• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal Decomposition Reaction Kinetics of a HAN-based Gel Propellant

    2016-09-19 07:34:04CHENYongkangCHENYehongANZhentaoZHANGLiZHANGQianLIUJianguo
    火炸藥學(xué)報(bào) 2016年4期
    關(guān)鍵詞:劉建國聚乙烯醇推進(jìn)劑

    CHEN Yong-kang, CHEN Ye-hong, AN Zhen-tao, ZHANG Li, ZHANG Qian,LIU Jian-guo

    (1. Ordnance Engineering College, Shijiazhuang 050003, China;2. Hebei University of Technology, Tianjin 300130, China)

    陳永康1,陳也弘2,安振濤1,張 力1,張 倩1,劉建國1

    (1.軍械工程學(xué)院,河北 石家莊 050003; 2.河北工業(yè)大學(xué),天津 300130)

    ?

    Thermal Decomposition Reaction Kinetics of a HAN-based Gel Propellant

    CHEN Yong-kang1, CHEN Ye-hong2, AN Zhen-tao1, ZHANG Li1, ZHANG Qian1,LIU Jian-guo1

    (1. Ordnance Engineering College, Shijiazhuang 050003, China;2. Hebei University of Technology, Tianjin 300130, China)

    In order to study the thermal decomposition characteristics of hydroxylamine nitrate(HAN) based gel propellant, the thermal decomposition of two kinds of HAN-based gel propellant samples containing polyvinyl alcohol(PVA) with different mass was tested by differential scanning calorimeter(DSC) and thermogravimetric analyzer(TGA). A double-base propellant was chosen to be compared with this propellant. The thermal decomposition process of HAN-based gel propellant and double-base propellant was analyzed and kinetic parameters of their thermal decomposition reaction were obtained. Activation energy was calculated by an isoconversional method. The critical temperature of thermal explosion and self accelerating decomposition temperature were calculated by Zhang-Hu-Xie-Li method. Malek method is used to infer the most probable mechanism function of thermal decomposition reaction. Results show that the thermal decomposition of HAN-based gel propellant is a continuous exothermic process and has a small amount of residue. The activation energy is about 100kJ/mol. The critical temperature of thermal explosion and self accelerating decomposition temperature increase when the content of PVA increases. HAN-based gel propellant has good thermal stability compared with thermal decomposition parameters of double-base propellant.

    gel propellant; Malek method; decomposition reaction kinetics; thermal stability;HAN;polyvinyl alcohol

    HAN-基凝膠推進(jìn)劑的熱分解反應(yīng)動力學(xué)

    陳永康1,陳也弘2,安振濤1,張力1,張倩1,劉建國1

    (1.軍械工程學(xué)院,河北 石家莊 050003; 2.河北工業(yè)大學(xué),天津 300130)

    Introduction

    Gel propellant is a system with specific structure and performance.[1-2]The gelation of liquid fuel, the oxidant or the mixture of them needs a small amount of gels. The large amount of solid fuel uniformly suspend in the propellant system. Gel propellant combines the advantages of solid propellant and liquid propellant.

    In 1970s, hydroxylamine nitrate (HAN)-based liquid propellant[3-5]developed rapidly because of high energy, low freezing point, safety and non-pollution. It was first used as liquid propellant by the US military[6-7]. But there are still some problems including combustion pressure oscillation, poor stability, easy spontaneous combustion and poor storage security. For this reason, liquid propellants are gelled to obtain good mechanical properties, stable combustion characteristics and good storage stability. Ma Zhongliang[8]prepared a HAN-based hydrogel propellant and tested its performance. Results show that the ignition of the propellant is difficult. But the combustion is clean. He Liming[9]found that the HAN hydrogel will precipitate liquid under long storage conditions. The storage temperature should not be higher than 313K.

    In this study, a HAN-based gel propellant was prepared. Polyvinyl alcohol (PVA) was added as a gel. The main combustion product of this propellant is N2, CO2and H2O which are non-toxic and non-polluting. Thermal decomposition process of this propellant was tested by TGA and DSC. A double-base propellant which is commonly used and has good thermal stability was also chosen to be compared with this propellant. The activation energy and the most available mechanism function were obtained to evaluate the thermal stability of this kind of gel propellant comprehensively. The evaluation will provide an important basis for the gel propellant application in the future.

    1 Experimental

    1.1Samples

    Table 1 shows the experimental samples. Two kinds of HAN-based gel propellant were prepared which differ in polyvinyl alcohol(PVA) content. A double-base propellant sample (sample 3) was prepared to be compared with HAN-based gel propellants.

    The HP204 DSC employed in the experiment is from NETZCH Company of Germany, and the field emission scanning electron microscopy from FEI Company.Pyris-1 thermogravimetry and DSC 8000 differential scanning calorimeter from US PerkinElmer.

    Table 1 Components of experiment samples

    1.2Performance tests

    Thermal decomposition processes of three samples were tested by TG and DSC. Experimental conditions: N2atmosphere(purity 99.999%), pressure is 0.2MPa, gas flow rate is 20mL/min, the mass of the sample is about 2mg.

    2 Results and discussions

    2.1Thermogravimetry test results

    Fig.1 are TG curves of the three samples.

    As can be seen from Fig.1, the decomposition of HAN-based gel propellant has a step of about 5% mass loss from beginning to about 400K, which is the loss of water in gel propellant samples. The next mass loss step from about 400-500K is the continuous thermal decomposition process. The final mass loss of sample1 is 86.1% and the residue is 13.9%. The final mass loss of sample2 is 87.3% and the residue is 12.7%. The results show that the thermal decomposition of gel propellant is comparatively thorough and only has a small amout of residue.

    As can be seen in Fig.1(c), the decomposition of double-base propellant is divided into two steps. The first stage is the thermal decomposition of nitroglycerine(NG) from about 370-440K with 28.6% mass loss[10]. The nitrocotton(NC) has not yet reached the critical state of thermal decomposition in this stage. When the thermal decomposition of NG has almost reached the end, NC traps heat. In this reason, the decomposition rate of double-base propellant becomes slow. The second stage is the thermal decomposition stage of NC which probably from 440-525K[11-12]. As the temperature increases, the thermal decomposition accelerates. Mass loss step becomes steep. The mass loss of the second step is 54.54%. The final mass loss of double-base propellant is 83.17% and the residue is 16.83%. The decomposition of gel propellant is more thorough than double-base propellant and the residue is less.

    Fig.1 TG curves of three samples at different heating rates

    2.2DSC test results

    Fig.2 are DSC curves of the three samples.

    As can be seen from Fig.2, samples 1 and 2 have an exothermic decomposition peak. With the heating rate accelerating, the exothermic peak shifts to higher temperature. And the exothermic peaks of two samples are accompanied by a shoulder peak at slow heating rates. When the heating rate accelerates, shoulder peak has been gradually concealed. This peak is exothermic peak of PVA. Due to higher PVA content, the shoulder peak of sample 2 is more obvious.

    The thermal decomposition of the double-base propellant sample has only one smooth and symmetry exothermic peak.

    The thermal decomposition parameters calculated from DSC curves are shown in Table 2.

    Table 2 DSC data of the three samples at different heating rates

    Note:Teis initial decomposition temperature;Tpis peak temperature; ΔHis enthalpy change.

    According to DSC datas, the kinetic parameters can be calculated by isoconversional method[13].

    2.2.1Kinetic parameters calculation

    The formula of Flym-Wall-Ozawa method[14-15]which is commonly used is

    (1)

    In formula (1):Ais frequency factor, s-1;Eis activation energy, J/mol;Ris molar gas constant, 8.31J/(mol·K);αis the depth of the reaction;G(α) is the integral form of mechanism function;Tis the reaction temperature, K.

    Formula of Kissinger method[16]is

    (2)

    Calculation results are shown in Table 3. The results suggest that the activation energy of gel propellant is a bit lower than that of double-base propellant. The increase of PVA content can barely affect the activation energy of gel propellant.

    Table 3  Activation energy of three samples calculated by

    2.2.2Thermal safety parameters calculation

    Critical temperature of thermal explosionTbcan be obtained according to Zhang-Hu-Xie-Li method[17]:

    (3)

    Table 4 Calculated results of thermal safety parameters

    TbandTSADTof sample 2 are higer than sample 1.TbandTSADTof double-base propellant are a bit lower than sample 2. The results show that the increase of PVA content can raiseTbandTSADTof gel propellant.

    2.3Select mechanism function by Malek method

    Malek method[18-19]is a new method for thermal kinetics analysis. This method starts from calculating activation energy by isoconversional method and gradually obtains kinetic results without any assumptions and approximations. Malek method selects reasonable mechanism functions logically and avoids trying mechanism functions one by one. Malek method calculates and infers a reasonable mechanism function by defining functiony(α)-αandZ(α)-αwhich are based on experimental data[20-21].

    y(α)=(T/T0.5)2(dα/dt)(dα/dt)0.5

    (4)

    Z(α)=π(u)(dα/dt)T/β

    (5)

    In formulae (4) and (5),T0.5and (dα/dt)0.5are respectively the temperature and reaction rate whenα=0.5; π(u) is temperature integral using Luke approximation[22]π(u)=1/(u+2),u=E/RT.

    The experimental data is plugged into formulae (4) and (5) to obtainy(α)-αandZ(α)-αcurves which are shown in Fig.3.

    Fig.3 y(α)-α and Z(α)-α curves for samples 1 and 2

    Table 5 Characteristic parameters for two gel propellant samples

    Using curves and characteristic parameters can infer the most probable mechanism functionf(α).

    (6)

    Linear fitting for ln[(dα/dt)eu] and ln[αS(1-α)] is used.nis obtained according to the slope.S=m/n,mis determined according toS. The mechanism functions of sample 1 isf(α)=α2.19(1-α)1.08.

    (7)

    In formula (7),f′(αp) is the differential value off(α) whenα=αp.

    The average lgAof samples 1 and 2 are 15.32 and 16.18,respectively.

    In this way, the rate equation describing the thermal decomposition reaction of gel propellant samples are obtained:

    for sample 1:

    dα/dt=1015.32exp(10063/RT)α2.19(1-α)1.08;

    for sample 2:

    dα/dt=1016.18exp(10175/RT)α2.11(1-α)1.22

    3 Conclusions

    (1) The decomposition of HAN-based gel propellant is a continuous exothermic reaction and is more thorough than double-base propellant. Gel propellant has good thermal stability.

    (2) The rate equation describing the thermal decomposition reaction of gel propellant samples 1 and 2 are dα/dt=1015.32exp(10063/RT)α2.19(1-α)1.08and dα/dt=1016.18exp(10175/RT)α2.11(1-α)1.22, respectively.

    (3) Increasing PVA content can raiseTbandTSADTof gel propellant.

    References:

    [1]Haeseler D, Bombelli V, Vuillermoz P, et al. Green propellant propulsion concepts for space transportation and technology development needs[C]∥Proceedings of the 2nd International Conference on Green Propellants for Space Propulsion. Cargliari: Esa Special Publication, 2004.

    [2]Muller D C, Turns S R. Theoretical effects of aluminum gel propellant secondary atomization on rocket engine performance[J]. Journal of Propulsion and Power, 2012, 12(3): 591-597.

    [3]Liu L, Papadaki M, Pontiki E. Isothermal decomposition of hydroxylamine and hydroxylamine nitrate in aqueous solutions in the temperature range 80-160 degree C[J]. Journal of Hazard Matter, 2009, 165(1/3): 573-578.

    [4]Fokema M D, Torkeleson J E. Thermally stable catalysts and process for the decomposition liquid propellant: US, 20070184971[P].2007.

    [5]CHEN Xin-qiang, ZHANG Zhi-yong, TENG Yi-gang, et al. Two kinds of green liquid monopropellants HAN, AND for replacing hydrazine[J]. Chemical Propellants & Polymeric Materials, 2011, 9(4): 63-66.

    [6]Sachiem Robert L. Overview of United States space propulsion technology and associated space transportation systems[J]. Journal of Propulsion and Power, 2006, 22(6): 1310-1333.

    [7]Meinhardt D, Breweter G, Christofferson S, et al. Development and testing of new HAN based mono-propellants in small rocket thrusters, 98-4006[R]. New York: AIAA, 1998.

    [8]MA Zhong-liang, WU Hao, HE Li-ming, et al. Performance of HAN-based gel propellants[J]. Sichuan Defence Technology, 2007, 29(3): 3-5.

    [9]HE Li-ming, XIAO Zhong-liang, LI You-ping, et al. Storage performance of HAN Hydrogel[J]. Chinese Journal of Energetic Materials, 2011,19(2): 226-228.

    [10] WANG Xuan-jun, WANG Ze-shan. Thermal decomposition performance of energy increased and deterred single-base propellant[J]. Journal of Ballistics, 1999, 9(1): 22-26.

    [11] Liu Y, Jiang Y T, Feng C G. Thermal kinetic performance and storage life analysis of a series of high-energy and green energetic materials[J]. Journal of Thermal Analysis & Calorimatry, 2015, 119(1): 659-670.

    [12] YU Jin-yang, CHEN Li-ping, PEN Jin-hua. Thermal decomposition behavior of retired single-base propellant[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2013, 36(1): 73-77.

    [13] Dickinson C F, Heal G R. A review of the ICTAC kinetics project. Part 2. Non-isothermal results[J]. Thermochimica Acta, 2007, 494, 15-25.

    [14] Koga N. Ozawa′s kinetic method for analyzing thermoanalytical curves[J]. Journal of Thermal Analysis & Calorimetry, 2013, 113(3): 1527-1541.

    [15] HU Rong-zu, GAO Sheng-li, ZHAO Feng-qi, et al. Thermal Analysis Kinetics[M]. Beijing: Science Press, 2008.

    [16] Ruben Ruiz-Femenia, Caballero J A. Analysis of the relative strength of the singular values obtained from the nonparametric kinetic method[J]. Journal of Thermal Analysis & Calorimatry, 2012, 107(2): 585-596.

    [17] HU Rong-zu, SUN Li-xia, WU Shan-xiang, et al. Explosives Testing Methods GJB772A-97 Self-ignition Temperature, DTA and DSC Method[M]. Beijing:National Defense Standard Press, 1997, 181-183.

    [18] Perez-Maqueda L A, Criado J M. Combined kinetic analysis for crystallization kinetics of non-crystalline solids[J]. Journal of Non-crystalline Solids, 2003,320(1): 84-91.

    [19] Malek J. The application of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses[J]. Thermochim Acta, 1995, 267: 61-73.

    [20] WANG Shao-xu, ZHAO Zhe, TAN Zhi-cheng, et al. Thermal stability and kinetics of thermal decompositon for protionamide[J]. Acta Phys-Chim Sin, 2007, 23(9): 1459-1462.

    [21] TANG Zhan, REN Yan, YANG Li, et al. A new way to estimate the thermal decomposition mechanism function and thermal safety of RDX[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2011, 34(1), 19-22.

    [22] Luke Y K. Mathematical Functions and their Approximations[M].New York: Academic Press, 1975.

    [23] BAO Shi-long, CHEN Wang-hua, CHEN Li-ping, et al. Identification and thermokinetics of autocatalytics exothermic decomposition of 2, 4-Dinitrotoluene[J]. Acta Phys-Chim Sin, 2013, 29(3):479-485.

    [24] Gotor F J, Criado J M. Kinetic analysis of solid-state reaction: the universality of master plots for analyzing isothermal and nonisothermal experiments[J].The Journal of Physical Chemistry A,2000,104(46): 10777-10782.

    10.14077/j.issn.1007-7812.2016.04.015

    為研究HAN-基凝膠推進(jìn)劑的熱分解特性,利用差示掃描量熱儀(DSC)和熱重分析儀(TGA)對兩種含不同質(zhì)量聚乙烯醇(PVA)的HAN-基凝膠推進(jìn)劑樣品進(jìn)行熱分析試驗(yàn),并與一種雙基推進(jìn)劑進(jìn)行對比。分析了HAN-基凝膠推進(jìn)劑和雙基推進(jìn)劑的熱分解過程,得到熱分解反應(yīng)的動力學(xué)參數(shù);采用等轉(zhuǎn)化率法計(jì)算了活化能,采用Zhang-Hu-Xie-Li等方法計(jì)算出熱爆炸臨界溫度和自加速分解溫度。采用Malek法推斷出兩種HAN-基凝膠推進(jìn)劑樣品的熱分解反應(yīng)的最可幾機(jī)理函數(shù)。結(jié)果表明, HAN-基凝膠推進(jìn)劑的熱分解是一個(gè)連續(xù)的放熱過程,熱分解較為徹底,殘?jiān)^少,活化能約為100kJ/mol。當(dāng)PVA含量增加時(shí),其熱爆炸臨界溫度和自加速分解溫度升高。與雙基推進(jìn)劑相比,HAN-基凝膠推進(jìn)劑具有較好的熱安定性。

    凝膠推進(jìn)劑;Malek法;分解反應(yīng)動力學(xué);熱安定性;HAN;聚乙烯醇

    date:2016-01-11;Revised date:2016-03-17

    TJ55;V512Document Code:AArticle ID:1007-7812(2016)04-0077-05

    Biography:CHEN Yong-kang (1991-), male, research field: ammunition support and safety technology.E-mail:995019739@qq.com

    猜你喜歡
    劉建國聚乙烯醇推進(jìn)劑
    社火迎新
    金秋(2024年2期)2024-04-17 08:10:28
    改性復(fù)合聚乙烯醇食品包裝膜研究進(jìn)展
    Interaction Solutions for Kadomtsev-Petviashvili Equation with Variable Coefficients?
    New Double-Periodic Soliton Solutions for the(2+1)-Dimensional Breaking Soliton Equation?
    聚乙烯醇膠粘劑在育秧紙缽中的應(yīng)用
    天津造紙(2016年1期)2017-01-15 14:03:28
    聚乙烯醇/淀粉納米晶復(fù)合膜的制備及表征
    中國塑料(2015年3期)2015-11-27 03:42:15
    KNSB推進(jìn)劑最佳配比研究
    含LLM-105無煙CMDB推進(jìn)劑的燃燒性能
    無鋁低燃速NEPE推進(jìn)劑的燃燒性能
    DNTF-CMDB推進(jìn)劑的燃燒機(jī)理
    天天躁夜夜躁狠狠久久av| 两性午夜刺激爽爽歪歪视频在线观看| 大香蕉久久网| 国产高潮美女av| 草草在线视频免费看| 久久久久久久午夜电影| 国产成人影院久久av| 久久精品国产亚洲网站| 99热这里只有是精品50| 国产视频一区二区在线看| 久久欧美精品欧美久久欧美| 国产精品三级大全| 99在线视频只有这里精品首页| 亚洲国产精品国产精品| av天堂中文字幕网| 特级一级黄色大片| 亚洲美女黄片视频| 最近视频中文字幕2019在线8| 1024手机看黄色片| 成人美女网站在线观看视频| 夜夜看夜夜爽夜夜摸| 搡女人真爽免费视频火全软件 | 久久久精品欧美日韩精品| 久久久国产成人免费| 成人美女网站在线观看视频| 日本黄大片高清| 国产私拍福利视频在线观看| 美女内射精品一级片tv| 校园春色视频在线观看| 日本熟妇午夜| www日本黄色视频网| 99九九线精品视频在线观看视频| 国产日本99.免费观看| 国产av麻豆久久久久久久| 日本黄大片高清| 国产成年人精品一区二区| 日韩av在线大香蕉| 亚洲人成网站在线播| 国产探花极品一区二区| 国产一区二区三区av在线 | 国产精品一二三区在线看| 麻豆一二三区av精品| 免费在线观看影片大全网站| 国产黄a三级三级三级人| 国产亚洲精品久久久com| 真实男女啪啪啪动态图| 日本-黄色视频高清免费观看| 色综合亚洲欧美另类图片| 日日摸夜夜添夜夜爱| 亚洲精品国产成人久久av| 国产精品一区www在线观看| 免费观看精品视频网站| 国产爱豆传媒在线观看| 成人特级av手机在线观看| 人妻少妇偷人精品九色| 波多野结衣巨乳人妻| 亚洲精品亚洲一区二区| 乱人视频在线观看| 美女高潮的动态| 中国美白少妇内射xxxbb| 久久欧美精品欧美久久欧美| 俄罗斯特黄特色一大片| 久久精品国产99精品国产亚洲性色| 欧美日本视频| 深夜a级毛片| 日韩欧美免费精品| 中出人妻视频一区二区| 免费无遮挡裸体视频| avwww免费| 天美传媒精品一区二区| 欧美成人精品欧美一级黄| 日本熟妇午夜| 久久婷婷人人爽人人干人人爱| 毛片一级片免费看久久久久| 亚洲国产精品国产精品| 永久网站在线| 国产黄a三级三级三级人| 别揉我奶头~嗯~啊~动态视频| 联通29元200g的流量卡| 亚洲精品亚洲一区二区| 在线观看美女被高潮喷水网站| 国产亚洲欧美98| 亚洲无线观看免费| 黄片wwwwww| 丝袜美腿在线中文| 级片在线观看| 国内精品美女久久久久久| 精品午夜福利在线看| 老司机影院成人| 国内精品久久久久精免费| 亚洲人成网站在线播放欧美日韩| 国产一区亚洲一区在线观看| 国产黄色视频一区二区在线观看 | 色尼玛亚洲综合影院| .国产精品久久| 久久精品国产清高在天天线| 男人的好看免费观看在线视频| 精品一区二区三区av网在线观看| 国产爱豆传媒在线观看| 一级毛片久久久久久久久女| 内地一区二区视频在线| 国产精品亚洲一级av第二区| АⅤ资源中文在线天堂| 狂野欧美白嫩少妇大欣赏| 国产精品不卡视频一区二区| www日本黄色视频网| 六月丁香七月| 成人美女网站在线观看视频| 欧美又色又爽又黄视频| 一个人免费在线观看电影| 特大巨黑吊av在线直播| 国产高清不卡午夜福利| 久久精品影院6| 国产黄色视频一区二区在线观看 | 青春草视频在线免费观看| 日本免费一区二区三区高清不卡| 成人特级av手机在线观看| 久久99热6这里只有精品| 欧美+日韩+精品| 久久精品久久久久久噜噜老黄 | 我要搜黄色片| 内地一区二区视频在线| 成人特级黄色片久久久久久久| АⅤ资源中文在线天堂| 久久99热6这里只有精品| 日韩,欧美,国产一区二区三区 | 婷婷精品国产亚洲av在线| 18禁在线播放成人免费| 精品久久久久久成人av| 精品熟女少妇av免费看| 嫩草影院精品99| 男人狂女人下面高潮的视频| 免费av不卡在线播放| 97超视频在线观看视频| 美女 人体艺术 gogo| 亚洲性久久影院| 少妇被粗大猛烈的视频| 最近手机中文字幕大全| 久久久欧美国产精品| 亚洲自拍偷在线| 色播亚洲综合网| 中文在线观看免费www的网站| 我的老师免费观看完整版| 九九热线精品视视频播放| 麻豆av噜噜一区二区三区| 看免费成人av毛片| 亚洲国产欧洲综合997久久,| 色视频www国产| 大香蕉久久网| 亚洲自偷自拍三级| 中文字幕精品亚洲无线码一区| 欧美日韩国产亚洲二区| 日日撸夜夜添| 韩国av在线不卡| 色综合色国产| 99在线人妻在线中文字幕| 久久99热6这里只有精品| 伦理电影大哥的女人| 99久久中文字幕三级久久日本| 国产淫片久久久久久久久| 97超碰精品成人国产| 18禁黄网站禁片免费观看直播| 亚洲精品久久国产高清桃花| 精品久久久久久久人妻蜜臀av| 国产真实伦视频高清在线观看| 国产成人a∨麻豆精品| 成人美女网站在线观看视频| 午夜福利18| 亚洲精品影视一区二区三区av| 亚洲av成人精品一区久久| 91久久精品电影网| 国产高清有码在线观看视频| 国产色婷婷99| 亚洲成人中文字幕在线播放| 久久午夜福利片| 亚洲三级黄色毛片| 亚洲精品成人久久久久久| 亚洲va在线va天堂va国产| 少妇的逼水好多| 少妇丰满av| 99在线视频只有这里精品首页| 国产伦一二天堂av在线观看| av免费在线看不卡| 国产精品一二三区在线看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av成人av| 如何舔出高潮| 我的老师免费观看完整版| 狠狠狠狠99中文字幕| 午夜久久久久精精品| 男女啪啪激烈高潮av片| 毛片一级片免费看久久久久| 午夜免费男女啪啪视频观看 | 精品一区二区三区av网在线观看| 日本色播在线视频| 日韩亚洲欧美综合| 欧美+日韩+精品| 丰满人妻一区二区三区视频av| 国产黄色视频一区二区在线观看 | 免费av观看视频| 五月伊人婷婷丁香| 99在线视频只有这里精品首页| 欧美激情国产日韩精品一区| 久久精品影院6| 久久草成人影院| 午夜福利在线观看免费完整高清在 | 精品久久久久久久人妻蜜臀av| 国产真实伦视频高清在线观看| 亚洲欧美清纯卡通| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲熟妇熟女久久| 97超级碰碰碰精品色视频在线观看| 久久久久国产精品人妻aⅴ院| 深夜精品福利| 色av中文字幕| 日韩精品青青久久久久久| 夜夜爽天天搞| 欧美日本视频| 免费高清视频大片| 一卡2卡三卡四卡精品乱码亚洲| 欧美最新免费一区二区三区| 久久久久久国产a免费观看| 特大巨黑吊av在线直播| 久久精品人妻少妇| 99久久无色码亚洲精品果冻| 亚洲第一电影网av| 久久鲁丝午夜福利片| 久久久久久伊人网av| 老熟妇仑乱视频hdxx| 在线国产一区二区在线| av国产免费在线观看| 禁无遮挡网站| 国产av麻豆久久久久久久| 神马国产精品三级电影在线观看| 免费看美女性在线毛片视频| 亚洲av电影不卡..在线观看| 国产熟女欧美一区二区| 十八禁网站免费在线| 国产亚洲av嫩草精品影院| 久久精品国产鲁丝片午夜精品| 国产白丝娇喘喷水9色精品| 亚洲成人精品中文字幕电影| 观看美女的网站| 欧美日韩乱码在线| 久久人妻av系列| 村上凉子中文字幕在线| 女人十人毛片免费观看3o分钟| 欧美极品一区二区三区四区| 九九在线视频观看精品| 高清日韩中文字幕在线| 99国产精品一区二区蜜桃av| 色av中文字幕| 色哟哟哟哟哟哟| 亚洲内射少妇av| 亚洲av不卡在线观看| 国产成人一区二区在线| 日韩欧美精品v在线| 一区二区三区免费毛片| 级片在线观看| 久久热精品热| 一个人免费在线观看电影| 欧洲精品卡2卡3卡4卡5卡区| 国产黄片美女视频| 国产精品人妻久久久影院| 美女 人体艺术 gogo| 赤兔流量卡办理| 久久精品夜夜夜夜夜久久蜜豆| 俄罗斯特黄特色一大片| 老司机影院成人| 搞女人的毛片| 欧美日韩精品成人综合77777| 夜夜爽天天搞| 久久久久久久久久久丰满| 国产精品一区二区性色av| 久久久久久国产a免费观看| 欧美中文日本在线观看视频| 国产毛片a区久久久久| 免费av毛片视频| 最近在线观看免费完整版| 亚洲av成人精品一区久久| 国产高潮美女av| 观看美女的网站| 99热精品在线国产| 国产精品福利在线免费观看| 欧美xxxx黑人xx丫x性爽| 中文字幕久久专区| 婷婷精品国产亚洲av在线| 欧美zozozo另类| 国产探花在线观看一区二区| 久久人人精品亚洲av| 午夜福利在线观看吧| 夜夜夜夜夜久久久久| 欧美激情久久久久久爽电影| 国产亚洲91精品色在线| 久久99热6这里只有精品| 九九在线视频观看精品| 亚洲精品国产成人久久av| 国内久久婷婷六月综合欲色啪| 22中文网久久字幕| 日本a在线网址| 又黄又爽又刺激的免费视频.| 国产免费一级a男人的天堂| 十八禁网站免费在线| 国产精品一二三区在线看| .国产精品久久| 国产精品女同一区二区软件| 国产精品伦人一区二区| 女同久久另类99精品国产91| 长腿黑丝高跟| 久久99热6这里只有精品| 婷婷亚洲欧美| 久久人人爽人人爽人人片va| 亚洲欧美精品综合久久99| 22中文网久久字幕| 日本爱情动作片www.在线观看 | 中文字幕av在线有码专区| 免费看a级黄色片| av女优亚洲男人天堂| 伊人久久精品亚洲午夜| 美女黄网站色视频| 国产中年淑女户外野战色| 亚洲av中文字字幕乱码综合| 国产 一区精品| 国内精品宾馆在线| 国产精品人妻久久久久久| avwww免费| 男人和女人高潮做爰伦理| 99热这里只有是精品50| 国产一区二区三区av在线 | 亚洲美女视频黄频| 给我免费播放毛片高清在线观看| 日韩成人伦理影院| 国内精品美女久久久久久| 最近视频中文字幕2019在线8| 国内久久婷婷六月综合欲色啪| 国产爱豆传媒在线观看| 亚洲av熟女| 亚洲欧美日韩高清在线视频| 日本与韩国留学比较| 日韩高清综合在线| 欧美+日韩+精品| 久久人人爽人人爽人人片va| 女人被狂操c到高潮| 婷婷精品国产亚洲av| 亚洲av成人av| 国产精品久久电影中文字幕| 悠悠久久av| 嫩草影院入口| 日韩欧美在线乱码| 人妻夜夜爽99麻豆av| 真人做人爱边吃奶动态| 久久久久国产精品人妻aⅴ院| 热99在线观看视频| 麻豆乱淫一区二区| 亚洲精品一卡2卡三卡4卡5卡| 我要搜黄色片| 亚洲av成人精品一区久久| 亚洲欧美日韩无卡精品| 亚洲性夜色夜夜综合| 精品国内亚洲2022精品成人| 色吧在线观看| 极品教师在线视频| 成人毛片a级毛片在线播放| 日本免费a在线| 极品教师在线视频| 寂寞人妻少妇视频99o| 在线观看美女被高潮喷水网站| 在线播放国产精品三级| 日本五十路高清| 最后的刺客免费高清国语| 欧美日本视频| 色吧在线观看| 欧美3d第一页| 国产高清视频在线播放一区| 人人妻人人看人人澡| 亚洲欧美日韩无卡精品| 国内精品宾馆在线| 国产精品乱码一区二三区的特点| 九色成人免费人妻av| 日韩欧美国产在线观看| 99热只有精品国产| 可以在线观看毛片的网站| 精品午夜福利在线看| 日韩大尺度精品在线看网址| 久久久久久久午夜电影| 国产精品亚洲美女久久久| 午夜亚洲福利在线播放| 99久久九九国产精品国产免费| 69av精品久久久久久| 伦理电影大哥的女人| 国产成人a∨麻豆精品| 欧美最新免费一区二区三区| 99久久精品国产国产毛片| 寂寞人妻少妇视频99o| 亚洲国产色片| 国产av在哪里看| aaaaa片日本免费| av天堂在线播放| a级毛色黄片| 日本与韩国留学比较| 又爽又黄无遮挡网站| 91av网一区二区| 欧美成人免费av一区二区三区| 国产 一区精品| 久久精品国产亚洲网站| 色哟哟哟哟哟哟| 六月丁香七月| 精品国内亚洲2022精品成人| 男人舔女人下体高潮全视频| 免费看av在线观看网站| 波多野结衣高清无吗| 国产亚洲av嫩草精品影院| av专区在线播放| 色在线成人网| 国产欧美日韩一区二区精品| 又黄又爽又免费观看的视频| 亚洲av美国av| 午夜精品在线福利| 97超碰精品成人国产| 看非洲黑人一级黄片| 国产69精品久久久久777片| 三级经典国产精品| 听说在线观看完整版免费高清| 国产91av在线免费观看| 久久热精品热| 国产精品女同一区二区软件| 一级毛片aaaaaa免费看小| 最好的美女福利视频网| 在线观看午夜福利视频| 成人美女网站在线观看视频| 村上凉子中文字幕在线| 18禁在线无遮挡免费观看视频 | 国产精品无大码| 成人av在线播放网站| 欧美人与善性xxx| 有码 亚洲区| 欧美极品一区二区三区四区| 精品熟女少妇av免费看| 日日摸夜夜添夜夜爱| 久久精品国产鲁丝片午夜精品| 欧美日韩在线观看h| 春色校园在线视频观看| 内射极品少妇av片p| 91久久精品国产一区二区三区| av在线老鸭窝| 亚洲精品日韩av片在线观看| 久99久视频精品免费| 日本-黄色视频高清免费观看| 一区二区三区四区激情视频 | 国产免费男女视频| АⅤ资源中文在线天堂| 免费看日本二区| 亚洲欧美精品自产自拍| 欧美成人一区二区免费高清观看| 欧美激情国产日韩精品一区| 综合色av麻豆| 久久精品国产亚洲av天美| 亚洲欧美日韩无卡精品| 好男人在线观看高清免费视频| av在线天堂中文字幕| 国产大屁股一区二区在线视频| 午夜福利18| 一级av片app| av在线观看视频网站免费| 人妻少妇偷人精品九色| 国产成人精品久久久久久| 在现免费观看毛片| 亚洲人成网站在线播放欧美日韩| 一边摸一边抽搐一进一小说| 1024手机看黄色片| 三级男女做爰猛烈吃奶摸视频| 女人十人毛片免费观看3o分钟| 精品久久久久久久人妻蜜臀av| 国产黄a三级三级三级人| 天堂网av新在线| 草草在线视频免费看| 乱系列少妇在线播放| 波野结衣二区三区在线| 亚洲欧美日韩卡通动漫| 成人欧美大片| 色综合亚洲欧美另类图片| 亚洲第一电影网av| 菩萨蛮人人尽说江南好唐韦庄 | 日本与韩国留学比较| 干丝袜人妻中文字幕| 日本五十路高清| 乱系列少妇在线播放| 亚洲激情五月婷婷啪啪| 在线看三级毛片| 最好的美女福利视频网| 亚洲一区高清亚洲精品| 亚洲真实伦在线观看| 国产亚洲欧美98| 欧美又色又爽又黄视频| 亚洲四区av| 国产老妇女一区| 男人的好看免费观看在线视频| 国产亚洲精品久久久久久毛片| 日韩欧美精品免费久久| 欧美日韩综合久久久久久| 精品久久久久久久末码| 波多野结衣巨乳人妻| 亚洲精品色激情综合| 国产成人a区在线观看| 国产精品一区二区三区四区久久| 男女那种视频在线观看| 日韩欧美精品v在线| 欧美成人精品欧美一级黄| 日韩精品有码人妻一区| 日本三级黄在线观看| 国产精品久久久久久精品电影| 国产色爽女视频免费观看| 亚洲精品色激情综合| 大又大粗又爽又黄少妇毛片口| 国产一区二区在线av高清观看| 97超碰精品成人国产| 最近中文字幕高清免费大全6| 看十八女毛片水多多多| 男女视频在线观看网站免费| 白带黄色成豆腐渣| 国模一区二区三区四区视频| 婷婷亚洲欧美| 高清毛片免费观看视频网站| 国产高清不卡午夜福利| 97热精品久久久久久| 亚洲人成网站在线播放欧美日韩| 一本久久中文字幕| 国产视频一区二区在线看| 欧美xxxx黑人xx丫x性爽| 精品熟女少妇av免费看| 久久久色成人| 日韩av不卡免费在线播放| 亚洲国产色片| 久久热精品热| 国产69精品久久久久777片| 久久人人精品亚洲av| 成人鲁丝片一二三区免费| 神马国产精品三级电影在线观看| 最新在线观看一区二区三区| 国产不卡一卡二| 级片在线观看| 亚洲熟妇中文字幕五十中出| 99精品在免费线老司机午夜| 黄色一级大片看看| av在线天堂中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 69人妻影院| av天堂中文字幕网| 男人和女人高潮做爰伦理| 嫩草影视91久久| 国产美女午夜福利| 中文字幕av成人在线电影| 亚洲精品456在线播放app| 久久99热这里只有精品18| 精品人妻一区二区三区麻豆 | 深夜精品福利| 99热这里只有是精品50| 深夜精品福利| 欧美一级a爱片免费观看看| 免费不卡的大黄色大毛片视频在线观看 | 久久久精品欧美日韩精品| 欧美最黄视频在线播放免费| 99热只有精品国产| 久久久a久久爽久久v久久| 黑人高潮一二区| 丝袜喷水一区| 黑人高潮一二区| 亚洲在线自拍视频| 欧美精品国产亚洲| 日本一本二区三区精品| 亚洲精品国产成人久久av| 日本熟妇午夜| 国产精品久久视频播放| 老熟妇仑乱视频hdxx| 欧美丝袜亚洲另类| 精华霜和精华液先用哪个| 亚洲人成网站在线播| 日日撸夜夜添| 亚洲丝袜综合中文字幕| 校园人妻丝袜中文字幕| 国产熟女欧美一区二区| 国产中年淑女户外野战色| 久久亚洲精品不卡| 联通29元200g的流量卡| 美女xxoo啪啪120秒动态图| 网址你懂的国产日韩在线| 国产淫片久久久久久久久| 婷婷精品国产亚洲av在线| 国产欧美日韩一区二区精品| 日产精品乱码卡一卡2卡三| 免费看日本二区| 精品乱码久久久久久99久播| 97超碰精品成人国产| 一个人免费在线观看电影| 亚洲最大成人中文| 嫩草影院入口| 国产高清视频在线播放一区| 国产视频内射| 国产高清激情床上av| 国产 一区 欧美 日韩| 波多野结衣高清作品| 99久久精品一区二区三区| 少妇裸体淫交视频免费看高清| 人妻制服诱惑在线中文字幕| 少妇猛男粗大的猛烈进出视频 | 国产精品嫩草影院av在线观看| av在线蜜桃| 日本黄色片子视频| avwww免费| 亚洲av电影不卡..在线观看| 国产精品久久久久久精品电影| 成人一区二区视频在线观看| а√天堂www在线а√下载| 亚洲一区二区三区色噜噜| 一级av片app|