/index.php/blog/msg/103.
[9]WON J,SEO S H,BERTINO E. A secure communication protocol for drones and smart objects[C]//The 10th ACM Symposium on Information,Computer and Communications Security,New York. c2015:249-260.
[10]BIRNBAUM Z,DOLGIKH A,SKORMIN V,et al. Unmannedaerial vehicle security using recursive parameter estimation[C]//2014 IEEE International Conference on Unmanned Aircraft Systems(ICUAS),Orlando. c2014:692-702.
[11]CABANISS R,KUMAR V,MADRIA S. Multi-party encryption(MPE):secure communications in delay tolerant networks[J]. Wireless Networks,2015,21(4):1243-1258.
[12]HUMPHREYS T E,LEDVINA B M,PSIAKI M L,et al. Assessing the spoofing threat:development of a portable GPS civilian spoofer[C]//The ION GNSS International Technical Meeting of the Satellite Division,Savannah. c2008:55-56.
[13]SHEPARD D. Characterization of receiver response to spoofing attacks[D]. Austin:University of Tenas at Austin,2011.
[14]SHEPARD D P,HUMPHREYS T E,F(xiàn)ANSLER A A. Evaluation of the vulnerability of phasor measurement units to GPS spoofing attacks[J]. International Journal of Critical Infrastructure Protection,2012,5(3):146-153.
[15]KERNS A J,SHEPARD D P,BHATTI J A,et al. Unmanned aircraft capture and control via GPS spoofing[J]. Journal of Field Robotics,2014,31(4):617-636.
[16]BROUMANDAN A,JAFARNIA-JAHROMI A,DEHGAHANIAN V,et al. GNSS spoofing detection in handheld receivers based on signal spatial correlation[C]//The IEEE/ION Position Location and Navigation Symposium(PLANS),Myrtle Beach. c2012:479 -487.
[17]DE LORENZO D S,GAUTIER J,RIFE J,et al. Adaptive array processing for GPS interference rejection[C]//The 18th International Technical Meeting of the Satellite Division of the Institute of Navigation,Long Beach. c2005:618-627.
[18]MONTGOMERY P Y,HUMPHREYS T E,LEDVINA B M. A multi-antenna defense:receiver-autonomous GPS spoofing detection[J]. Inside GNSS,2009,4(2):40-46.
[19]DEHGHANIAN V,NIELSEN J,LACHAPELLE G. GNSS spoofing detection based on receiver C/No estimates[C]//The 25th International Technical Meeting of the Satellite Division of the Institute of Navigation,Nashville. c2012:2878-2884.
[20]WEISS S,SCARAMUZZA D,SIEGWART R. Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments[J]. Journal of Field Robotics,2011,28(6):854-874.
[21]WESSON K D,EVANS B L,HUMPHREYS T E. A combined symmetric difference and power monitoring GNSS anti-spoofing technique[C]//2013 IEEE Global Conference on Signal and Information Processing,Austin. c2013:217-220.
[22]CHOWDHARY G,JOHNSON E N,MAGREE D,et al. GPS-denied indoor and outdoor monocular vision aided navigation and control of unmanned aircraft[J]. Journal of Field Robotics,2013,30(3):415-438.
[23]PATHANA K,LEE H W,HONG C S. Security in wireless sensor networks:issues and challenges[C]//The 8th IEEE International Conference on Advanced Communication Technology,Phoenix Park. c2007:6-1048.
[24]NEWSOME J,SHI E,SONG D,et al. The sybil attack in sensor networks:analysis & defenses[C]//The ACM 3rd International Symposium on Information Processing in Sensor Networks,New York. c2004:259-268.
[25]GURA N,PATEL A,WANDER A,et al. Comparing elliptic curve cryptography and RSA on 8 bit CPUs[C]//The 6th Springer International Workshop on Cryptographic Hardware and Embedded Systems,Springer Berlin. c2004:119-132.
[26]MALAN P T,WEISH M,SMITH M D. A public-key infrastructure for key distribution in TinyOS based on elliptic curve cryptography[C]//The 1st IEEE International Conference on Sensor and Ad Hoc Communications and Networks,Santa Clara. c2004:58-67.
[27]WANG H,SHENG B,LI Q. Elliptic curve cryptography-based access control in sensor networks[J]. International Joural of Security and Networks,2006,1(3):127-137
[28]PERRIG A,SIEWCZYK R,JYGAR J D. SPINS:security protocols for sensor networks[J]. Wireless Networks Journal(WINE),2002,8(5):521-534.
[29]ZHOU Y,LI L. A trust-aware and location-based secure routing protocol for WSN[J]. Applied Mechanics and Materials,2013,373-375:1931-1934.
[30]KANG H S,KIM S R,KIM P. Traffic deflection method for dos attack defense using a location-based routing protocol in the sensor network[J]. Computer Science and Information Systems,2013,10(2):685-701.
[31]HAYAJNEH T,DOOMUN R,AL-MASHAQBEH G,et al. An energy-efficient and security aware route selection protocol for wireless sensor networks[J]. Security & Communication Networks,2014,7:2015-2038.
[32]SANGEETHA R,YUVARAJU M. Secure energy-aware multipath routing protocol with transmission range adjustment for wireless sensor networks[C]//The 2012 IEEE International Conference on Computational Intelligence & Computing Research(ICCIC),Coimbatore. c2012:1-4.
[33]LOTF J J,HOSSEINZADEH M,ALGULIEV R M. Hierarchical routing in wireless sensor networks:a survey[C]//The 2nd International Conference on Computer Engineering and Technology,Chengdu. c2010:650-654.
[34]CHEN X,MAKKI K,YEN K,et al. Sensor network security:a survey[J]. IEEE Communications Surveys & Tutorials,2009,11(2):52-73.
[35]HU T,F(xiàn)EI Y. QELAR:a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks[J]. IEEE Transactions on Mobile Computing,2010,9(6):796-809.
[36]KORSHUNOV P,EBRAHIMI T. Using warping for privacy protection in video surveillance[C]//The 18th IEEE International Conference on Digital Signal Processing(DSP),F(xiàn)ira. c2013:1-6.
[37]KORSHUNOV P,EBRAHIMI T. Using face morphing to protect privacy[C]//The 10th IEEE International Conference on Advanced Video and Signal Based Surveillance(AVSS),Krakow. c2013:208-213.
[38]SCHMIDT M,SHEAR M. A drone,too small for radar to detect,rattles the White House[EB/OL]. http://www.suasnews.com/2015/01/a-drone-too-small-for-radar-to-detect-rattles-the-white-house/.
[39]GORMLEY D M.UAVs and cruise missiles as possible terrorist weapons[EB/OL].http://kms1.isn.ethz.ch/serviceengine/Files/ISN/14389/ichaptersection_singledocument/acad1aa7-4c58-4da5-a93af2558375a299/en/02_Gormley.pdf.
[40]GORMLEY D M,SPEIER R. Controlling unmanned air vehicles:new challenges[J]. The Nonproliferation Review,2003,10(2):66-79.
[41]SIRAK M. Air force studies how to counter hostile UAVs[J]. Helicopter News,2006,1:1-2.
[42]無(wú)人機(jī)不乏黑暗面成天空監(jiān)管一大隱患[EB/OL]. http://tech.163. com/15/0529/08/AQP63QES000915BD.html. The bad influences drone might brought to the sky surveillance[EB/OL]. http://tech.163.com/15/0529/08/AQP63QES000915BD.html.
[43]PITT J,PERAKSLIS C,MICHAEL K. Drones humanus introduction to the special issue[J]. Technology and Society Magazine,2014,33(2):38-39.
[44]WILSON R L. Ethical issues with use of drone aircraft[C]//The 2014 IEEE International Symposium on Ethics in Science,Technology and Engineering,Chicago. c2014:1-4.
[45]VILLASENOR J. “Drones”and the future of domestic aviation[J]. Proceedings of the IEEE,2014,102(3):235-238.
[46]FINN R L,WRIGHT D. Unmanned aircraft systems:surveillance,ethics and privacy in civil applications[J]. Computer Law & Security Review,2012,28(2):184-194.
[47]VILLASENOR J. Observations from above:unmanned aircraft systems and privacy[J]. Harvard Journal of Law & Public Policy,2013,36:457.
[48]LIU Z,LI Z,LIU B,et al. Rise of mini-drones:applications and issues[C]//Workshop on Privacy-Aware Mobile Computing. c2015:7-12.
[49]MAO H,YANG C,ABOUSLEMAN G P,et al. Automated multiple target detection and tracking in UAV videos[C]//SPIE-The International Society for Optical Engineering. c2010.
[50]MEJIAS L,SARIPALLI S,CAMPOY P,et al. Visual servoing of an autonomous helicopter in urban areas using feature tracking[J]. Journal of Field Robotics,2006,23(3-4):185-199.
[51]HERISSé B,HAMEL T,MAHONY R,et al. Landing a VTOL unmanned aerial vehicle on a moving platform using optical flow[J]. IEEE Transactions on Robotics,2012,28(1):77-89.
[52]安全飛行指引飛行區(qū)域限制[EB/OL]. http://www.dji.com/cn/flysafe/no-fly. Safety guide on aircraft movement area restrictions[EB/OL]. http://www.dji.com/cn/flysafe/no-fly.
[53]美國(guó)人這樣阻止無(wú)人機(jī)窺探住宅隱私[EB/OL]. http://tech.qq.com/a/20150210/072083.htm. What Americans did to protect residents' privacy from drones[EB/OL]. http://tech.qq.com/a/20150210/072083.htm.
[54]NoFlyZone[EB/OL]. https://www.noflyzone.org/.
[55]BONETTO M,KORSHUNOV P,RAMPONI G,et al. Privacy in mini-drone based video surveillance[C]//The 2015 IEEE International Conference on Image Processing(ICIP),Quebec City. c2015:2464-2469.
[56]MEZEI J,F(xiàn)IASKA V,MOLNAR A. Drone sound detection[C]//The 16th IEEE International Symposium on Computational Intelligence and Informatics(CINTI),Budapest. c2015:333-338.
[57]MOSES A,RUTHERFORD M J,VALAVANIS K P. Radar-based detection and identification for miniature air vehicles[C]//The 2011 IEEE International Conference on Control Applications(CCA),Denver. c2011:933-940.
[58]航天科工披露反無(wú)人機(jī)系統(tǒng)已執(zhí)行多次任務(wù)[EB/OL]. http://war. 163.com/16/0220/08/BG8MJ36800014OVF.html?f=jsearch. China Aerospace Science & Industry Corporation has revealed assignments carried out by anti-drone system[EB/OL]. http://war. 163.com/16/0220/08/BG8MJ36800014OVF.html?f=jsearch.
[59]ILANGO P. Secure authentication and integrity techniques for randomized secured routing in WSN[J]. Wireless Networks,2015,21(2):443-451.
[60]盤點(diǎn) 12起引發(fā)爭(zhēng)議的無(wú)人機(jī)事故[EB/OL]. http://digi.163.com/15/0324/11/ALFIAEN000162Q5T.html. View points on 12 controversial drone accidents[EB/OL]. http://digi.163.com/15/0324/11/ALFIAEN000162Q5T.html.
[61]YANG G,TAN C H. Strongly secure certificateless key exchange without pairing[C]//The 6th ACM Symposium on Information,Computer and Communications Security,New York,c2011:71-79. [62]SUN H,WEN Q,ZHANG H,et al. A novel pairing-free certificateless authenticated key agreement protocol with provable security[J]. Frontiers of Computer Science,2013,7(4):544-557.
[63]SEO S,BERTINO E. Elliptic curve cryptography based certificateless hybrid signcryption scheme without pairing[R]. CERIAS,West Lafayette,IN,USA,2013.
[64]LUKAS J,F(xiàn)RIDRICH J,GOLJAN M. Digital camera identification from sensor pattern noise[J]. IEEE Transactions on Information Forensics and Security,2006,1(2):205-214.
[65]CHEN M,F(xiàn)RIDRICH J,GOLJAN M,et al. Determining image origin and integrity using sensor noise[J]. IEEE Transactions on Information Forensics and Security,2008,3(1):74-90.
[66]GOLJAN M,F(xiàn)RIDRICH J,F(xiàn)ILLER T. Managing a large database of camera fingerprints[C]//IS&T/SPIE Electronic Imaging Symposium,San Jose. c2010.
[67]GOLJAN M,F(xiàn)RIDRICH J,F(xiàn)ILLER T. Large scale test of sensor fingerprint camera identification[C]//IS & T/SPIE Electronic Imaging Symposium,San Jose. c2009.
[68]HU Y,YU B,JIAN C. Source camera identification technique using large components of imaging sensor pattern noise[J]. Journal of Computer Applications,2010,9:31-35.
[69]LIU B B,HU Y,LEE H K. Source camera identification from significant noise residual regions[C]//The 17th IEEE International Conference on Image Processing(ICIP),HongKong. c2010:1749-1752.
Survey on research of mini-drones security
LIU Wei,F(xiàn)ENG Bing-wen,WENG Jian
(College of Information Science and Technology,Jinan University,Guangzhou 510632,China)
With the decreasing of the manufacturing cost and the development of technology,mini-drones are spreading from military and high-end commercial areas to civilian and consumer areas,and they have attracted great interests in recent years. On the one hand,mini-drones bring convenient,and on the other hand,they face with serious security problems. The research status of mini-drones,including the security threats of mini drones,the security attacks from mini drones,the authentication and traceability of mini drones,etc were introduced and analyzed. Finally,the future development of security research in mini-drones was also prospected.
mini-drone,information security,security threat,privacy invasion,certification
TP391
A
10.11959/j.issn.2096-109x.2016.00037
2016-02-17;
2016-03-01。通信作者:翁健,cryptjweng@gmail.com
國(guó)家自然科學(xué)面上基金資助項(xiàng)目(No.61272413,No.61472165);教育部高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金博導(dǎo)類基金資助項(xiàng)目(No.20134401110011)
Foundation Items:The National Natural Science Foundation of China(No.61272413,No.61472165),The Research Fund for the Doctoral Program of Higher Education of China(No.20134401110011)
劉煒(1985-),男,廣西南寧人,暨南大學(xué)博士生,主要研究方向?yàn)闊o(wú)人機(jī)安全、密碼學(xué)。
馮丙文(1985-),男,四川蓬溪人,暨南大學(xué)博士生,主要研究方向?yàn)樾畔㈦[藏、多媒體安全。
翁?。?976-),男,廣東茂名人,暨南大學(xué)教授、博士生導(dǎo)師,主要研究方向?yàn)槊艽a學(xué)與信息安全。