湯 敏TANG Min
張 鑫1ZHANG Xin
吳小紅1WU Xiaohong
閔智乾1MIN Zhiqian
劉 鵬2LIU Peng
張小玲1ZHANG Xiaoling
MRI對(duì)腦梗死繼發(fā)皮質(zhì)脊髓束華勒變性的動(dòng)態(tài)研究
湯 敏1TANG Min
張 鑫1ZHANG Xin
吳小紅1WU Xiaohong
閔智乾1MIN Zhiqian
劉 鵬2LIU Peng
張小玲1ZHANG Xiaoling
作者單位
1.陜西省人民醫(yī)院MRI室 陜西西安710068
2.陜西省人民醫(yī)院神經(jīng)內(nèi)科 陜西西安710068
Department of MRI, Shaanxi Provincial People's Hospital, Xi'an 710068, China
Address Correspondence to: ZHANG Xiaoling
E-mail: zxl.822@163.com
2016-04-15
中國(guó)醫(yī)學(xué)影像學(xué)雜志
2016年 第24卷7期:490-493
Chinese Journal of Medical Imaging
2016 Volume 24 (7): 490-493
目的 利用MRI觀察腦梗死繼發(fā)皮質(zhì)脊髓束華勒變性的變化規(guī)律,探討早期華勒變性擴(kuò)散加權(quán)成像(DWI)信號(hào)特點(diǎn)與預(yù)后的關(guān)系,為臨床認(rèn)識(shí)華勒變性提供影像學(xué)依據(jù)。資料與方法 回顧性分析30例大腦中動(dòng)脈、頸內(nèi)動(dòng)脈狹窄閉塞致腦梗死患者,依據(jù)腦梗死后所致皮質(zhì)脊髓束變性DWI 呈高信號(hào)和等信號(hào)分為兩組,所有患者于發(fā)病后1 d、1個(gè)月、6個(gè)月、12個(gè)月均行常規(guī)MRI及DWI檢查,測(cè)量患側(cè)與健側(cè)大腦腳寬度比,采用美國(guó)國(guó)立衛(wèi)生研究院卒中量表(NIHSS)評(píng)估病情嚴(yán)重程度,比較兩組大腦腳寬度比及NIHSS評(píng)分。結(jié)果 隨訪1個(gè)月、6個(gè)月、12個(gè)月,急性期皮質(zhì)脊髓束華勒變性DWI高信號(hào)組NIHSS評(píng)分均高于等信號(hào)組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01),兩組發(fā)病后1 d NIHSS評(píng)分差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。隨訪12個(gè)月,急性期皮質(zhì)脊髓束華勒變性DWI 高信號(hào)組患側(cè)大腦腳寬度比小于等信號(hào)組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),DWI 高信號(hào)組大腦腳萎縮更明顯;兩組發(fā)病后1 d、隨訪1個(gè)月、6 個(gè)月患側(cè)大腦腳寬度比差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。結(jié)論 皮質(zhì)脊髓束華勒變性1~6個(gè)月以軸突腫脹、髓鞘崩解、T2WI高信號(hào)為特征,6~12個(gè)月以有髓纖維容積減少、腦干不對(duì)稱萎縮、膠質(zhì)增生為特征。皮質(zhì)脊髓束華勒變性DWI早期高信號(hào)提示預(yù)后較差。
腦梗死;Waller 變性;錐體束;磁共振成像,彌散;擴(kuò)散加權(quán)成像;預(yù)后
【Abstract】Purpose To discuss the relationship between the features of early corticospinal tract (CST) Wallerian degeneration (WD) signals in DWI and its prognosis by observing characteristics of CST WD after cerebral infarction with MRI. This will provide imaging basis for a better clinical understanding in CST WD.Materials and Methods In this retrospective study, we assessed images and clinic data for 30 patients with acute middle cerebral/internal carotid artery stroke, and divided them into CST hyperintensity group and isointensity group in DWI at day 1. Then all the patients underwent MRI and DWI examinations at day 1, 30, 180, and 360 after stroke onset. The ratio of the cross-sectional width of the ipsilateral cerebral peduncle to the width of the contralateral cerebral peduncle were measured and the severity of dysfunction patients were assessed according to national institute of health stroke scale (NIHSS). The NIHSS scores and cerebral peduncle width ratio were compared between the two groups.Results The NIHSS scores were statistically higher in CST DWI hyperintensity group than in the isointensity group at day 30, 180, 360 (P<0.01), but there were no statistical differences in the NIHSS scores at day 1 between the two groups (P>0.05). The cerebral peduncle width ratio was significantly lower in CST DWI hyperintensity at acute stage compared with that in the isointensity group only at day 360 (P<0.05), and the cerebral peduncle atrophy was more obvious in the DWI hyperintensity group; there were no statistically differences in the cerebral peduncle width ratio at day 1, 30, and 180 between the two groups (P>0.05). Conclusion The corticospinal tract WD is characterized by axonal swelling, breakdown of myelin sheath and hyperintense on T2-weighted MRI during 1 to 6 months; and during 6 to 12 months, it is characterized by volume loss of myelinated fibres, unilateral brainstem atrophy and gliosis on MRI. At the same time, the hyperintense on DWI predicts unsatisfactory prognosis in corticospinal tract WD poststroke onset.
【Key words】Brain infarction; Wallerian degeneration; Pyramidal tracts; Diffusion magnetic resonance imaging; Diffusion weighted imaging; Prognosis
華勒變性(Wallerian degeneration,WD)是指神經(jīng)元胞體或近端軸突損傷后,細(xì)胞胞體與軸突營(yíng)養(yǎng)支持中斷,導(dǎo)致遠(yuǎn)端軸突、髓鞘繼發(fā)變性,廣泛存在于中樞神經(jīng)系統(tǒng)和周圍神經(jīng)系統(tǒng)[1-2]。WD病因繁多,其中以腦梗死、出血、腫瘤、脫髓鞘疾病較為常見[3]。本研究通過(guò)腦梗死引起急性皮質(zhì)脊髓束(corticospinal tract,CST)WD的擴(kuò)散加權(quán)成像(DWI)信號(hào)差異,預(yù)測(cè)患者神經(jīng)功能恢復(fù)情況、大腦腳形態(tài)學(xué)和信號(hào)變化特點(diǎn),為臨床醫(yī)師提供重要的診療信息,以對(duì)CST WD患者進(jìn)行早期準(zhǔn)確診斷和治療,降低患者致殘率。
1.1 研究對(duì)象 選擇2011年9月—2014年1月陜西省人民醫(yī)院30例大腦中動(dòng)脈或頸內(nèi)動(dòng)脈閉塞致急性期(6~24 h)腦梗死患者,均符合《中國(guó)急性缺血性腦卒中診治指南2010》[4]中的診斷標(biāo)準(zhǔn),所有患者梗死范圍均累及額頂葉或CST通路。排除標(biāo)準(zhǔn):既往及隨訪過(guò)程中有腦出血、腦梗死、腫瘤等病史;腦干病變及腦部手術(shù)史;腦梗死未累及中央前后回。其中男23例,女7例;年齡47~79歲,平均(61.0±11.7)歲。臨床表現(xiàn):一側(cè)肢體癱瘓30例,頭痛16例,嘔吐11例,失語(yǔ)13例,意識(shí)喪失8例。30例患者均經(jīng)神經(jīng)系統(tǒng)檢查并采用美國(guó)國(guó)立衛(wèi)生研究院卒中量表(national institute of health stroke scale,NIHSS)評(píng)定腦功能障礙情況。所有患者發(fā)病后1個(gè)月、6個(gè)月、12個(gè)月均進(jìn)行理療康復(fù)訓(xùn)練、神經(jīng)系統(tǒng)檢查和常規(guī)顱腦MRI檢查。1.2 儀器與方法 30例患者均于發(fā)病24 h內(nèi)行MRI檢查,其中19例采用Philips Intera Achieva 1.5T超導(dǎo)MR儀,常規(guī)行T1WI、T2WI、FLAIR、DWI軸位及T1WI矢狀位掃描,掃描參數(shù):SE-T1WI:TR 380 ms,TE 16 ms;SE-T2WI:TR 4600 ms,TE 102 ms;FLAIR:TR 8500 ms,TE 133 ms,激勵(lì)次數(shù)1,視野24 cm×24 cm,層厚5 mm,間隔1 mm,矩陣512×512;DWI:TR 7000 ms,TE 84 ms,激勵(lì)次數(shù)1,矩陣128×128,b=0、1000 s/mm2。11例采用Toshiba Vantage 1.5T超導(dǎo)MR儀,行T1WI、T2WI、FLAIR、DWI軸位及T1WI矢狀位掃描,掃描參數(shù):SE-T1WI:TR 1466 ms,TE 15 ms;SE-T2WI:TR 5800 ms,TE 152 ms;FLAIR:TR 8500 ms,TE 133 ms,激勵(lì)次數(shù)1,視野24 cm×24 cm,層厚5 mm,間隔1 mm,矩陣512×512;DWI:TR 5000 ms,TE 105 ms,矩陣128×128,b=0、1000 s/mm2。由2名主治醫(yī)師以上職稱的神經(jīng)影像醫(yī)師評(píng)估CST大腦腳水平信號(hào)及是否累及中央前后回,依據(jù)首次腦梗死后CST DWI高信號(hào)和等信號(hào)將30例患者分為兩組,其中CST高信號(hào)組11例,CST等信號(hào)組19例。
1.3 大腦腳寬度測(cè)量 大腦腳是評(píng)價(jià)CST變性最理想的區(qū)域[5],本研究利用MRI T1WI軸位圖像選擇大腦腳最大層面作為測(cè)量大腦腳寬度層面,大腦腳內(nèi)側(cè)緣連接動(dòng)眼神經(jīng)處為起點(diǎn),以中腦后外側(cè)溝為終點(diǎn)作垂直于大腦腳長(zhǎng)軸的垂線,即大腦腳寬度[6],每側(cè)測(cè)量2次,取平均值。將患側(cè)大腦腳寬度比健側(cè)大腦腳寬度,對(duì)患側(cè)大腦腳寬度進(jìn)行標(biāo)準(zhǔn)化。
1.4 統(tǒng)計(jì)學(xué)方法 采用SPSS 17.0軟件,計(jì)量資料組間比較采用獨(dú)立樣本t檢驗(yàn),P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2.1 腦梗死部位 13例大腦半球大面積腦梗死,額頂葉腦梗死7例,5例腦梗死位于側(cè)腦室體旁(圖1A),內(nèi)囊后支3例,丘腦-基底節(jié)梗死2例,急性期所有腦梗死病灶DWI均表現(xiàn)為高信號(hào),其中DWI序列CST呈等信號(hào)19例,高信號(hào)11例(圖2A)。
圖1 男,56歲,右側(cè)大腦額頂葉大面積腦梗死。DWI 示右側(cè)額頂葉、側(cè)腦室旁白質(zhì)急性期腦梗死(箭,A);腦梗死發(fā)病1 d、隨訪1個(gè)月、6個(gè)月、12個(gè)月,T2WI示患側(cè)大腦腳CST變化過(guò)程(箭,B~E)
2.2 隨訪影像資料 腦梗死1 d,11例患者T2WI及DWI CST走行區(qū)可見高信號(hào),1例大腦腳體積略?。▓D2B),19例T2WI及DWI大腦腳形態(tài)及信號(hào)無(wú)異常(圖1B)。隨訪1個(gè)月,15例患者T2WI及FLAIR患側(cè)CST走行區(qū)出現(xiàn)線樣、條片狀高信號(hào),T1WI呈低信號(hào),DWI呈稍低信號(hào),2例大腦腳寬度、腦橋、延髓縮小,15例T2WI、FLAIR、T1WI CST無(wú)明顯異常(圖1C)。隨訪6個(gè)月,30例患者患側(cè)CST走行區(qū)T2WI及FLAIR呈條片狀高信號(hào),高信號(hào)范圍擴(kuò)大,T1WI呈低信號(hào),17例患側(cè)大腦腳、腦橋、延髓體積縮?。▓D1D)。隨訪12個(gè)月,30例患者CST走行區(qū)T2WI及FLAIR序列呈條片狀高信號(hào),T1WI呈低信號(hào),30例患者患側(cè)大腦腳均有不同程度的萎縮(圖1E)。
表1 腦梗死致CST急性WD DWI高信號(hào)與等信號(hào)組不同時(shí)間點(diǎn)NIHSS評(píng)分及大腦腳寬度比的變化
圖2 男,66歲,左側(cè)額顳頂葉腦梗死。DWI 示左側(cè)顳葉及大腦腳可見斑片狀高信號(hào)(箭,A);腦梗死1 d,T2WI 示左側(cè)大腦腳CST呈稍長(zhǎng)T2信號(hào)(箭,B)
2.3 臨床恢復(fù)情況評(píng)估 腦梗死1 d,評(píng)估30例急性期CST WD的神經(jīng)功能障礙情況和大腦腳寬度比,建立急性期CST WD臨床和影像學(xué)數(shù)據(jù)基線,隨訪1個(gè)月、6個(gè)月、12個(gè)月觀察大腦腳寬度變化及神經(jīng)功能恢復(fù)情況見表1,隨訪1個(gè)月、6個(gè)月、12個(gè)月DWI高信號(hào)組NIHSS評(píng)分高于DWI等信號(hào)組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);隨訪12個(gè)月DWI高信號(hào)組大腦腳寬度比小于DWI等信號(hào)組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。
WD病理顯示神經(jīng)細(xì)胞染色淺淡,胞體表面不平,細(xì)胞核固縮或碎裂,軸突腫脹,髓鞘崩解,有髓纖維減少、萎縮,泡沫巨噬細(xì)胞浸潤(rùn),伴有神經(jīng)膠質(zhì)細(xì)胞增生。WD按照不同時(shí)期病理改變及影像學(xué)差異分為4 期[7]。本研究顯示,腦梗死所致CST急性WD的DWI可以呈高信號(hào)和等信號(hào),與Jones等[8]的研究結(jié)果一致。由于細(xì)胞外大量水分子進(jìn)入細(xì)胞內(nèi)引起細(xì)胞腫脹,細(xì)胞外間隙縮小,導(dǎo)致水分子活動(dòng)受限加重,表觀擴(kuò)散系數(shù)(ADC)值降低,DWI呈高信號(hào)。然而Liu等[9]研究顯示,急性期CST ADC值增高,可能因?yàn)閃D 引起神經(jīng)元凋亡,髓鞘脫失,軸突外間隙增大,導(dǎo)致水分子擴(kuò)散的受限因素減少??傊?,WD水分子擴(kuò)散情況改變是引起DWI信號(hào)改變的關(guān)鍵,但是在急性期CST WD的DWI信號(hào)變化的時(shí)間臨界點(diǎn)尚不清楚,有待進(jìn)一步研究。腦梗死后可能引起不同程度的神經(jīng)功能障礙,梗死是否合并錐體束WD是影響梗死預(yù)后及神經(jīng)功能恢復(fù)的重要因素[8,10-11]。本研究顯示,急性期腦梗死CST變性DWI呈高信號(hào)組神經(jīng)功能恢復(fù)較等信號(hào)組差,提示CST WD的DWI早期信號(hào)特點(diǎn)能預(yù)測(cè)腦梗死預(yù)后,幫助臨床診斷和制訂康復(fù)計(jì)劃,為延緩CST軸突變性、早期治療和預(yù)后評(píng)估提供準(zhǔn)確的影像學(xué)信息,因此WD早期變化需要引起臨床高度重視。然而在腦梗死急性期兩組神經(jīng)運(yùn)動(dòng)功能損害情況并無(wú)明顯差異,可能由于腦梗死合并水腫、缺血半暗帶、占位效應(yīng)共同干擾CST功能所致,這與方珉等[12]對(duì)WD的擴(kuò)散張量成像研究結(jié)果類似。擴(kuò)散張量成像能早期、敏感地發(fā)現(xiàn)有髓纖維的完整性,且各向異性分?jǐn)?shù)值減低與WD短期預(yù)后有相關(guān)性[10],但是擴(kuò)散張量成像對(duì)MR要求高,成像時(shí)間長(zhǎng),影響因素多。然而,常規(guī)擴(kuò)散在臨床工作中得到普遍應(yīng)用,重復(fù)性較好,相對(duì)容易執(zhí)行,因此DWI可能在評(píng)價(jià)CST WD 更有實(shí)際意義。隨著發(fā)病時(shí)間推移,WD變性組織親水性明顯增加,髓鞘脂質(zhì)崩解破壞,膠質(zhì)增生,引起CST變性萎縮[13]。本研究顯示,常規(guī)MRI顯示CST WD 的時(shí)間參差不齊,變性的范圍和萎縮程度隨時(shí)間延長(zhǎng)逐漸明顯。隨訪6個(gè)月內(nèi),CST DWI高信號(hào)組和等信號(hào)組大腦腳寬度比無(wú)明顯差異,但本研究中CST DWI 高信號(hào)組1例患者大腦腳存在不對(duì)稱性,這可能與發(fā)育變異有關(guān)。隨訪12個(gè)月,兩組患側(cè)大腦腳寬度比差異有統(tǒng)計(jì)學(xué)意義(P<0.05),CST DWI高信號(hào)組大腦腳寬度比明顯低于等信號(hào)組,且WD 6~12個(gè)月大腦腳明顯萎縮,提示W(wǎng)D 6~12個(gè)月是CST髓鞘脫失、神經(jīng)元軸突減少的快速期,與Buss等[14]報(bào)道的髓鞘蛋白丟失時(shí)間存在差異。同時(shí)表明急性期CST DWI高信號(hào)WD程度更重,故DWI能遠(yuǎn)期預(yù)測(cè)大腦腳CST萎縮程度。Mark等[6]研究顯示,大腦腳萎縮與腦梗死對(duì)椎體束損傷程度有關(guān),提示W(wǎng)D與其胞體和近端軸突損傷程度密切相關(guān)。WD進(jìn)一步發(fā)展,隨著神經(jīng)元軸突和髓鞘減少,神經(jīng)膠質(zhì)增生,CST萎縮是否趨于穩(wěn)定,需要長(zhǎng)期隨訪觀察WD才能得到進(jìn)一步證實(shí)。
本研究病例數(shù)較少,研究CST WD僅局限于腦梗死,對(duì)大腦腳萎縮的判斷局限于傳統(tǒng)方法。在今后的工作中將進(jìn)一步開展多因素所致CST WD的變化差異,探討評(píng)估大腦腳萎縮更精確的方法。
總之,腦梗死所致CST WD軸突和髓鞘減少隨著時(shí)間變化存在一定的規(guī)律,1~6個(gè)月WD是軸突腫脹、髓鞘崩解、T2WI高信號(hào)的主要時(shí)期,6~12個(gè)月是WD有髓纖維容積減少、腦干不對(duì)稱萎縮、膠質(zhì)增生的重要階段。CST DWI早期高信號(hào)可能提示腦梗死預(yù)后較差。
[1] 王潤(rùn)榕, 譚政帥, 張帥, 等. 紋狀體內(nèi)囊梗死上肢運(yùn)動(dòng)功能損害的腦橋基底部擴(kuò)散張量成像. 醫(yī)學(xué)影像學(xué)雜志, 2014,24(7): 1093-1097.
[2] Freeman MR. Signaling mechanisms regulating Wallerian degeneration. Curr Opin Neurobiol, 2014, 27: 224-231.
[3] Venkatasubramanian C, Kleinman JT, Fischbein NJ, et al. Natural history and prognostic value of corticospinal tract Wallerian degeneration in intracerebral hemorrhage. J Am Heart Assoc, 2013, 2(4): e000090.
[4] 中華醫(yī)學(xué)會(huì)神經(jīng)病學(xué)分會(huì)腦血管病學(xué)組急性腦卒中診治指南撰寫組. 中國(guó)急性缺血性腦卒中診治指南2010. 中國(guó)臨床醫(yī)生, 2011, 2(3): 67-73.
[5] Virta A, Barnett A, Pierpaoli C. Visualizing and characterizing white matter fiber structure and architecture in the human pyramidal tract using diffusion tensor MRI. Magn Reson Imaging, 1999, 17(8): 1121-1133.
[6] Mark VW, Taub E, Perkins C, et al. Poststroke cerebral peduncular atrophy correlates with a measure of corticospinal tract injury in the cerebral hemisphere. Am J Neuroradiol,2008, 29(2): 354-358.
[7] Thomalla G, Glauche V, Weiller C, et al. Time course of Wallerian degeneration after ischaemic stroke revealed by diffusion tensor imaging. J Neurol Neurosurg Psychiatry, 2005,76(2): 266-268.
[8] Jones KC, Hawkins C, Armstrong D, et al. Association between radiographic Wallerian degeneration and neuropathological changes post childhood stroke. Dev Med Child Neurol, 2013,55(2): 173-177.
[9] Liu M, Gross DW, Wheatley BM, et al. The acute phase of Wallerian degeneration: longitudinal diffusion tensor imaging of the fornix following temporal lobe surgery. Neuroimage,2013, 74: 128-139.
[10] 李捷, 王大明, 胡浩宇, 等. 彌散張量成像動(dòng)態(tài)觀察腦出血及腦梗死引起錐體束繼發(fā)損傷. 實(shí)用放射學(xué)雜志, 2011,27(4): 483-486, 563.
[11] Lindberg PG, Skej? PH, Rounis E, et al. Wallerian degeneration of the corticofugal tracts in chronic stroke: a pilot study relating diffusion tensor imaging, transcranial magnetic stimulation, and hand function. Neurorehabil Neural Repair,2007, 21(6): 551-560.
[12] 方珉, 謝瑞滿, 周林江, 等. 應(yīng)用擴(kuò)散張量成像研究腦梗死后早期皮質(zhì)脊髓束Waller 變性與運(yùn)動(dòng)功能的相關(guān)性. 中國(guó)醫(yī)學(xué)計(jì)算機(jī)成像雜志, 2011, 17(3): 193-196.
[13] Saxena S, Caroni P. Mechanisms of axon degeneration: from development to disease. Prog Neurobiol, 2007, 83(3): 174-191. [14] Buss A, Brook GA, Kakulas B, et al. Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord. Brain, 2004, 127(Pt 1):34-44.
(本文編輯 張春輝)
Dynamic Study of Corticospinal Tract Wallerian Degeneration After Cerebral Infarction with MRI
10.3969/j.issn.1005-5185.2016.07.003
張小玲
2015-12-10
R445.2