艾珠玉, 趙偉榮, 戴九松, 朱 希
?
光催化分解水制氫催化劑的修飾與改性
艾珠玉, 趙偉榮, 戴九松, 朱 希
(浙江大學(xué) 環(huán)境工程系, 浙江 杭州 310058)
光催化分解水產(chǎn)氫是解決能源和環(huán)境問題的一種理想途徑。傳統(tǒng)光催化分解水催化劑存在穩(wěn)定性差、可見光利用率低、產(chǎn)氫速率低等缺點。通過對催化劑進(jìn)行修飾與改性,改善其光催化性能,是光催化產(chǎn)氫領(lǐng)域的研究熱點。論文簡要介紹了光催化反應(yīng)機(jī)理、產(chǎn)氫效率影響因素,系統(tǒng)闡述了目前光催化分解水制氫催化劑的修飾與改性技術(shù),如:離子摻雜、表面修飾、形貌修飾、異質(zhì)結(jié)、固溶體、Z-scheme體系、修飾與改性組合技術(shù)等,揭示了其修飾與改性原理及電子轉(zhuǎn)移規(guī)律。在此基礎(chǔ)上,對未來光催化分解水催化劑的研究工作進(jìn)行了展望。
分解水;制氫;光催化劑;修飾與改性
1 前 言
能源和環(huán)境問題相互依存、日益嚴(yán)峻,并受到全球的關(guān)注,開發(fā)太陽能、風(fēng)能等清潔能源以減少對化石能源的依賴是解決問題的關(guān)鍵之一。氫作為一種清潔無污染的綠色能源及能源載體,其開發(fā)及利用受到了廣泛關(guān)注[1~3]。通過低成本、無污染的光催化分解水技術(shù),將太陽能轉(zhuǎn)化為綠色、可儲存的氫能,是一種從根本上解決能源危機(jī)和環(huán)境污染的理想途徑[4]。圖1展示了光催化分解水產(chǎn)氫系統(tǒng)及氫能利用示意圖。目前,國內(nèi)外已有很多光催化制氫方面的綜述,如對某特定光催化材料的研究進(jìn)展[5~9]、對光催化產(chǎn)氫材料及產(chǎn)氫體系的綜合評述[10~15]以及光催化反應(yīng)器的研究進(jìn)展[16,17]等。本綜述圍繞目前光催化分解水催化劑的研究進(jìn)展,對催化劑的修飾與改性技術(shù)進(jìn)行了總結(jié)和評述。
圖1 光催化分解水產(chǎn)氫及氫能利用示意圖
2 光催化分解水基本原理及影響因素
2.1 基本原理
在光催化過程中,催化劑的電子結(jié)構(gòu)起到了關(guān)鍵作用。半導(dǎo)體的導(dǎo)帶及價帶之間的能級差稱為禁帶寬度。當(dāng)入射光量子能量等于或者大于半導(dǎo)體的禁帶寬度時,價帶電子激發(fā)躍遷至導(dǎo)帶,相應(yīng)的在價帶上產(chǎn)生空穴。光生電子與空穴分離并遷移到催化劑表面,其中電子與水進(jìn)行還原反應(yīng)產(chǎn)生氫氣,空穴與水或其他空穴捕集劑進(jìn)行氧化反應(yīng),從而實現(xiàn)直接或間接的分解水過程。同時,光生電子和空穴會迅速的在催化劑內(nèi)部及表面發(fā)生復(fù)合,從而影響催化劑表面的氧化與還原反應(yīng),降低光催化效率。因此,在光催化過程中,加速電子-空穴對的分離,降低電子空穴復(fù)合速率,對提高光催化效率至關(guān)重要。圖2為半導(dǎo)體光催化分解水產(chǎn)氫機(jī)理圖(根據(jù)參考文獻(xiàn)[18]修改)。
圖2 半導(dǎo)體光催化分解水產(chǎn)氫機(jī)理圖(根據(jù)參考文獻(xiàn)[18]修改)
2.2 產(chǎn)氫效率影響因素
在光催化分解水體系中,產(chǎn)氫效率受多種因素的影響制約。簡單地說,主要包括催化劑種類、半導(dǎo)體材料的能帶結(jié)構(gòu)、催化劑晶粒大小及形貌、光催化反應(yīng)條件等。同時,逆反應(yīng)及催化劑的光腐蝕等也會影響產(chǎn)氫效率。
(1) 能帶結(jié)構(gòu)。半導(dǎo)體的能帶結(jié)構(gòu)是限制其產(chǎn)氫能力的最根本因素,價帶導(dǎo)帶位置直接決定了催化劑是否具備分解水的能力。由于水是一種穩(wěn)定的化合物,分解水產(chǎn)氫產(chǎn)氧在熱力學(xué)上是一個非自發(fā)過程,需要標(biāo)準(zhǔn)吉布斯自由能增加237 kJ×mol-1(如式1)。為了在熱力學(xué)上滿足整體分解水條件,半導(dǎo)體催化劑的價帶(VB)位置必須在氧的電極電位(O2/H2O= 1.23 V vs NHE,pH = 0)之下(> 1.23 V),導(dǎo)帶(CB)位置必須在氫的電極電位(O2/H2O= 0 V vs NHE,pH = 0)之上(< 0 V),即催化劑的能帶結(jié)構(gòu)至少需要大于1.23 eV[12,19]。一般來說,催化劑導(dǎo)帶位置越負(fù),導(dǎo)帶電子所具備的還原能力越強(qiáng),價帶位置越正,價帶空穴所具備的氧化能力越強(qiáng)。然而,催化劑的能帶結(jié)構(gòu)和位置對不同波段光的利用率也有影響,從而影響著光催化產(chǎn)氫效率。禁帶寬度較寬的催化劑(> 3.2 eV)只能利用紫外光(λ < 400 nm),如:TiO2[20]、ZrO2[21]、SrTiO3[22]、Ga2O3[23]、CeO2[24]、ZnS[25]、GaN[26]等,為了更充分地利用太陽光,應(yīng)盡量開發(fā)可見光響應(yīng)催化劑。圖3展示了一些催化劑的能帶結(jié)構(gòu)與水分解氧化還原電勢的關(guān)系圖,理論上,多種催化劑滿足同時產(chǎn)氫產(chǎn)氧條件,WO3、MoS2、Fe2O3等催化劑的導(dǎo)帶位置低于氫的電極電位而不能實現(xiàn)光催化產(chǎn)氫,ZrO2、SrTiO3、KTaO3等催化劑的禁帶寬度較大而無法利用可見光[27]。
圖3 催化劑能帶結(jié)構(gòu)與水分解氧化還原電勢關(guān)系圖[27]
(2) 催化劑的其它物理化學(xué)性能。光催化分解水產(chǎn)氫過程中,催化劑的晶體結(jié)構(gòu)、結(jié)晶度、顆粒大小、形貌等物理化學(xué)性能很大程度上影響著催化劑的光催化性能。以TiO2為例,具有亞穩(wěn)態(tài)晶型的銳鈦礦相TiO2較具有穩(wěn)定晶相的金紅石相TiO2往往表現(xiàn)出更優(yōu)異的光催化性能[13]。同時,催化劑的結(jié)晶度越好,晶體內(nèi)部缺陷越少,晶體內(nèi)部電子空穴復(fù)合(bulk recombination)越少,光催化效果越好。催化劑顆粒越小,電子-空穴對遷移到表面的距離越短,也可能減少晶體內(nèi)部電子-空穴對的復(fù)合[12]。催化劑的晶粒大小、形貌、孔徑分布等因素共同決定了催化劑的比表面積及表面活性位點的多少,進(jìn)而影響整個催化反應(yīng)過程。一般來說,晶粒尺寸較小、分散較均勻的催化劑擁有較大的比表面積,從而更有利于光催化反應(yīng)。通過采用不同的制備方法及制備條件,可以制備出不同結(jié)晶度及形貌的催化劑,如制備納米片狀、多孔狀及具有不同晶面暴露的催化劑等[28~32],改善光催化性能。
(3) 光催化反應(yīng)條件。在光催化分解水過程中,體系中犧牲劑的選取、環(huán)境溫度、pH值、過電勢等反應(yīng)條件均會對產(chǎn)氫效率產(chǎn)生一定的影響。由于實現(xiàn)整體分解水是困難的,通過加入犧牲劑(電子給體或電子受體)實現(xiàn)間接分解水成為研究的主流,即產(chǎn)氫或產(chǎn)氧“半反應(yīng)”。在產(chǎn)氫“半反應(yīng)”中,加入的犧牲劑能消耗空穴,從而阻止光生電子與空穴的復(fù)合,加速產(chǎn)氫速率。常見的空穴捕集劑有甲醇、乙醇、腐殖酸、甘油(丙三醇)等[33,34]。另外,對于CdS、ZnS等硫族催化劑,在光催化反應(yīng)過程中本身存在光腐蝕問題(式2),常需添加S2-/SO32-[35,36]等作為犧牲劑,減緩催化劑的光腐蝕,從而增強(qiáng)體系的析氫能力。通過改變光催化體系中的溫度條件,改變催化劑表面氫氣的脫附能力,同樣可以改變催化體系的析氫能力[13]。
3 光催化制氫催化劑的修飾與改性
可用于光催化分解水的催化劑很多,但多數(shù)催化劑缺乏合適的能帶結(jié)構(gòu),且光生電子-空穴對易復(fù)合,從而導(dǎo)致光催化產(chǎn)氫效率,尤其是可見光產(chǎn)氫效率不理想。為了實現(xiàn)催化劑的可見光化、提高光催化產(chǎn)氫效率,通常需要對催化劑進(jìn)行修飾與改性,有效調(diào)變催化劑的能帶結(jié)構(gòu)、降低電子-空穴對的復(fù)合速率、提高催化劑的穩(wěn)定性。
3.1 催化劑摻雜改性
催化劑摻雜改性的主要目的是在催化劑中引入雜質(zhì)能級,縮短禁帶寬度,從而實現(xiàn)催化劑的可見光激發(fā),主要包括金屬離子摻雜和非金屬離子摻雜。金屬離子摻雜(圖4(A)、(B))通過引入金屬離子在本征半導(dǎo)體中形成雜質(zhì)能級,在催化劑VB上方形成施主能級(donor level)或在CB下方形成受主能級(acceptor level),從而使能量較小的光子也能激發(fā)摻雜能級,擴(kuò)展光譜響應(yīng)范圍。目前針對金屬離子摻雜已有大量的研究[37~39],常見的摻雜金屬有Fe、Cu、Cr、Ni、Mn、Sn、V等[40~43]。非金屬離子摻雜(圖4 C)主要以C[44]、N[45]、S[46]等小原子半徑元素為主,利用摻雜元素外層S、P軌道與本征導(dǎo)帶和價帶重迭使原催化劑VB上移,從而縮小催化劑的禁帶寬度,擴(kuò)展光譜響應(yīng)范圍。也有人認(rèn)為,并不是VB位置上移使得非金屬離子摻雜的催化劑光吸收邊紅移,而是非金屬離子摻雜后在基底催化劑的禁帶內(nèi)形成局域能級或引進(jìn)氧空位造成的[47]。大量計算和實驗結(jié)果表明,離子摻雜能有效擴(kuò)大光響應(yīng)范圍、提升可見光下分解水速率,是一種調(diào)變半導(dǎo)體禁帶寬度、調(diào)節(jié)價帶導(dǎo)帶位置的有效途徑[48~50]。Sun等[51]研究了Ce/N共摻雜TiO2催化劑,發(fā)現(xiàn)Ce、N、Ce/N共摻雜TiO2催化劑的禁帶寬度分別為2.76、2.58、2.52 eV,證明Ce/N的協(xié)同作用使催化劑的紅移更加明顯。500℃煅燒后所得Ce(0.6%)-N-TiO2在500 W中壓汞燈(波長范圍260~570 nm)下,產(chǎn)氫速率達(dá)到120 μmol×h-1,是未摻雜TiO2的20倍。然而,某些摻雜離子常常成為光生電子-空穴對的復(fù)合中心,從而影響產(chǎn)氫效率。通過共摻雜可以有效抑制復(fù)合中心的形成。Niishiro等[52]研究發(fā)現(xiàn)紫外光下Ni-Ta-SrTiO3以及Ni-SrTiO3的產(chǎn)氫效率較單純的SrTiO3低,主要是由于Ni3+成為電子空穴復(fù)合中心并捕獲了光生電子造成的??梢姽庹障?,SrTiO3并沒有產(chǎn)氫能力,而Ni-Ta-SrTiO3及Ni-SrTiO3具有了產(chǎn)氫能力,且Ni-Ta-SrTiO3的產(chǎn)氫能力較Ni-SrTiO3的高。這主要是由于離子摻雜擴(kuò)大了SrTiO3的可見光吸收能力,且Ni、Ta共摻雜后Ta5+起到了電荷補(bǔ)償?shù)淖饔?,從而抑制了Ni3+電子空穴復(fù)合中心的形成。
圖4 金屬(A、B)、非金屬(C)離子摻雜改性改變催化劑能帶結(jié)構(gòu)示意圖[19]
3.2 催化劑表面修飾
3.2.1 助催化劑
助催化劑負(fù)載作為一種有效的催化劑表面修飾技術(shù)得到了廣泛的研究。常見的光催化分解水產(chǎn)氫助催化劑主要有貴金屬(Au、Pt、Rh、Ru、Pd等[53~56])、過渡金屬氧化物(NiO、RuO2等[57,58])、過渡金屬硫化物(PdS、WS2等[59,60])。對于光催化分解水產(chǎn)氫系統(tǒng),助催化劑的作用包括以下幾個方面[61,62]:a. 促進(jìn)基底催化劑內(nèi)部光生電子和空穴分別向還原助催化劑和氧化助催化劑轉(zhuǎn)移,從而加速催化劑內(nèi)部電子空穴對的分離效率,提高光催化活性;b. 在基底催化劑表面為產(chǎn)氫和產(chǎn)氧反應(yīng)提供活性位點;c. 增強(qiáng)催化劑的穩(wěn)定性,降低催化反應(yīng)活化能;d. 在助催化劑活性位點上產(chǎn)氫或產(chǎn)氧,可抑制逆反應(yīng)(氫氣和氧氣結(jié)合重新形成水)的進(jìn)行。Yan等[63]研究了不同助催化劑修飾CdS的光催化產(chǎn)氫性能。研究發(fā)現(xiàn)Pt/CdS的光催化產(chǎn)氫能力高于單純的CdS催化劑,這是由于Pt的功函數(shù)大于CdS,Pt負(fù)載在CdS上后,在金屬/催化劑界面形成肖特基勢壘,促使CdS上光生電子向Pt轉(zhuǎn)移,加速了電子空穴對的分離。PdS/CdS的光催化產(chǎn)氫性能較Pt/CdS更高,且其光催化穩(wěn)定性比Pt/CdS更好。這主要是由于PdS作為一種氧化助催化劑,促進(jìn)CdS內(nèi)部光生空穴向PdS轉(zhuǎn)移,從而加速了電子空穴對的分離。同時,PdS能有效抑制CdS催化劑的光腐蝕,增強(qiáng)基底催化劑的穩(wěn)定性。而Pt–PdS/CdS的產(chǎn)氫效果較PdS/CdS進(jìn)一步提高,且其同樣具有較好的穩(wěn)定性。這主要是由于Pt還原助催化劑和PdS氧化助催化劑的協(xié)同作用更有利于催化劑內(nèi)部光生電子和空穴的分離,從而提高了光催化產(chǎn)氫效果。Wang等[64]制備了Ta3N5核殼結(jié)構(gòu)催化劑,并在Ta3N5的內(nèi)表面和外表面分別修飾了還原助催化劑Pt及氧化助催化劑IrO2。由于Ta3N5光生電子和光生空穴分別向Pt及IrO2轉(zhuǎn)移,Ta3N5催化劑內(nèi)部電子-空穴得到快速分離,該體系的可見光分解水性能得到顯著提高。
3.2.2 表面等離子共振效應(yīng)
作為助催化劑的特例,某些堿性金屬或貴金屬(Au、Ag等)同時具有等離子體共振(Surface plasmon resonance,SPR)效應(yīng)。當(dāng)金屬納米粒子受到特定波長的光照射時,金屬納米顆粒內(nèi)部電荷重新分配,同時金屬表面的自由電子密度發(fā)生振蕩,這種現(xiàn)象稱為表面等離子體共振現(xiàn)象,也可稱為局域表面等離子體共振(Localized surface plasmon resonance,LSPR)[65]。研究表明,等離子體貴金屬與半導(dǎo)體光催化劑結(jié)合后能有效提升催化劑對可見光的吸收及光催化活性[66],且負(fù)載金屬的形貌、大小均會影響光催化效率。目前,等離子體貴金屬提升光催化產(chǎn)氫效率的機(jī)理主要有以下兩個觀點[67,68]:a. 貴金屬顆粒與染料敏化劑類似。光照時,離子體吸收光子產(chǎn)生的高能電子轉(zhuǎn)移到催化劑的導(dǎo)帶用于發(fā)生還原反應(yīng),從而使催化劑可見光化并提高參與光催化的光量子數(shù),增強(qiáng)光催化效率(圖5 A所示)[69];b. SPR通過增強(qiáng)催化劑表面的電磁場強(qiáng)度,提高了基底催化劑內(nèi)部電子-空穴對的生成率,同時光生電子通過肖特基勢壘轉(zhuǎn)移到負(fù)載金屬上,從而提高了可見光下分解水產(chǎn)氫效率(圖5 B所示)[70]。Yuzawa等[71]制備了不同大小及形狀的Au顆粒負(fù)載的TiO2催化劑,電鏡表征說明Au以球狀或桿狀形式存在。由于電子傳遞速率更快,桿狀A(yù)u納米顆粒負(fù)載的TiO2具有更強(qiáng)的光催化產(chǎn)氫效率。論文中對于SPR的機(jī)理更傾向于上述第一個觀點,即貴金屬Au上的光生電子轉(zhuǎn)移至TiO2的導(dǎo)帶上并參與產(chǎn)氫反應(yīng)。本課題組[72]研究了Au/N-TiO2的產(chǎn)氫效果,由于摻雜N和負(fù)載Au的協(xié)同作用,光照下(350~800 nm) Au/N-TiO2的產(chǎn)氫速率達(dá)到412.60 μmol×h-1,是N-TiO2的19.14倍,Au/TiO2的1.28倍。論文中對于SPR機(jī)理更傾向于第二種觀點,即SPR效應(yīng)增強(qiáng)了TiO2內(nèi)部光生電荷生產(chǎn)率,從而增強(qiáng)了可見光產(chǎn)氫效率。
圖5 SPR的電荷轉(zhuǎn)移機(jī)理圖(A)[67],有限差分時域法顯示Au的SPR效應(yīng)能增強(qiáng)TiO2表面電磁場(B)[68]
3.3 催化劑形貌修飾
通過制備一些具有特殊形貌的催化劑,從而獲得一些新的性能,如:更大的比表面積、更多的活性位點、更穩(wěn)定的催化性能等,同樣是光催化領(lǐng)域的研究熱點。常見的特殊形貌有納米線[73]、納米片[74]、納米薄膜[75]、納米管[76,77]、納米棒[78]、納米纖維[79]、介孔結(jié)構(gòu)[80,81]、核殼結(jié)構(gòu)[82,83]、空心結(jié)構(gòu)[84]等。Chaudhari等[85]制備了金盞花結(jié)構(gòu)的N-TiO2,由于具有很大的比表面積,催化活性大大增強(qiáng)。Roy等[86]在無氟條件下利用二乙醇胺(DEA)作為封端劑及表面控制劑制備出了具有不同比例(101)及(001)晶面的銳鈦礦相TiO2。由于(001)、(101)面分別被認(rèn)為是氧化位點和還原位點,光生空穴和電子分別流向(001)、(101)晶面,從而加速了電子-空穴對的分離,提高了光催化活性(圖6)。
圖6 具有不同比例(001)和(101)晶面的長方體型銳鈦礦相TiO2[84]
某些硫族化合物具有較窄的禁帶寬度,理論上其導(dǎo)帶電子和價帶空穴具有較強(qiáng)的氧化還原能力,然而由于其自身的光腐蝕作用,大大影響了可見光催化產(chǎn)氫效率。通過制備核殼結(jié)構(gòu)催化劑,可以避免光腐蝕,提高光穩(wěn)定性,使可見光得到有效利用。Xie等[87]在沒有表面活性劑的情況下,通過一步水熱法制備了CdS/ZnS核殼結(jié)構(gòu)催化劑,ZnS殼具備孔狀結(jié)構(gòu)。由于CdS的光生空穴轉(zhuǎn)移至ZnS導(dǎo)帶中的Zn空位和間隙S上,而光生電子留在CdS上并參與產(chǎn)氫反應(yīng),形成了一種特殊的空間電荷分離體系??梢姽庀拢珻dS/ZnS核殼結(jié)構(gòu)的產(chǎn)氫效率分別是ZnS和CdS的169和56倍,且即使在參與反應(yīng)60 h之后,CdS/ZnS核殼結(jié)構(gòu)的光催化產(chǎn)氫性能仍保持穩(wěn)定(圖7)。
圖7 CdS/ZnS核殼結(jié)構(gòu)能帶結(jié)構(gòu)對比圖和產(chǎn)氫機(jī)理圖[85]
3.4 異質(zhì)結(jié)
兩種具有不同能帶結(jié)構(gòu)的半導(dǎo)體復(fù)合后可能形成異質(zhì)結(jié)構(gòu),由于不同半導(dǎo)體的導(dǎo)帶和價帶的差異,一方面使光生電子在一種半導(dǎo)體的導(dǎo)帶上積累,另一方面使光生空穴在另一種半導(dǎo)體的價帶上聚集,相應(yīng)的提高了光生電子和空穴的分離率,擴(kuò)展了光譜的吸收范圍,從而表現(xiàn)出比單個半導(dǎo)體更好的穩(wěn)定性及更高的光催化活性。Hou等[88]制備了具有/-Bi2O3異質(zhì)結(jié)的Bi2O3納米線。光照時,在內(nèi)建電場力的作用下,-Bi2O3的導(dǎo)帶電子轉(zhuǎn)移至-Bi2O3的導(dǎo)帶上,而-Bi2O3的價帶空穴轉(zhuǎn)移至-Bi2O3的價帶上,從而阻止了光生電子-空穴對的復(fù)合,有效提高了Bi2O3的光催化性能(圖8)。Li等[89]用水熱法制備了AgIn5S8/TiO2異質(zhì)結(jié)納米復(fù)合物,可見光照射下,AgIn5S8(g≈1.76 eV)表面的光生電子迅速轉(zhuǎn)移至TiO2表面,有效加速了催化劑表面電子空穴的分離,從而使可見光下產(chǎn)氫效率得到顯著的提高。其中摩爾比為1:10的AgIn5S8/TiO2取得最佳產(chǎn)氫效果,是單純AgIn5S8催化劑的7.7倍。
圖8 可見光下α/β-Bi2O3異質(zhì)結(jié)電子空穴分離示意圖[86]
3.5 固溶體
由于能夠調(diào)變催化劑的能帶結(jié)構(gòu)并獲得更高的光催化效率,固溶體受到了廣泛的關(guān)注[90,91]。固溶體大多是由晶體結(jié)構(gòu)相同、金屬離子半徑相近的寬禁帶半導(dǎo)體和窄禁帶半導(dǎo)體形成,通過調(diào)整寬禁帶半導(dǎo)體和窄禁帶半導(dǎo)體的配比,固溶體催化劑的禁帶寬度及價帶和導(dǎo)帶位置可以在介于兩種半導(dǎo)體之間的范圍內(nèi)進(jìn)行調(diào)節(jié)。Kudo等[92]選用寬禁帶的ZnS (3.5 eV)與窄禁帶的AgInS2(1.8 eV)制備出了不同能帶結(jié)構(gòu)的(AgIn)Zn2(1-x)S2固溶體。以Pt為助催化劑,SO32-與S2-作為空穴捕集劑,在可見光(> 420 nm)照射下,(AgIn)Zn2(1-x)S2固溶體的產(chǎn)氫速率遠(yuǎn)遠(yuǎn)大于ZnS及AgInS2。其中最優(yōu)化的產(chǎn)氫催化劑為Pt(3%(wt)-(AgIn)0.22Zn1.56S2,在可見光下產(chǎn)氫速率為424 μmol×h-1(圖9)。本課題組[93]采用基本無產(chǎn)氫能力的窄禁帶催化劑AgNbO3與只具有紫外光產(chǎn)氫能力的寬禁帶催化劑SrTiO3制備了具有可見光產(chǎn)氫能力的(AgNbO3)1–x(SrTiO3)x(0 圖9 (AgIn)xZn2(1-x)S2固溶體能帶調(diào)節(jié)及光催化產(chǎn)氫圖[90] 3.6 Z-scheme體系 受自然界光合作用多電子轉(zhuǎn)移機(jī)制的啟發(fā),Bard[94]于1979年提出了如圖10 B、C、D[95]所示的Z-scheme體系。該體系將窄禁帶催化劑B和C通過電子傳遞物D(mediator)結(jié)合,可見光激發(fā)下,B的導(dǎo)帶電子與C的價帶空穴結(jié)合或者分別與加入的電子傳遞物(氧化還原劑)反應(yīng),而B的價帶空穴氧化水產(chǎn)生O2,C的導(dǎo)帶電子還原水產(chǎn)生H2,實現(xiàn)水的整體分解。Z-scheme體系與傳統(tǒng)的光解水體系相比降低了對催化劑能帶結(jié)構(gòu)及激發(fā)催化劑所需光能的要求,能更有效地利用可見光;同時,Z-scheme結(jié)構(gòu)抑制了電子-空穴對的復(fù)合,具有較高的光催化效率[96]。根據(jù)電子傳遞物的種類,Z-scheme體系可以分為離子對電子傳遞物Z-scheme體系、固態(tài)電子傳遞物Z-scheme體系以及不需電子傳遞物的Z-scheme體系。 圖10 單一催化劑(A)及Z-scheme體系(B、C、D)光解水示意圖[93] (a) 離子對電子傳遞物Z-scheme體系 傳統(tǒng)的電子傳遞物是不同價態(tài)的離子對,如IO3-/I-和Fe3+/Fe2+。Domen等[95]以ZrO2/TaON作為產(chǎn)氫催化劑,Pt/WO3為產(chǎn)氧催化劑,IO3-/I-為電子傳遞物構(gòu)建的Z-scheme體系在420 nm可見光下的表觀量子產(chǎn)率達(dá)到6.3 %。光致發(fā)光光譜和電化學(xué)表征證明IO3-/I-與催化劑接觸可高效傳導(dǎo)電子、有效抑制電子-空穴對的復(fù)合,進(jìn)而提高光催化效率。 (b) 固態(tài)電子傳遞物Z-scheme體系 相比于離子態(tài)電子傳遞物,固態(tài)電子傳遞物更有利于催化劑的回收且不會造成二次污染[98]。多種固態(tài)電子傳遞物被用于構(gòu)建Z-scheme體系并取得了較高的電子傳導(dǎo)效率。Yun等[99]建立了CdS-Au-TiO1.98C0.04全固態(tài)三組分Z-scheme體系,Au沉積于銳鈦礦TiO1.98C0.04上,而Au和CdS形成半球狀內(nèi)核-外殼結(jié)構(gòu)(圖11)。在大于420 nm的光照下,TiO1.98C0.04中的光生空穴參與氧化反應(yīng),光生電子通過Au傳遞至CdS的價帶,與CdS的價帶空穴結(jié)合,CdS的導(dǎo)帶電子參與還原水反應(yīng)產(chǎn)生氫氣。電子沿著TiO2–Au–CdS的次序定向轉(zhuǎn)移,從而提高了載流子的分離效率及光催化性能。 圖11 CdS-Au-TiO2全固態(tài)三組分Z-Scheme體系示意圖[97] (c) 不需電子傳遞物的Z-scheme體系 盡管電子傳遞物對電子在產(chǎn)氧催化劑和產(chǎn)氫催化劑之間的傳遞有重要作用,其存在也可能帶來負(fù)面影響,如有色的電子傳遞物可干擾催化劑的光吸收[100]。因此,有研究者構(gòu)建了無需外加電子傳遞物的Z-scheme體系。Jin等[101]采用高溫煅燒聯(lián)合水熱法制備了大比表面積的g-C3N4。并將g-C3N4與WO3機(jī)械研磨混合,制備了g-C3N4/WO3Z-scheme體系。光照下,WO3的光生電子與g-C3N4的光生空穴結(jié)合,從而促進(jìn)了整個系統(tǒng)電子空穴的分離,增大了光催化效率。 3.7 修飾與改性組合技術(shù) 光催化劑的修飾與改性研究過程中,為了進(jìn)一步加速電子空穴分離效率,提高催化劑的光催化活性,常常采用催化劑修飾與改性組合技術(shù),如:摻雜+助催化劑,摻雜+異質(zhì)結(jié),異質(zhì)結(jié)+助催化劑等。Wang等[102]研究了P型半導(dǎo)體/金屬混合催化劑Pd/Cu2O的光催化活性。Cu2O是一種P型半導(dǎo)體,其具有(100)和(111)晶面,光生電子和空穴分別向(111)和(100)晶面積累,從而實現(xiàn)了電荷的空間分離。Cu2O的(100)晶面的功函數(shù)較小,當(dāng)在其表面負(fù)載Pd后,光生空穴并不能通過肖特基勢壘轉(zhuǎn)移至Cu2O的(100)晶面上。而由于Cu2O的(111)晶面具有較大的功函數(shù),其與Pd結(jié)合后,可形成肖特基勢壘,使得光生空穴向(111)晶面轉(zhuǎn)移。通過調(diào)節(jié)Pd的比例,可以使Cu2O上的電子和Pd上的空穴達(dá)到動態(tài)平衡。在肖特基勢壘和空間電荷分離協(xié)同作用下,光生電子空穴分離效率大大提高。Li等[103]研究了雙助催化劑負(fù)載的CdS/ZnS核/殼結(jié)構(gòu)催化劑。通過制備ZnS殼,抑制了CdS的光腐蝕,并鈍化了CdS表面深陷阱,加速了光還原產(chǎn)氫效率。同時他們還發(fā)現(xiàn),Pt、Ni是有效的還原助催化劑(RC),而PdS和PbS是有效的氧化助催化劑(OC)。在核殼結(jié)構(gòu)外負(fù)載雙助催化劑體系,不僅有效促進(jìn)了電子-空穴對分離,并為氧化和還原反應(yīng)提供了活性位點(圖12)。 圖12 雙助催化劑負(fù)載的CdS/ZnS核/殼結(jié)構(gòu)納米晶體上電子-空穴轉(zhuǎn)移和分離示意圖[101] 4 展 望 針對傳統(tǒng)光催化產(chǎn)氫催化劑穩(wěn)定性差、可見光利用率低、產(chǎn)氫速率低等問題,科學(xué)家們在催化劑的修飾與改性方面進(jìn)行了大量的研究,如:摻雜改性、貴金屬負(fù)載、制備特殊形貌催化劑等,并取得了許多重要的研究成果。但是,光催化分解水產(chǎn)氫效率,特別是可見光下分解水產(chǎn)氫效率仍遠(yuǎn)未達(dá)到工業(yè)應(yīng)用的要求。為了進(jìn)一步提高光催化產(chǎn)氫效率、克服光催化分解水領(lǐng)域的諸多問題,在催化劑制備方面,可以從以下幾個方面入手:(1) 不斷探索創(chuàng)新,研究改善催化劑晶型、結(jié)晶度、表面活性、形貌等的催化劑制備方法,開發(fā)新型可見光響應(yīng)催化劑,提高光催化產(chǎn)氫效率。(2) 目前,催化劑的修飾與改性技術(shù)在提高催化劑光催化性能方面成效顯著,但是部分技術(shù)仍存在一些缺陷,如:催化劑摻雜常常會引進(jìn)電子空穴復(fù)合中心。因而,需要進(jìn)一步研究新型的催化劑修飾與改性技術(shù)。(3) 催化劑修飾與改性組合技術(shù)能夠有效提高催化劑內(nèi)部電荷分離效率、改善光催化性能,如異質(zhì)結(jié)+助催化劑能夠進(jìn)一步提高電子空穴對的分離效率。因而,可以進(jìn)一步研究催化劑修飾與改性組合技術(shù),以提高光催化劑可見光產(chǎn)氫性能。(4) 結(jié)合理論計算等輔助手段研究催化劑的能帶結(jié)構(gòu)及組成,用于預(yù)測潛在的高效光催化劑,同時用于光催化反應(yīng)機(jī)理探索。隨著研究的進(jìn)一步深入,光催化劑存在的缺點將逐漸被克服,光催化產(chǎn)氫效率將不斷提高,相信在未來的能源市場上光催化產(chǎn)氫將占有一席之地。 [1] Kado Y, Lee C Y, Lee K,. Enhanced water splitting activity of M-doped Ta3N5(M= Na, K, Rb, Cs) [J]. Chemical Communications, 2012, 48(69): 8685-8687. [2] Wang D, Pierre A, Kibria M G,. Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy [J]. Nano Letters, 2011, 11(6): 2353-2357. [3] Xiang Q, Yu J. Graphene-based photocatalysts for hydrogen generation [J]. Journal of Physical Chemistry Letters, 2013, 4(5): 753-759. [4] Maeda K, Domen K. Photocatalytic water splitting: recent progress and future challenges [J]. Journal of Physical Chemistry Letters, 2010, 1(18): 2655-2661. [5] Ma Y, Wang X, Jia Y,Titanium dioxide-based nanomaterials for photocatalytic fuel generations [J]. Chemical Reviews, 2014, 114(19): 9987-10043. [6] Huang S, Lin Y, Yang J H,CdS-based semiconductor photocatalysts for hydrogen production from water splitting under solar light [C]. In Nanotechnology for Sustainable Energy. Acs Symposium Series, American Chemical Society: Washington, D C, 2013, 1140: 219-241. [7] Adeli B, Taghipour F. A review of synthesis techniques for gallium-zinc oxynitride solar-activated photocatalyst for water splitting [J]. Ecs Journal of Solid State Science and Technology, 2013, 2(7): Q118-Q126. [8] Zhang N, Zhang Y, Xu Y J. Recent progress on graphene-based photocatalysts: current status and future perspectives [J]. Nanoscale, 2012, 4(19): 5792-5813. [9] CHU Zeng-yong (楚增勇), YUAN Bo (原博), YAN Ting-nan (顏廷楠). Recent progress in photocatalysis of g-C3N4(g-C3N4光催化性能的研究進(jìn)展) [J]. Journal of Inorganic Materials (無機(jī)材料學(xué)報), 2014, 29(8): 785-794. [10] Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting [J]. Chemical Society Reviews, 2014, 43(22): 7520-7535. [11] Shen S, Mao S S. Nanostructure designs for effective solar-to-hydrogen conversion [J]. Nanophotonics, 2012, 1(1): 31-50. [12] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting [J]. Chemical Society Reviews, 2009, 38(1): 253-278. [13] WEN Fu-yu (溫福宇), YANG Jin-hui (楊金輝), SONG Xu (宋旭),Photocatalytic hydrogen production utilizing solar energy(太陽能光催化制氫研究進(jìn)展) [J]. Progress in Chemistry (化學(xué)進(jìn)展), 2009, 21(11): 2286-2302. [14] YAN Shi-cheng (閆世成), LUO Wen-jun (羅文俊), LI Zhao-sheng (李朝升),Progress in research of novel photocatalytic materials (新型光催化材料探索和研究進(jìn)展) [J]. Materials China (中國材料進(jìn)展), 2010, 29(1): 1-9. [15] CHEN Wei (陳威), WANG Hui (王慧), YANG Yu (楊俞),Progress in research of photocatalytic hydrogen production from overall water splitting (光催化完全分解水制氫研究進(jìn)展) [J]. Chemical Research (化學(xué)研究), 2014, 25(2): 201-208. [16] Xing Z, Zong X, Pan J,On the engineering part of solar hydrogen production from water splitting: photoreactor design [J]. Chemical Engineering Science, 2013, 104:125-146. [17] Preethi V, Kanmani S. Photocatalytic hydrogen production [J]. Materials Science In Semiconductor Processing, 2013, 16(3): 561-575. [18] Linsebigler A L, Lu G, Yates Jr J T. Photocatalysis on TiO2surfaces: principles, mechanisms, and selected results [J]. Chemical Reviews, 1995, 95(3): 735-758. [19] Chen X, Shen S, Guo L,. Semiconductor-based photocatalytic hydrogen generation [J]. Chemical Reviews, 2010, 110(11): 6503-6570. [20] Yu J, Qi L, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2nanosheets with exposed (001) facets [J]. Journal of Physical Chemistry C, 2010, 114(30): 13118-13125. [21] Liu S-H, Wang H P. Photocatalytic generation of hydrogen on Zr-MCM-41 [J]. International Journal of Hydrogen Energy, 2002, 27(9): 859-862. [22] Ouyang S, Tong H, Umezawa N,. Surface-alkalinization-induced enhancement of photocatalytic H2evolution over SrTiO3-based photocatalysts [J]. Journal of The American Chemical Society, 2012, 134(4): 1974-1977. [23] Wang X, Xu Q, Li M, Shen S,. Photocatalytic overall water splitting promoted by an-phase junction on Ga2O3[J]. Angewandte Chemie-International Edition, 2012, 51(52): 13089-13092. [24] Primo A, Marino T, Corma A,Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2obtained by a biopolymer templating method [J]. Journal of The American Chemical Society, 2011, 133(18): 6930-6933. [25] Kudo A, Sekizawa M. Photocatalytic H2evolution under visible light irradiation on Ni-doped ZnS photocatalyst [J]. Chemical Communications, 2000, 15: 1371-1372. [26] Maeda K, Takata T, Hara M,. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting [J]. Journal of The American Chemical Society, 2005, 127(23): 8286-8287. [27] Serpone N, Pelizzetti E. Photocatalysis: fundamentals and applications [M]. New York: John Wiley & Sons, 1989. [28] CHENG Zhuo-wei (成卓韋), ZHOU Ling-jun (周靈俊), YU Jian-ming (於建明),. Mechanism study on gaseous α-pinene photocatalyzed by lanthanum-doped titanium dioxide nanotubes (鑭摻雜TiO2納米管對-蒎烯光催化性能及催化機(jī)理研究) [J]. Journal of Chemical Engineering of Chinese Universities (高?;瘜W(xué)工程學(xué)報), 2015, 29(2): 320-327. [29] XUE Shou-qing (薛守慶). Microwave-assisted synthesis of Cu(OH)2/ZnO photocatalyst and its photocatalysis (微波輔助納米Cu(OH)2/ZnO復(fù)合材料的合成與光催化研究) [J]. Journal of Chemical Engineering of Chinese Universities (高校化學(xué)工程學(xué)報), 2014, 28(1): 150-155. [30] Ong, JW, Tan LL,.Highly reactive {001} facets of TiO2based composites: synthesis, formation mechanism and characterization [J]. Nanoscale, 2014,6(4): 1946-2008. [31] Yuan YP, Xu WT, Yin LS,. Large impact of heating time on physical properties and photocatalytic H2production of g-C3N4nanosheets synthesized through urea polymerization in Ar atmosphere [J]. International Journal of Hydrogen Energy, 2013, 38(30): 13159-13163. [32] Zhang Y, Liu J, Wu G,. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production [J]. Nanoscale, 2012, 4(17): 5300-5303. [33] Anderson, J A. Simultaneous photocatalytic degradation of nitrate and oxalic acid over gold promoted titania [J]. Catalysis Today. 2012, 181: 171-176. [34] Berr M J, Wagner P, Fischbach S,. Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation [J]. Applied Physics Letters, 2012, 100: 223903/1-223903/3. [35] Jang J S, Joshi U A, Lee J S. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production [J]. Journal of Physical Chemistry C, 2007, 111(35): 13280-13287. [36] Tsuji I, Kato H, Kudo A. Visible-light-induced H2evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2solid-solution photocatalyst [J]. Angewandte Chemie-International Edition, 2005, 117(23): 3631-3634. [37] Khan M A, Woo S I, Yang O. Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction [J]. International Journal of Hydrogen Energy, 2008, 33(20): 5345-5351. [38] Wang D, Ye J, Kako T,. Photophysical and photocatalytic properties of SrTiO3doped with Cr cations on different sites [J]. Journal of Physical Chemistry B, 2006, 110(32): 15824-15830. [39] Arai T, Senda S, Sato Y,. Cu-doped ZnS hollow particle with high activity for hydrogen generation from alkaline sulfide solution under visible light [J]. Chemistry of Materials, 2008, 20(5): 1997-2000. [40] Dholam R, Patel N, Adami M,. Hydrogen production by photocatalytic water-splitting using Cr-or Fe-doped TiO2composite thin films photocatalyst [J]. International Journal of Hydrogen Energy, 2009, 34(13): 5337-5346. [41] Kim D H, Choi D K, Kim S J,. The effect of phase type on photocatalytic activity in transition metal doped TiO2nanoparticles [J]. Catalysis Communications, 2008, 9(5): 654-657. [42] Devi L G, Kumar S G, Murthy B N,. Influence of Mn2+and Mo6+dopants on the phase transformations of TiO2lattice and its photocatalytic activity under solar illumination [J]. Catalysis Communications, 2009, 10(6): 794-798. [43] Tian B, Li C, Gu F,. Flame sprayed V-doped TiO2nanoparticles with enhanced photocatalytic activity under visible light irradiation [J]. Chemcical Engineering Journal, 2009, 151(1): 220-227. [44] Yin C, Zhu S, Chen Z,. One step fabrication of C-doped BiVO4with hierarchical structures for a high-performance photocatalyst under visible light irradiation [J]. Journalof Materials Chemistry A, 2013, 1(29): 8367-8378. [45] Yang G, Jiang Z, Shi H,. Preparation of highly visible-light active N-doped TiO2photocatalyst [J]. Journalof Materials Chemistry, 2010, 20(25): 5301-5309. [46] Ma D, Xin Y, Gao M,. Fabrication and photocatalytic properties of cationic and anionic S-doped TiO2nanofibers by electrospinning [J]. Applied Catalysis B: Environmental, 2014, 147: 49-57. [47] Wang J, Tafen D N, Lewis J P,Origin of photocatalytic activity of nitrogen-doped TiO2nanobelts [J]. Journal of The American Chemical Society, 2009, 131(34): 12290-12297. [48] Di Valentin C, Finazzi E, Pacchioni G,. N-doped TiO2: theory and experiment [J]. Chemical Physics, 2007, 339(1): 44-56. [49] Livraghi S, Paganini M C, Giamello E,. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light [J]. Journal of The American Chemical Society, 2006, 128(49): 15666-15671. [50] Wang F, Di Valentin C, Pacchioni G. Doping of WO3for photocatalytic water splitting: hints from density functional theory [J]. Journal of Physical Chemistry C, 2012, 116(16): 8901-8909. [51] Sun X, Liu H, Dong J,. Preparation and characterization of Ce/N-codoped TiO2particles for production of H2by photocatalytic splitting water under visible light [J]. Catalysis Letters, 2010, 135(3-4): 219-225. [52] Niishiro R, Kato H, Kudo A. Nickel and either tantalum or niobium-codoped TiO2and SrTiO3photocatalysts with visible-light response for H2or O2evolution from aqueous solutions [J]. Physical Chemistry Chemical Physics, 2005, 7(10): 2241-2245. [53] Zhang J, Wang Y, Zhang J,. Enhanced photocatalytic hydrogen production activities of Au-loaded ZnS flowers [J]. Acs Applied Materials & Interfaces, 2013, 5(3): 1031-1037. [54] Ma B J, Kim J S, Choi C H,Enhanced hydrogen generation from methanol aqueous solutions over Pt/MoO3/TiO2under ultraviolet light [J]. International Journal of Hydrogen Energy, 2013, 38(9): 3582-3587. [55] Okamoto Y, Ida S, Hyodo J,Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading [J]. Journal of The American Chemical Society, 2011, 133(45): 18034-18037. [56] Tanabe I, Ozaki Y. Consistent changes in electronic states and photocatalytic activities of metal (Au, Pd, Pt)-modified TiO2studied by far-ultraviolet spectroscopy [J]. Chemical Communications, 2014, 50(17): 2117-2119. [57] Jeong H, Kim T, Kim D,. Hydrogen production by the photocatalytic overall water splitting on NiO/Sr3Ti2O7: effect of preparation method [J]. International Journal of Hydrogen Energy, 2006, 31(9): 1142-1146. [58] Kadowaki H, Saito N, Nishiyama H,Overall splitting of water by RuO2-loaded PbWO4photocatalyst with d10s2-d0 configuration [J]. Journal of Physical Chemistry C, 2007, 111(1): 439-444. [59] Yang J, Yan H, Wang X,Roles of cocatalysts in Pt–PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production [J]. Journal of Catalysis, 2012, 290: 151-157. [60] Zong X, Han J, Ma G,Photocatalytic H2evolution on CdS loaded with WS2as cocatalyst under visible light irradiation [J]. Journal of Physical Chemistry C, 2011, 115(24): 12202-12208. [61] Ni M, Leung M K, Leung D Y,A review and recent developments in photocatalytic water-splitting using TiO2for hydrogen production [J]. Renewable & Sustainable Energy Reviews, 2007, 11(3): 401-425. [62] Yang J, Wang D, Han H,Roles of cocatalysts in photocatalysis and photoelectrocatalysis [J]. Accounts of Chemical Research, 2013, 46(8): 1900-1909. [63] Yan H, Yang J, Ma G,Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst [J]. Journal of Catalysis, 2009, 266(2): 165-168. [64] Wang D, Hisatomi T, Takata T,Core/shell photocatalyst with spatially separated Co-catalysts for efficient reduction and oxidation of water [J]. Angewandte Chemie-International Edition, 2013, 52(43): 11252-11256. [65] Zhou X, Liu G, Yu J,. Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light [J]. Journalof Materials Chemistry, 2012, 22: 21337-21354. [66] Tanaka A, Ogino A, Iwaki M,. Gold-titanium(IV) oxide plasmonic photocatalysts prepared by a colloid-photodeposition method: correlation between physical properties and photocatalytic activities [J]. Langmuir, 2012, 28(36): 13105-13111. [67] Wang P, Huang B, Dai Y,. Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles [J]. Physical Chemistry Chemical Physics, 2012, 14(28): 9813-9825. [68] Chen J-J, Wu J C S, Wu P C,. Plasmonic photocatalyst for H2evolution in photocatalytic water splitting [J]. Journal of The American Chemical Society, 2011, 115(1): 210-216. [69] Linic S, Christopher P, Ingram D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy [J]. Nature Materials, 2011, 10(12): 911-921. [70] Liu Z, Hou W, Pavaskar P,Plasmon resonant enhancement of photocatalytic water splitting under visible illumination [J]. Nano Letters, 2011, 11: 1111-1116. [71] Yuzawa H, Yoshida T, Yoshida H. Gold nanoparticles on titanium oxide effective for photocatalytic hydrogen formation under visible light [J]. Applied Catalysis B: Environmental, 2012, 115: 294-302. [72] Zhao W, Ai Z, Dai J,. Enhanced photocatalytic activity for H2evolution under irradiation of UV-Vis light by Au-modified nitrogen-doped TiO2[J]. Plos ONE, 2014, 9(8): e103671. [73] Yu J, Yu Y, Zhou P,. Morphology-dependent photocatalytic H2production activity of CdS [J]. Applied Catalysis B: Environmental, 2014, 156-157: 184-191. [74] Yang S, Gong Y, Zhang J,. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light [J]. Advanced Materials, 2013, 25(17): 2452-2456. [75] WU Ya-hui (吳亞惠), LONG Ming-ce (龍明策), CAI Wei-ming (蔡偉民). Novel synthesis and property of TiO2nano film photocatalyst with mixed phases (混晶納米TiO2薄膜光催化劑的新型制備方法及性能研究) [J]. Journal of Chemical Engineering of Chinese Universities (高?;瘜W(xué)工程學(xué)報), 2010, 24(6): 1005-1010. [76] Wang J, Cao F, Bian Z,. Ultrafine single-crystal TiOF2nanocubes with mesoporous structure, high activity and durability in visible light driven photocatalysis [J]. Nanoscale, 2014, 6(2): 897-902. [77] LAN Yu-wei (蘭宇衛(wèi)), ZHOU Li-ya (周立亞), TONG-Zhang-fa (童張法),Fabrication and property investigation of the highly ordered TiO2nanotube arrays (高度有序TiO2納米管陣列的制備及其光催化性能研究) [J]. Journal of Chemical Engineering of Chinese Universities (高?;瘜W(xué)工程學(xué)報), 2011, 25(3): 507-512. [78] Zhang L J, Zheng R, Li S,. Enhanced photocatalytic H2generation on cadmium sulfide nanorods with cobalt hydroxide as cocatalyst and insights into their photogenerated charge transfer properties [J]. Acs Applied Materials & Interfaces, 2014, 6(16): 13406-13412. [79] Suresh Kumar P, Jayaraman S, Subramanian S,. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation [J]. Energy &Environmental Science, 2014, 7: 3192-3222. [80] Zhou W, Li W, Wang JQ,. Ordered mesoporous black TiO2as highly efficient hydrogen evolution photocatalyst [J]. Journal of The American Chemical Society, 2014, 136(26): 9280-9283. [81] Dai F, Zai J, Yi R,. Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance [J]. Nature Communications, 2014, 5: 4605/1-4605/11. [82] Dong R, Tian B, Zhang J,. AgBr@Ag/TiO2core-shell composite with excellent visible light photocatalytic activity and hydrothermal stability [J]. Catalysis Communications, 2013, 38: 16-20. [83] Zhang X, Zhu Y, Yang X,. Enhanced visible light photocatalytic activity of interlayer-isolated triplex Ag@SiO2@TiO2core-shell nanoparticles [J]. Nanoscale, 2013, 5(8): 3359-3366. [84] Dinh C-T, Yen H, Kleitz F,. Three-dimensional ordered assembly of thin-shell Au/TiO2hollow nanospheres for enhanced visible-light-driven photocatalysis [J]. Angewandte Chemie-International Edition, 2014, 53(26): 6618-6623. [85] Chaudhari N S, Warule S S, Dhanmane S A,. Nanostructured N-doped TiO2marigold flowers for an efficient solar hydrogen production from H2S [J]. Nanoscale, 2013, 5(19): 9383-9390. [86] Roy N, Sohn Y, Pradhan D. Synergy of low-energy {101} and high-energy {001} TiO2crystal facets for enhanced photocatalysis [J]. ACS Nano, 2013, 7(3): 2532-2540. [87] Xie Y P, Yu Z B, Liu G,CdS-mesoporous ZnS core-shell particles for efficient and stable photocatalytic hydrogen evolution under visible light [J]. Energy &Environmental Science, 2014, 7(6): 1895-1901. [88] Hou J, Yang C, Wang Z,. In situ synthesis of α-β phase heterojunction on Bi2O3nanowires with exceptional visible-light photocatalytic performance [J]. Applied Catalysis B: Environmental, 2013, 142-143: 504-511. [89] Li K, Chai B, Peng T,. Preparation of AgIn5S8/TiO2heterojunction nanocomposite and its enhanced photocatalytic H2production property under visible light [J]. ACS Catalysis, 2013, 3(2): 170-177. [90] Liu H, Yuan J, Jiang Z,. Novel photocatalyst of V-based solid solutions for overall water splitting [J]. Journal of Materials Chemistry, 2011, 21(41): 16535-16543. [91] Wang Q, An N, Chen W,. Photocatalytic water splitting into hydrogen and research on synergistic of Bi/Sm with solid solution of Bi-Sm-V photocatalyst [J]. International Journal of Hydrogen Energy, 2012, 37(17): 12886-12892. [92] Tsuji I, Kato H, Kobayashi H,. Photocatalytic H2evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2solid solution photocatalysts with visible-light response and their surface nanostructures [J]. Journal of The American Chemical Society, 2004, 126(41): 13406-13413. [93] Zhao W, Ai Z, Zhu X,. Visible-light-driven photocatalytic H2evolution from water splitting with band structure tunable solid solution (AgNbO3)1?x(SrTiO3)x[J]. International Journal of Hydrogen Energy, 2014, 39(15): 7705-7712. [94] Bard A J. Photoelectrochemistry and heterogeneous photocatalysis at semiconductors [J]. Journal of Photochemistry, 1979, 10(1): 59-75. [95] Osterloh F E. Inorganic materials as catalysts for photochemical splitting of water [J]. Chemistry of Materials, 2008, 20(1): 35-54. [96] Ma S S K, Hisatomi T, Domen K. Hydrogen production by photocatalytic water splitting [J]. Journal of the Japan Petroleum Institute, 2013, 56(5): 280-287. [97] Maeda K, Higashi M, Lu D,. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst [J]. Journal of The American Chemical Society, 2010, 132(16): 5858-5868. [98] Iwase A, Ng Y H, Ishiguro Y,. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light [J]. Journal of The American Chemical Society, 2011, 133(29): 11054-11057. [99] Yun H J, Lee H, Kim N D,. A combination of two visible-light responsive photocatalysts for achieving the Z-scheme in the solid state [J]. ACS Nano, 2011, 5(5): 4084-4090. [100] Kudo A. Z-scheme photocatalyst systems for water splitting under visible light irradiation [J]. MRS Bulletin, 2011, 36(1): 32-38. [101] Jin Z, Murakami N, Tsubota T,. Complete oxidation of acetaldehyde over a composite photocatalyst of graphitic carbon nitride and tungsten(VI) oxide under visible-light irradiation [J]. Applied Catalysis B: Environmental, 2014, 150-151: 479-485. [102] Wang L, Ge J, Wang A,Designing p-type semiconductor-metal hybrid structures for improved photocatalysis [J]. Angewandte Chemie-International Edition, 2014, 53(20): 5107-5111. [103] Huang L, Wang X, Yang J,. Dual cocatalysts loaded type I CdS/ZnS core/shell nanocrystals as effective and stable photocatalysts for H2evolution [J]. Journal of Physical Chemistry C, 2013, 117(22): 11584-11591. Modification of Photocatalysts for H2Evolution from Water Photocatalyzation AI Zhu-yu, ZHAO Wei-rong, DAI Jiu-song, ZHU Xi (Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China) Water photocatalyzation for hydrogen evolution is a potential way to solve energy and environmental issues. Traditional photocatalysts have some problems, such as poor stability, inefficient solar energy utilization and low hydrogen production efficiency. Photocatalyst modification has become a hot topic because of its possibility to improve photocatalytic properties thus enhancing hydrogen production efficiency.. The mechanism and influence factors of photocatalytic hydrogen evolution are briefly introduced. Recent research progress in the development of modification strategies and electron transfer mechanism studies, such as ion doping, surface modification, morphology modification, heterojunction, solid solution, Z-scheme system and combined modification strategies, are reviewed. The prospects of photocatalysts for hydrogen evolution are discussed. water splitting; H2evolution; photocatalysts; modificationn 1003-9015(2016)03-0508-12 網(wǎng)絡(luò)出版地址: http://www.cnki.net/kcms/detail/33.1141.TQ.20160421.1428.002.html O643.3 A 10.3969/j.issn.1003-9015.2016.00.011 2014-10-26; 2015-01-22。網(wǎng)絡(luò)出版時間:2016-04-21 14:28:46 國家自然科學(xué)基金(51278456, 51178412);國家科技支撐計劃(2013BAC16B01)。 艾珠玉(1990-),女,湖南邵陽人,浙江大學(xué)碩士生。 趙偉榮,E-mail:weirong@mail.hz.zj.cn