王 攀, 桑世華, 劉 乾, 崔瑞芝
?
三元體系NaBr-Na2SO4-H2O和KBr-K2SO4-H2O 398 K相平衡研究
王 攀1,2, 桑世華1,2,劉 乾1,2, 崔瑞芝1,2
(1. 成都理工大學(xué) 材料與化學(xué)化工學(xué)院, 四川 成都 610059;2. 礦產(chǎn)資源化學(xué)四川省高校重點(diǎn)實(shí)驗(yàn)室, 四川 成都 610059)
采用等溫溶解平衡法研究了三元體系NaBr-Na2SO4-H2O和KBr-K2SO4-H2O在高溫398 K的相平衡關(guān)系,測(cè)定了398 K條件下平衡溶液的溶解度。研究發(fā)現(xiàn):兩個(gè)三元體系均為簡(jiǎn)單共飽和型,無(wú)復(fù)鹽及固溶體生成。根據(jù)溶解度數(shù)據(jù)繪制了相圖,相圖中均有一個(gè)共飽和點(diǎn),2個(gè)平衡固相結(jié)晶區(qū)和2條單變量曲線。三元體系NaBr-Na2SO4-H2O所對(duì)應(yīng)的平衡固相為NaBr和Na2SO4;KBr-K2SO4-H2O體系對(duì)應(yīng)的平衡固相為KBr和K2SO4。對(duì)比了上述兩個(gè)三元體系在不同溫度條件下共飽點(diǎn)的液相組成,實(shí)驗(yàn)結(jié)果表明,NaBr和 KBr分別對(duì)Na2SO4和K2SO4有較強(qiáng)的鹽析作用。
水鹽體系;相平衡;溴化鈉;硫酸鈉;溴化鉀;硫酸鉀
1 引 言
隨著固態(tài)礦產(chǎn)資源的逐漸枯竭,高礦化度的液態(tài)礦產(chǎn)資源日益受到關(guān)注。我國(guó)不僅分布著眾多的鹽湖資源,而且還儲(chǔ)藏有大量的鹵水資源,尤其是四川盆地西部的氣田鹵水,鹵水資源總量居全國(guó)之冠,它的鹵水礦化度為377 g×L-1[1,2]。該鹵水的化學(xué)組成除了高含量的氯化鈉外,還具有富含硼鉀溴的特點(diǎn),并且伴生I-,Sr2+,Li+,Rb+等多種有用成分,品質(zhì)優(yōu)異,構(gòu)成優(yōu)質(zhì)化工原料水,經(jīng)濟(jì)價(jià)值極高[3]。
研究多溫相圖對(duì)合理開(kāi)發(fā)液態(tài)礦產(chǎn)資源具有實(shí)際指導(dǎo)意義。四川盆地西部的氣田鹵水組成復(fù)雜,五元體系Na+,K+∥Br-,SO42-,B4O72--H2O為川西盆地富硼鉀溴鹵水中的一個(gè)子體系,川西盆地富硼鉀溴的地下氣田鹵水產(chǎn)于地下4000多米深處的鹽盆中,鹵水層的溫度可達(dá)100~125℃,鹵水礦藏深埋于地下,在氣田的開(kāi)采過(guò)程中,鹵水借助壓力可自流溢出井口,開(kāi)采極為方便,研究該體系的高溫相平衡關(guān)系和溶液的物化性質(zhì),對(duì)于制定鹵水綜合利用方案,闡明鹵水礦物的形成條件都有指導(dǎo)意義。三元體系KBr-K2SO4- H2O和NaBr-Na2SO4- H2O屬于該五元體系的子體系。針對(duì)川西盆地地下鹵水相平衡的研究,桑世華等已經(jīng)完成了298 K和323 K條件下五元體系Na+,K+//Cl?, SO42?, B4O72?-H2O相平衡研究[4,5],323K條件下四元體系Na+, K+// Br?, SO42?-H2O相平衡研究和理論計(jì)算[6,7],348 K條件下四元體系Na2B4O7-NaBr -Na2SO4-H2O的相平衡研究[8]等等。
在鹵水資源的開(kāi)發(fā)過(guò)程中,各種無(wú)機(jī)鹽的分離提純常常依靠相平衡與相圖[9]作指導(dǎo),采用蒸發(fā)、 加水、結(jié)晶、鹽析、加熱、冷卻等一系列相分離技術(shù)工藝過(guò)程實(shí)現(xiàn);因此多溫相圖的研究對(duì)合理開(kāi)發(fā)液態(tài)礦產(chǎn)資源具有實(shí)際指導(dǎo)意義。對(duì)于含鉀溴的水鹽體系相平衡研究,近年來(lái)國(guó)內(nèi)外有關(guān)學(xué)者開(kāi)展了部分研究:如四元體系KCl-KBr-K2SO4-H2O 323 K相平衡[10];以及323 K下三元體系Na+,K+//Br--H2O和298 K下五元體系Na+,K+// Cl?,NO3?,SO42?-H2O和Na+, K+,Ca2+,Mg2+// Cl?- H2O相平衡模擬等[11~13]。本文研究的三元體系NaBr-Na2SO4-H2O和KBr -K2SO4-H2O為川西盆地富硼鉀溴鹵水中的子體系,前蘇聯(lián)科學(xué)工作者研究了NaBr-Na2SO4- H2O在273、298、308 K的溶解度及相平衡關(guān)系。課題組前期開(kāi)展了三元體系NaBr-Na2SO4-H2O 323 K相平衡的研究[14],此外,KBr-K2SO4-H2O,NaBr-Na2SO4-H2O和KBr-NaBr-H2O 373 K的相平衡研究也見(jiàn)報(bào)道[15,16],而高溫398 K條件下有關(guān)這兩個(gè)三元體系的相平衡研究尚未見(jiàn)文獻(xiàn)報(bào)道。因此,在前期研究工作基礎(chǔ)上,作者進(jìn)行了三元體系NaBr-Na2SO4-H2O和KBr-K2SO4- H2O在398 K時(shí)的相平衡研究。
2 實(shí)驗(yàn)部分
2.1 實(shí)驗(yàn)試劑和儀器
實(shí)驗(yàn)所用試劑為分析試劑,分別為:NaBr、Na2SO4、KBr、K2SO4(成都科龍?jiān)噭S)均為分析純?cè)噭?,用的水為去離子水,由優(yōu)普特實(shí)驗(yàn)室超純水儀器制備,所用儀器有:AL104型電子天平(Mettler-Toledo公司,精度值0.0001 g);高溫磁力驅(qū)動(dòng)反應(yīng)釜,溫度可以自動(dòng)調(diào)節(jié)(溫度精度±1 K)。
2.2 實(shí)驗(yàn)方法
體系的研究采用等溫溶解平衡法。即從次級(jí)共飽點(diǎn)開(kāi)始按一定比例間隔加入另一種新鹽,每條單變量曲線配置若干組,再分別向各組混合物中加入200 mL的蒸餾水。將所配料液置于立式容器中,再置于高溫磁力驅(qū)動(dòng)反應(yīng)釜 (398 ±1) K中密封反應(yīng),先打開(kāi)攪拌開(kāi)關(guān),攪拌2 h加速平衡,溫度升到398 K時(shí),再攪拌2~4 h后停止攪拌,恒溫靜置2~4 h以上,每隔2 h取樣1次,溶液組成不變,可以考慮達(dá)到固液平衡。打開(kāi)取樣閥門,依靠反應(yīng)釜自身壓力使上層清液快速流出,取樣口裝備加熱帶避免溫度下降,取中間段清液進(jìn)行化學(xué)分析,以其化學(xué)組成不變作為達(dá)到平衡的標(biāo)志,分析表明,平衡時(shí)間約為5~8 h。平衡液相的組成采用化學(xué)分析法確定。
2.3 分析方法[17]
Br-含量:硝酸銀容量法;SO42含量:茜素紅-S法;K+含量:四苯硼鈉容量法;Na+量用平衡離子差減法得到,并輔以ICP-OES儀器對(duì)陽(yáng)離子滴定結(jié)果加以驗(yàn)證。所有測(cè)量都是測(cè)平行樣,取平均值。
3 結(jié)果與討論
3.1 三元體系NaBr-Na2SO4-H2O 398 K時(shí)相平衡實(shí)驗(yàn)結(jié)果
三元體系NaBr-Na2SO4-H2O 398 K溶解度和平衡液相測(cè)定結(jié)果分別列于表1中。平衡液相的組成用質(zhì)量分?jǐn)?shù)(B)表示。圖1為根據(jù)溶解度數(shù)據(jù)繪制的等溫相圖。圖2為該相圖的局部放大圖。由表1和圖1可知,三元體系NaBr- Na2SO4-H2O 398 K條件下屬于簡(jiǎn)單共飽和型,即體系中既無(wú)復(fù)鹽也無(wú)固溶體生成。該相圖由1個(gè)共飽點(diǎn),2條溶解度單變量曲線和2個(gè)固相結(jié)晶相區(qū)組成。兩個(gè)結(jié)晶區(qū)分別為NaBr和Na2SO4,NaBr的結(jié)晶區(qū)(B1C1E1)較小,Na2SO4(A1D1E1)的結(jié)晶區(qū)較大。A1B1E1區(qū)為兩種鹽NaBr和Na2SO4的共結(jié)晶區(qū)。其中,NaBr在該體系中有較大溶解度,由表1和圖1可見(jiàn),隨著NaBr含量的增加,Na2SO4的含量降幅很大,說(shuō)明NaBr對(duì)Na2SO4有較強(qiáng)鹽析作用。兩條單變量曲線為C1E1和D1E1,E1點(diǎn)為三元體系NaBr-Na2SO4- H2O的共飽點(diǎn),其平衡固相為NaBr和Na2SO4,液相質(zhì)量分?jǐn)?shù)為(NaBr ) = 54.8%,(Na2SO4) = 0.52%。
表1 三元體系 NaBr-Na2SO4-H2O 398 K溶解度
圖 1 三元體系 NaBr-Na2SO4-H2O 398 K相圖和局部放大圖
圖 2 三元體系 KBr-K2SO4-H2O 398 K相圖和局部放大圖
表2 三元體系NaBr-Na2SO4-H2O在不同溫度條件下共飽點(diǎn)液相組成和平衡固相
3.2 不同溫度條件下該體系共飽點(diǎn)組成對(duì)比
三元體系NaBr-Na2SO4-H2O在不同溫度條件下共飽點(diǎn)液相組成(質(zhì)量分?jǐn)?shù))和平衡固相列于表2。
3.3 三元體系KBr-K2SO4-H2O398 K時(shí)相平衡實(shí)驗(yàn)結(jié)果
三元體系KBr-K2SO4-H2O398 K溶解度和平衡液相測(cè)定結(jié)果分別列于表3中。平衡液相的組成用質(zhì)量分?jǐn)?shù)(B)表示。圖3為根據(jù)溶解度數(shù)據(jù)繪制的等溫相圖。圖4為該相圖的局部放大圖。由表2和圖3可知,三元體系KBr-K2SO4-H2O398 K條件下屬于簡(jiǎn)單共飽和型,即體系中既無(wú)復(fù)鹽也無(wú)固溶體生成。該相圖由1個(gè)共飽點(diǎn),2條溶解度單變量曲線和2個(gè)固相結(jié)晶相區(qū)組成。兩個(gè)結(jié)晶區(qū)分別為KBr和K2SO4,KBr的結(jié)晶區(qū)(B2C2E2)較小,K2SO4(A2D2E2)的結(jié)晶區(qū)較大。A2B2E2區(qū)為兩種鹽KBr和K2SO4的共結(jié)晶區(qū)。其中,KBr在該體系中有較大溶解度,由表2和圖3可見(jiàn),隨著KBr含量的增加,K2SO4的含量降幅很大,說(shuō)明KBr對(duì)K2SO4有較強(qiáng)鹽析作用。兩條單變量曲線為C2E2和D2E2,E2點(diǎn)為三元體系KBr-K2SO4-H2O的共飽點(diǎn),其平衡固相為KBr和K2SO4,液相質(zhì)量分?jǐn)?shù)為(KBr ) = 52.07%,(K2SO4) = 0.48%。
表3 三元體系KBr-K2SO4-H2O 398 K溶解度
3.4 不同溫度條件下該體系共飽點(diǎn)組成對(duì)比
三元體系KBr-K2SO4-H2O在不同溫度條件下共飽點(diǎn)液相組成(質(zhì)量分?jǐn)?shù))和平衡固相列于表4。
表4 三元體系KBr-K2SO4-H2O在不同溫度條件下共飽點(diǎn)液相組成和平衡固相
4 結(jié) 論
(1) 采用等溫溶解平衡法測(cè)定了三元體系NaBr-Na2SO4-H2O在398 K條件下的溶解度,并繪制了相應(yīng)的相圖。
(2) 三元體系NaBr-Na2SO4-H2O屬于簡(jiǎn)單共飽和型,相圖中含有1個(gè)共飽點(diǎn),2個(gè)結(jié)晶區(qū),2條單變量曲線,平衡固相為NaBr和Na2SO4。NaBr的結(jié)晶區(qū)較小,溶解度較大;Na2SO4的結(jié)晶區(qū)最大,溶解度較小。
(3) 三元體系KBr-K2SO4-H2O屬于簡(jiǎn)單共飽和型,相圖中含有1個(gè)共飽點(diǎn),2個(gè)結(jié)晶區(qū),2條單變量曲線,平衡固相為KBr和K2SO4。KBr的結(jié)晶區(qū)較小,溶解度較大;K2SO4的結(jié)晶區(qū)最大,溶解度較小。
(4) 對(duì)比了三元體系NaBr-Na2SO4-H2O和KBr-K2SO4-H2O在不同溫度條件下共飽點(diǎn)的液相組成,結(jié)果表明,實(shí)驗(yàn)數(shù)據(jù)可信。
(5) 溴鹽對(duì)硫酸鹽有較強(qiáng)的鹽析作用。
[1] LIN Yao-ting (林耀庭), CHEN Shao-lan (陳紹蘭). Exploration and development prospect of underground brine in Sichuan basin (四川地下鹵水勘探開(kāi)發(fā)前景展望) [J]. Journal of Salt Lake Research (鹽湖研究), 2008, 16(1): 1-7.
[2] LIN Yao-ting (林耀庭). Study on sustainable development of potassium boron iodine and bromine in brine of Sichuan basin (四川盆地鹵水鉀硼碘溴資源開(kāi)發(fā)利用可持續(xù)發(fā)展的對(duì)策思考) [J]. Journal of Salt Lake Research (鹽湖研究), 2001, 9(2): 56-60.
[3] LIN Yao-ting (林耀庭). Resource advantages of the underground brines of Sichuan basin and the outlook of their comprehensive exploitation (四川地下鹵水資源優(yōu)勢(shì)及綜合開(kāi)發(fā)前景) [J]. Journal of Salt Lake Research (鹽湖研究), 2006, 14(4): 1-8.
[4] SANG Shi-hua (桑世華), ZHANG Xiao (張曉), ZENG Xiao-xiao (曾曉曉),. Solid-liquid equilibria in the quinary Na+, K+//Cl?, SO42?, B4O72?-H2O system at 298 K (Na+, K+//Cl?, SO42?, B4O72?-H2O五元體系298 K固液平衡研究) [J]. Chinese Journal of Chemistry (中國(guó)化學(xué)), 2011, 29(6): 1285-1289.
[5] Sang S H, Zang X, Zhang J J. Solid-liquid equilibria in the quinary system Na+, K+//Cl?, SO42?, B4O72?-H2O at 323 K [J]. Journal of Chemical & Engineering Data, 2012, 57 (3): 907-910.
[6] SANG Shi-hua (桑世華), SUN Ming-liang (孫明亮), LI Heng (李恒),. A study on equilibria of the quaternary system Na+,K+//Br-,SO42--H2O at 323 K [J]. Chinese Journal of Inorganic Chemistry (無(wú)機(jī)化學(xué)學(xué)報(bào)), 2011, 27(5): 845-849.
[7] ZENG Xiao-xiao (曾曉曉), SANG Shi-hua (桑世華), WANG Dan (王丹),. The theoretical calculations of phase equilibrium in the interactive quaternary system Na+,K+// Br-,SO42-- H2O at 323 K (交互四元體系Na+,K+// Br-,SO42-- H2O 323 K相平衡的理論計(jì)算) [J]. Chemical Engineering (化學(xué)工程), 2012, 40(5): 32-35.
[8] NING Hui-yi (寧慧逸), SANG Shi-hua (桑世華), WANG Dan (王丹),. Study on phase equilibria in Na2B4O7-NaBr- Na2SO4- H2O quaternary system at 348 K (Na2B4O7-NaBr- Na2SO4- H2O四元體系348 K 相平衡研究) [J]. Chemical Engineering (化學(xué)工程), 2012, 40(4): 27-30.
[9] NIU Zi-de (牛自得), CHENG Fang-qin (程芳琴). Salt and water phase diagram and its application (水鹽體系相圖及其應(yīng)用) [M]. Tianjin (天津): Tianjin University Press (天津大學(xué)出版社), 2002.
[10] WANG Dan (王丹), SANG Shi-hua (桑世華), ZENG Xiao-xiao (曾曉曉),. Phase equilibrium of KCl-KBr-K2SO4-H2O quaternary system at 323 K (KCl-KBr-K2SO4-H2O四元體系323 K相平衡研究) [J]. Petrochemical Technology (石油化工), 2011, 40(3): 285-288.
[11] Christov C. An isopiestic study of aqueous NaBr and KBr at 50℃: chemical equilibrium model of solution behavior and solubility in the NaBr-H2O, KBr-H2O and Na-K-Br-H2O systems to high concentration and temperature [J]. Geochimica et Cosmochimica Acta, 2007, 71(14): 3557-3569.
[12] Michael S, Jana K, Andreas N. An improved model incorporating pitzer’s equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code [J]. Construction and Building Materials, 2008, 22(8): 1841-1850.
[13] Speceer R J, Moller N, Weare H. The prediction of mineral solubilities in natural waters: aehemieal equilibrium model for the Na-K-Ca-Mg-Cl-H2O system at temperatures below 25℃ [J]. Geochimica et Cosmochimica Acta, 1990, 54(3): 575-590.
[14] SUN Ming-liang (孫明亮), SANG Shi-hua (桑世華), LI Heng (李恒),. Phase equilibrium of ternary system of NaBr-Na2SO4-H2O at 323 K (NaBr-Na2SO4-H2O三元體系323 K相平衡研究) [J]. Chemical Engineering (化學(xué)工程), 2010, 38(7): 67-70.
[15] LU Qi-fu (盧啟富), SANG Shi-hua (桑世華), ZHANG Hai (張海),. Phase equilibrium of ternary system of KBr-K2SO4-H2O at 373 K (三元體系KBr-K2SO4- H2O在373 K的相平衡研究) [J]. Inorganic Salt Industry (無(wú)機(jī)鹽工業(yè)), 2015, 47(2), 13-15.
[16] SANG Shi-hua (桑世華), CUI Rui-zhi (崔瑞芝), HU Yong-xia (胡永霞). Phase equilibrium of ternary system of NaBr-Na2SO4-H2O and KBr-NaBr-H2O at 373 K (NaBr-Na2SO4-H2O和KBr-NaBr-H2O三元體系373K相平衡研究) [J]. Journal of Chemical Engineering of Chinese Universities (高?;瘜W(xué)工程學(xué)報(bào)), 2014, 28(5), 939-943.
[17] Qinghai Institute of Salt Lakes, Chinese Academy of Sciences (中科院青海鹽湖所). Analytical methods of brines and salts (鹵水和鹽的分析方法) [M]. Beijing (北京): Science and Technology Press (科學(xué)與技術(shù)出版社), 1984: 75-78.
[18] HU Yong-xia (胡永霞), SANG Shi-hua (桑世華), CUI Rui-zhi (崔瑞芝). Study on phase equilibria in the ternary system NaBr-Na2SO4-H2O at 348 K (三元體系NaBr-Na2SO4-H2O 348K相平衡研究) [EB/OL]. Beijing (北京): Sciencepaper Online (中國(guó)科技論文在線), [2013-07-10]. http:// www. paper. edu. cn/releasepaper/content/201307-144.
[19] Silcock H L. Solubilities of inorganic and organic compounds [M]. Oxford: Pergamon Press, 1979.
Phase Equilibria of NaBr-Na2SO4-H2O and KBr-K2SO4-H2O Ternary Systems at 398 K
WANG Pan1,2, SANG Shi-hua1,2, LIU Qian1,2, CUI Rui-zhi1,2
(1. College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; 2. Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions, Chengdu 610059, China)
Phase equilibria of NaBr-Na2SO4-H2O and KBr-K2SO4-H2O ternary systems at 398 K were studied by an isothermal solution saturation method. The solubilities of these systems were determined. The results show that the two systems are both of simple type with no complex salts or solid solutions formed. Both phase diagrams show one eutectic point, two univariant curves and two crystallization regions. The solid phase in NaBr-Na2SO4-H2O is composited of sodium bromide(NaBr) and sodium sulfate(Na2SO4), and the solid phase in KBr- K2SO4-H2O is composited of sodium bromide(KBr) and sodium sulfate(K2SO4). The liquid components of the ternary systems at invariant points were compared at different temperatures. The results show that NaBr and KBr have better salting-out effects on Na2SO4and K2SO4, respectively.
salt-water system; phase equilibrium; sodium bromide; sodium sulfate; potassium bromide; potassium sulfate
1003-9015(2016)03-0527-05
O642
A
10.3969/j.issn.1003-9015.2016.03.004
2015-06-29;
2015-10-27。
國(guó)家自然科學(xué)基金(41373062,U1407108);高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20125122110015);四川省教育廳高??蒲袆?chuàng)新團(tuán)隊(duì)(15TD0009)。
王攀(1989-),男,四川遂寧人,成都理工大學(xué)碩士生。
桑世華,E-mail:sangsh@cdut.edu.cn