• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fell topology,Choquet capacity and capacity-ergodic systems

    2016-09-13 02:01:02dedicatedtothememoryofYangengWangLiRuiWeiGuoDoolingTomBourquinStevenSchoolofStatisticsMathematicsShanghaiFinanceUniversityShanghai009ChinaDepartmentofMathematicsComputerScienceUniversityofNorthCarolinaatPembrokePembrokea
    關(guān)鍵詞:李瑞自同構(gòu)萊納

    dedicated to the memory of Yangeng WangLi Rui,Wei Guo,Dooling Tom,Bourquin Steven(.School of Statistics&Mathematics,Shanghai Finance University,Shanghai 009,China;.Department of Mathematics&Computer Science,University of North Carolina at Pembroke,Pembrokeao North Carolina 87,U.S.A. .Department of Chemistry&Physics,University of North Carolina at Pembroke,Pembroke,North Carolina 87,U.S.A.)

    Fell topology,Choquet capacity and capacity-ergodic systems

    dedicated to the memory of Yangeng Wang
    Li Rui1,Wei Guo2,Dooling Tom3,Bourquin Steven2
    (1.School of Statistics&Mathematics,Shanghai Finance University,Shanghai 201209,China;2.Department of Mathematics&Computer Science,University of North Carolina at Pembroke,Pembrokeao North Carolina28372,U.S.A. 3.Department of Chemistry&Physics,University of North Carolina at Pembroke,Pembroke,North Carolina28372,U.S.A.)

    This paper contains a review of the Fell topology,reinstalls the role of Choquet capacities in probability theory,and generalizes the notion of ergodic measures to the non-additive counterpart of ergodic Choquet capacities.Further,an ergodic capacity system is constructed through a hyperbolic toral automorphism,with relevant dynamical properties explored.

    Fell topology,stationary Poisson process,hyperbolic toral automorphism,ergodic Choquet capacity

    2010 MSC:60D05,49J45Document Code:AArticle ID:1008-5513(2016)04-0506-16

    1 Fell topology

    Given a topological space E,let F(E),G(E),and K(E)denote respectively the sets of all closed,open and compact subsets of E,abbreviated as F,G,and K(?∈F,?∈G and?∈K).

    The Fell topology τfon F(also known as H-topology[1],hit-or-miss topology[2,3],Choquet-Matheron topology[4],or weak Vietoris topology[5])is generated by the subbase

    where FK={F∈F|F∩K=?}and FG={F∈F|F∩G/=?}.A topological base of τfis

    A sequence{Fn}of closed subsets of E converges to a closed subset F of E in F iff(see Matheron[6])

    (i)If an open set G hits F,then G hits all the Fs except at the most a finite number of F′ns.

    (ii)If a compact set K is disjoint of F,then it is disjoint of all the Fn’s except at the most a finite number of Fs.

    The above criteria(i)and(ii)are respectively equivalent to the following(i)′and(ii)′.

    (i)′For every x∈F,there exists for each integer n a point xnin Fn(except,at the most, for a finite number of F)such thatxn=x in E.

    (ii)If Fis a subsequence of F,andx(x)is an arbitrary convergent sequence,′nknnknk∈Fnkthenxnkis in F.

    The Fell topology τfon arbitrary underlying spaces(Hausdorff or not)was introduced by Fell in 1962 for constructing the regularized dual space of C*-algebra[1,7].In 1975,Matheron re-discovered this topology when investigating the distribution and Choquet Theorem of random sets[6].Earlier investigation of this topology were in fact given by Watson in 1953[8]and Mrowka in 1958[9]who studied the topologies of closed convergence in locally compact separable(LCS)metric spaces and locally compact Hausdorff spaces,respectively.

    As a variation of the Vietoris topology,defined as the meet of the co-compact topology and lower Vietoris topology[3,6,10],the Fell topology is closely related to the Vietoris topology,Hausdorff metric,Wijsman topology,and upper Kuratowski topology(a topologization)(see e.g.Matheron[6],Beer[10],Michael[12],and the summary in our paper[13-16]).In particular,the Fell topology and Kuratowski topology coincide(Dolecki,Greco and Lechicki[17],Nogura and Shakhmatov[3],Beer[10]).

    In 1964,F(xiàn)lachsmeyer proved,based on Fell′s work and the Urysohn′s metrization theorem (Engelking[18]),that for any Hausdorff space E,the Fell topology is metrizable iff E is locally compact second countable(equivalently,LCS metrizable)(Flachsmeyer[19];see also Beer [10,20]).

    For non-Hausdorff underlying spaces,Zsilinszky in 2000 investigated the metrizability of the Fell topology and obtained a necessary and sufficient condition(locally compact,regular and second countable)[21].

    So far,four compatible metrics of the Fell topology are known.See 1)Watson[8],Rockafellar and Wets[22,23],Zhou[24],Wei and Wang[25]),2)Lechicki and Levi[26],3)Molchanov [2],Wei and Wang[25],and 4)Wei and Wang[13].Moreover,for the structures of compatible metrics,see Wang,Wei and Li[27].

    2 Random closed sets and their Choquet capacities

    Random sets theory provides a natural framework for representing in an elegant way the imprecision of the data available to a statistician(see Matheron[6],Molchanov[2],and Nguyen[28]for extensive references).Similar to the idea of using confidence intervals,due to the imperfection of the data acquiring procedures,it may be preferable to represent the outcome of an experiment as a set to which the true value of the measured quantity belongs rather than trying to ascribe to it some unique value(e.g.the center of the uncertainty interval)or a subjectively chosen probability distribution.In such situations it is particularly convenient to model the observation as a random set containing almost surely the random element corresponding to the true result of the experiment(Schreiber[29]).

    2.1Choquet capacities as Non-additive set functions

    The mathematical objects that govern the probabilistic laws of random closed sets(RACS) are the Choquet capacities,which share some properties of the traditional measures such as continuity from below and monotonicity,but also differ from the traditional measures,e.g.,lack of the additivity over disjoint regions and absence of the continuity from above(equivalent to upper semicontinuity).

    In contrast to the traditional measures such as the Lebesgue measure that calculate the quantity of physical extents that are contained in a set,the capacity of a set explores the ability or potential of the set to hold the physical extents subject to a certain given condition.

    For example,a capacity may describe the ability of a body to hold an electrical charge or mass for maintaining a specified equilibrium potential.It is known that for any compact set K in a space E such as Rn,there exists a unique admissible measureμdefined on K such that the resulting potential is 1 almost everywhere in K,except at most at points of a set of exterior capacity 0.Thisμis the equilibrium distribution and its potential is the equilibrium potential of K.The equilibrium distribution is the only admissible measure on K whose total charge or mass is equal to the capacity T(K)(see Choquet[30]).The mathematical formulation of this kind of physical phenomena is the Choquet capacity,which in fact holds a strong subadditivity:T(K1∪K2)+T(K1∩K2)≤T(K1)+T(K2).

    In the literature,Choquet capacities are often regarded as hitting probabilities,as preciselyillustrated Example.

    If a probability function P satisfies the countable additivity,then P is continuous from above(An↓A?P(An)↓P(A))and from below(An↑A?P(An)↑P(A));conversely,if a function P satisfies P(A)≥0 and P(S)=1,is finitely additive,and is continuous from above (at the empty set?)or continuous from below,then P is countably additive.

    A probability measureμis both continuous from below and above,and it′s(countably) additive.The additivity implies the Subset Property:For anyμ-measurable sets A and B,

    However,while a Choquet capacity T is continuous from below as well as continuous on any decreasing sequence of compact subsets,it is not necessarily continuous from above;for Choquet capacities,continuity from above is equivalent to the upper semicontinuity(see Wei,Wang,Nguyen and Beken[14]).Further,even if T is both continuous from below and from above,and holds a similar subset property:For any T-capacitable sets A and B,

    T is still not necessarily additive(Example).

    2.2Significance of Choquet capacities

    Choquet capacities,introduced by G.Choquet,a pioneer of the theory of non-additive set functions,are non-additive set functions and have influences on many parts of mathematics and different areas of sciences and technology,e.g.decision theory and social choice problems [31-39].Choquet capacities are widely applied to mathematical finance,e.g.cooperative games (Shapley[40]),stochastic dominance and risk measures(Sriboonchitta et al.[41]),uncertainty in economic theory(Marinacci et al.[42]).Specially,on the multi-criteria decision aiming at ordering multidimensional alternatives where the traditional weighted sum that relies on a rarely verified independence of criteria is replaced by a Choquet integral with respect to a capacity(Grabisch[43,44],also refer to Grabisch et al.[35];Marichal[45,46]).This approach was further developed by Kojadinovic(Kojadinovic[47]).

    In terms of Choquet capacities,the Choquet integral(see Matheron[6],Molchanov[2]and Nguyen[28])was introduced to generalize the traditional Lebesgue-Stieltjes integral(Lebesgue-Radon integral)where the latter(Lebesgue-Stieltjes integral)requires a regular Borel measure that is associated to functions of bounded variation on the real line(another integral based on monotonic set functions is Sugeno′s integral Sugeno[48]).

    Recall that E is a LCS metric space,such as Rnor other manifolds encountered in applications of mathematics.The Choquet integral of a measurable function g:E→R+withrespect to a Choquet capacity T(more general,with respect to a non-decreasing non-additive set function)is defined by

    compared to the well-known representation of the expectation of an ordinary non-negative random variable X:

    Choquet integral was rediscovered by Schmeidler in the framework of decision under uncertainty,where he was looking for representation theorems in utility theory.Schmeidler first put forward an axiomatic model of choice with non-additive beliefs.In order to axiomatize a decision model more flexible than subjective expected utility,Schmeidler weakened the classical independence axiom requiring it only for comonotonic functions and as a consequence,obtained a representation of preferences by a functional which is linear only on comonotonic functions and is exactly a Choquet integral(Chateauneuf[49],Schmeidler[50,51],Gilboa[52]).

    Another role of Choquet capacities in probability theory is the characterization of probability laws of random closed sets(RACS).RACS serve as general mathematical models for set-valued observations and irregular geometrical patterns of physical phenomena,generalize the traditional concept of ordinary random variables,which are regarded as models for point-valued observations,and play an important role in stochastic geometry.RACS have direct applications in the fields mentioned previously.Early applications of RACS in statistics include statisticians designing to understand the basic principles of(finite)population sampling(see Hajek[53]).In parameter estimation,if(?,A,Pθ,θ∈Φ)is a statistical model,then a multi-valued mapping S:? -→ 2Φsuch that S-1(θ)={ω|θ∈S(ω)}∈A for allθ∈Φ is a confidence region estimator of the true model parameter,with confidence level 1-α=inf{Pθ(ω|θ∈S(ω)),θ∈Φ}(see Hall[54]).

    Still another role is a recently explored application to the stochastic partial differential equations(SPDEs),where,due to a random noise in the equation(forcing term or coefficients),the solution of the equation can be regarded as a random function from a probability space to space of functions,i.e.,h:(?,A,P)→RnRm.Thus,h(ω)is a function(a sample path)from Rmto Rn,which stands for the(stochastic)solution of a PDE when a noise term ξ(ω)exists in the equation.Such h is referred as a random field in the literature,which is a generalization of stochastic processes(where the index set is a 2 or higher dimensional space).Now,fix a compact subset K of Rm(of positive Lebesgue measure)and a subset of A of Rn(A can be interpreted as the image of K under the solution of the corresponding non-stochastic equation without thenoise term).The interest in this setting is to estimate the following hitting probability:

    in terms of the capacity of A or the Hausdorff measure of A.See e.g.Mueller and Tribe [55],Dalang and Sanz-Sol′e[56],Dalang et al.[57-60](Gaussian stochastic waves,Malliavin calculus,non-linear stochastic waves etc).This setting is connected to our research on random upper semicontinuous functions(Nguyen,Wang and Wei[61]).

    A recent application demonstrates again the usefulness of RACS to statistics.Recall that the sample quantile is a strongly consistent estimator of the population quantile(Serfling [62],p.75),and the weak consistency of sample quantiles as estimators of population quantiles was shown by Smirnov(Smirnov[63];see also Resnick[64],p.179).Das and Resnick in 2008 applied random set theory to statistics by considering the set Snof points forming the quantilequantile plot as a RACS in R2:Under certain regularity conditions on the given heavy tailed distribution F,Snconverges in probability to a closed,non-random set(Das and Resnick[65]).

    In 2010,Martin,Zhang and Liu studied Dempster-Shafer Theory and statistical inference with weak beliefs[66].In 2011,Zhang and Liu proposed a variation of Dempster-Shafer inference([67]).

    Most recently,Martin and Liu et al.studied in a series of papers the inferential models(IMs),aiming at not only providing data-dependent probabilistic measures of uncertainty about the unknown parameter,but doing so with an automatic long-run frequency calibration property([68]).They extended the word on the theory of statistical inference with weak beliefs;for obtaining desirable frequency properties,they introduced the concepts of IMs.According to them,Dempster-Shafer inference does not have some of the desired frequency properties.

    3 Choquet capacities and Choquet Theorem

    Let E be a given LCS metric space with metric d,P the class of all subsets of E,F(xiàn) the hyperspace of all closed subsets of E equipped with the Fell topology,and K the class of all compact subsets of E.

    A capacity is a map T:P→[0,1]satisfying following three conditions(Matheron[6]):

    (i)If A,B∈P and A?B,then T(A)≤T(B);

    (ii)For A,An∈P(n∈N),if An↑A in P(i.e.,An?An+1for n∈N and∪1An=A),then T(An)↑T(A);

    (iii)For K,Kn∈K(n∈N),if Kn↓K in K(i.e.,Kn+1?Knfor n∈N and∩1Kn= K),then T(Kn)↓T(K).

    A Choquet capacity T requires an additional probability condition,alternating of infinite order which is described as follows.

    Let K,K1,K2,...be compact sets of E,and let?n(K;K1,...,Kn)be the probability for the RACS X to hit K1,...,Knbut miss K.Then all functions?ndefined below must be non-negative(see Matheron[6]):

    and consequently,(7)is equivalent to the following condition:T is monotonically increasing on K and the inequality

    holds for all n≥2(Nguyen[28]).If T is a probability measure,the inequality(9)becomes Poincar′e’s equality(see Nguyen[28]).Moreover,T can be extended to P by first to any open subset G and then to arbitrary subset A of E(see Matheron[6]and Wei et al.[14]).

    A RACS X is an A-B(F)measurable function from a probability space(?,A,P)to the measurable space(F,B(F)).Regular letter P will represent a probability function,italic P will represent the induced probability measure(P=PX-1),and N will denote the set of all non-negative integers.

    The Choquet capacity T of X characterizes the probability law P of X through the Choquet Theorem below.The Choquet Theorem has been extensively investigated in the context of probability,e.g.[2,4-6,13,14,25,28,30,61,69-74].

    Choquet Theorem:(see Matheron[6])Let E be a LCS metric space and F the space of all closed sets of E equipped with the Fell topology.Then there exists a(necessarily unique) probability measure P on the Borel σ-field B(F)generated by the topology of F satisfying T(K)=P(X∩K/=?)=P(FK)for K∈K if and only if T is a Choquet capacity on K with 0≤T≤1 and T(?)=0.

    Choquet Theorem is the foundation of random set theory.It reveals the relationship between the Choquet capacity T of X and the probability measure P of X.In this theorem,the probability law P describes the random evolution of X;the Choquet capacity T plays the role of the distribution functions of ordinary random vectors;the Fell topology governs the convergence of closed sets,which is consistent with the standard convergence of closed sets(see Matheron[6];Wei and Wang[13,14]).The theory of RACS originates from the hit-probability (miss-probability).

    In particular,any ordinary random variable taking point values in a metric space E can be viewed as a special RACS,a random singleton set,and hence it is completely characterized by its associated Choquet capacity.See e.g.,Molchanov[2],Wei and Wang[13,14].

    4 Invariant and ergodic capacities:constructing an example

    For any Choquet capacity T defined on a LCS metric space E,every Borel set B?E is capacitable(Meyer[75]),thus

    Let CTbe the set of all T-capacitable subsets of E,abbreviated as C,and f:E→E a T-capacitable transformation.

    Analogous with the measure-ergodic theory,a research on the invariant and ergodic capacities was conducted(see Wei,Wang and Li[73],2010;Wei,Wang and Yang[74],2011).

    The following definition generalizes the concept of ergodic measures to the non-additive setting of Choquet capacities.

    Definition 4.1Suppose T is f invariant(or say f preserves T),i.e.,T(f-1(B))=T(B) for B∈C.If for any T-capacitable and f-invariant set B,it holds T(B)=T(E)or T(B)=0,then T is said to be an ergodic Choquet capacity of f(or f is T-ergodic).

    We now turn to transformations on the torus,invariant Choquet capacities,and Choquet capacities on the torus.

    Hyperbolic toral automorphisms on the torusT2:

    Let A=(ai,j)be a m by m matrix with integer entries.A defines a transformation fA:Tm→Tmon the torus as follows:

    where Tm=S1×...×S1(m times)or which is the same,Tm=Rm/Zm=R/Z×...×R/Z (m times)(recall that a circle is identified with a half-open and half closed interval).

    When det(A)=±1,fAis a toral automorphism,and furthermore,if A has no eigenvalues of modulus 1,fAis hyperbolic.We assume that A satisfies these conditions in the following. It is known that fApreserves λ.Actually,all hyperbolic toral automorphisms preserve λ. All hyperbolic toral automorphisms are topologically transitive(but not minimal,since they have dense periodic points)-see Devaney[76]or Aoki and Hiraide[77].

    Topological transitivity is a necessary but not sufficient condition for ergodicity of a dynamical system(see Halmos[78],Sidorov[79-82]).

    The measure on Tmis the m-dimensional Lebesgue measure λ,normalized to λ(Tm)=1. It is known that fAdefined in(12)preserves λ and is ergodic(Devaney[76],Aoki and Hiraide [77],Halmos[78],Sidorov[79-82],Hasselblatt and Katok[83],Brin and Stuck[84],Walters [85],Pollicott and Yuri[86],Ye et al.[87],Brucks and Bruin[88]).Due to the similarity,we will take the 2-dimensional torus T2=S1×S1as the underlying space.Given a matrix A=()where a,b,c,d∈Z,A determines a mapping from the torus to itself,i.e.,

    Particularly,the Arnold’s continuous automorphism of the torus(CAT)is defined by A=(), i.e.,fA(x,y)=(2x+y mod 1,x+y mod 1).

    Example 4.1Let{Wt|t≥0}be a stationary Poisson process with intensity rate λ,and(?,A,P)the probability space for each of the random variables Wt,t≥0.For t≥0,the expected value of Wtis λt.Also,let α denote the uniform random variable on the torus T2,with(?′,A′,P′)the corresponding probability space.

    Given t>0,let α1,α2,...,αWtbe a collection of Wtmany uniform random variables on the torus T2,identically distributed and independent each other.Then,we define a random finite set Xt=Xα1,α2,...,αWt,whose probability space(?′,A′,P′)is obtained as the product probability space of(?,A,P)and(?′,A′,P′),by letting Xt(ω,ω′)contain α1(ω′),α2(ω′),...,αWt(ω)(ω′).If Wt(ω)=0,define Xt=?(thus P(Xt=?)=P(Wt=0)=e-λt).

    Now,for each t> 0,we will determine the Choquet capacity Ttof Xt(strictly,the notation is TXt),i.e.,for any compact subset K of T2,we will calculate the capacity Tt(K),the probability of Xthitting K,as follows:

    whereμis the Haar measure on T2(Lebesguq measure up to normalization). By the Choquet Theorem,the probability measure Ptof Xtsatisfies

    Properties of the Choquet capacity Tt,t>0:

    (i)Ttis both continuous from below and from above,and it possesses the subset property. However,it is non-additive.These properties can be verified using the methods given in[?].

    (ii)Ttis fA-invariant,i.e.,fApreserves the capacity Tt.

    In fact,it is known that fApreserves the Haar measureμon T2.Now,for any compact subset K of T2,we have Tt(f1(K))=1-e-λμ(f1(K))=1-e-λμ(K)=Tt(K).

    Further,for any T-capacitiable subset C of T2,it follows from

    that Tt(f1(C))=Tt(C).

    The next property is about the ergodicity of Tt.Clearly,the relation between Ttand μincludes:Tt(K)=0 iffμ(K)=0,andμ(K)=1 iff Tt(K)=1-e-λt(which is due to P(Xt=?)=P(Wt=0)=e-λt).

    Recall Definition:an f-invariant Choquet capacity T is ergodic if any f-invariant capacitiable subset has a capacity 0 or the full capacity(i.e.,the largest possible capacity).

    (iii)Ttis ergodic.It is known that fAis measure-ergodic(it is a toral automorphism determined by the matrix A that has no eigenvalues which are roots of unity).

    Hence,if K is any compact invariant set of fA,it holds thatμ(K)=1 or 0,and hence Tt(K)=1-e-λμ(K)or 0.Moreover,this property can be extended to any Tt-capacitiable and fA-invariant subset C of T2,again due to Tt(C)=sup{Tt(K)|K is compact and K?C}.

    (iv)Subsequently,we have generalized the concept of measure-ergodic systems to capacityergodic systems,and constructed such an capacity-ergodic system:(T2,C(T2),Tt,fA).

    Ending Note.Non-additive probabilities are increasingly used for modeling irregular physical quantities that are held within sets,e.g.Choquet capacities.Built upon capacities,Choquet integral generalizes the Lebesgue integral to non-additive measures.Early studies on non-additive probabilities can be tracked to Jacob Bernoulli,a 17th century pioneer in the mathematics theory of chance,and Johann Heinrich Lambert,a broad-ranging 18th century scholar(see[89]).

    Lebesgue theory and probability theory are proven to be theoretically important and practically useful parts of mathematics.Built upon Choquet capacities,Choquet integral(resp.,random set theory)accommodates non-additive physical quantities(resp.,irregular geometrical patterns,instead of pointwise ones).Therefore,a rigorous and systematic study of capacities through new probability models(capacity systems and ergodic capacity systems)will succeed in accomplishing a deeper understanding of non-additive probabilities,more suitable models for irregular physical phenomena,and significant impacts on the applications of Choquet theory for non-additive physical quantities.

    5 Appendix:Relations between Fell topology,Vietoris topology and Hausdorff metric

    The Vietoris topology τvon 2E[12](the notation CL(E)is also used,e.g.,[10,90,91]),the family of all non-empty closed subsets of E,is generated by the base[11,12,18]

    where U1,U2,...,Unare open subsets of E.Clearly,2E=F{?}.Alternatively,a subbase of the Vietoris topology on 2Ecan be obtained from(1)by replacing F by 2Eand compact subsets K by closed subsets F.It follows from these definitions that the Vietoris topology is finer than the subspace topology on 2Einduced by the Fell topology.

    The Hausdorff metric dH(which induces topology τdH)on the family of all non-empty bounded closed subsets of a metric space(E,d)is defined by[18]

    τdHand τvare consistent on the space C of non-empty compact subsets of E[18,90,92,93]. τdH?τviff(E,d)is totally bounded;τv?τdHiff(E,d)is UC,i.e.,every real-valued continuous function on(E,d)is uniformly continuous[94-96].

    When E is a compact Hausdorff space,τfand τvare both compact and consistent on 2E. When E is compact metrizable,τf,τvand τdHare all compact and consistent on 2E[1,6,12];in either of these two cases,?is an isolated point of F.

    Critically,when E is LCS metrizable,τfon F is always compact metrizable,and again LCS metrizable on 2E[6],implying that τfon F is metrizable and any consistent metric is complete,separable and totally bounded by the Urysohn’s metrization theorem[18].

    In contrast,if E is non-compact such as Rn,τvis neither metrizable nor compact[10,12]. Moreover,the use of Hausdorff metric dHon K faces a difficulty in characterizing the topological structure induced by the Hausdorff metric dH:the topology τdHinduced by dHdepends on the metric d,i.e.,τdHis not metric independent,but metric dependent(Naimpally[94-96]).

    More advantages of the Fell topology were extensively explored through the studies of RACS,see e.g.,Matheron[6],Molchanov[2],Wei and Wang[13,14,61],and hyperspace dynamics,see e.g.Wang and Wei[15,16,97].An example illustrating the differences in convergence between these hyperspace topologies was given in our paper[16].

    For the Vietoris topology and Hausdorff metric,we refer to Wei,Wang,Nguyen and Beken [14]and Wei,Wang and Yang[74].The relation between these hyperspace topologies is given by Watson[8],Rockafellar and Wets[22,23],Wei and Wang[25]),Naimpally[94-96].The construction of Borel σ-algebra on the hyperspace equipped with the Fell topology was given by Matheron[6].

    Thebibliography

    [1]Fell J M G.A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space[J].Proc. Amer.Math.Soc.,1962,13:472-476.

    [2]Molchanov I.Theory of Random Sets[M].London:Springer-Verlag,2005.

    [3]Nogura T,Shakhmatov D.When does the Fell topology on a hyperspace of closed sets coincide with meet of the upper Kuratowski and the lower Vietoris topology[J].Top.Appl.,1996,70:213-243.

    [4]Stoyan D.Models and statistics[J].Interna.Stat.Review,1998,66:1-27.

    [5]Wei G.Contributions to Distributions of Random Sets on Polish Spaces,PhD Thesis[M].New Mexico:New MexicoState University,Las Cruces,1999.

    [6]Matheron G.Random Sets and Integral Geometry[M].New York:John Wiley&Sons,1975.

    [7]Fell J M G.The structure of algebras of operator fields[J].Acta Math.,1961,106:233-280.

    [8]Watson P D.On the limits of sequences of sets[J].Quart.Jour.Math.,1953,4(2):1-3.

    [9]Mrowka S.On the convergence of nets of sets[J].Fund.Math.,1958,45:237-246.

    [10]Beer G.Topologies on Closed and Closed Convex Sets[M].Dordrecht:Kluwer Acad MIA 268,1993

    [11]Vietoris L.Bereiche zweiter ordnuang[J].Monatshefte f¨ur Mathematik und Physik,1923,33:49-62.

    [12]Michael E.Topologies on spaces of subsets[J].Trans.Amer.Math.Soc.,1951,71:152-182.

    [13]Wei G,Wang Y.Formulating stochastic convergence of random closed sets on locally compact separable metrizable spaces using metrics of the hit-or-miss topology[J].Interna.J.Intelligent Tech.Appl.Stat.,2008,1:33-57.

    [14]Wei G,Wang Y,Nguyen H T,et al.On the upper semi-continuity of Choquet capacities[J].Interna.J. Approx.Reason,2010,51:429-440.

    [15]Wang Y,Wei G,Campbell W H.Sensitive dependence on initial conditions between dynamical systems and their induced hyperspace dynamical systems[J].Top.Appl.,2009,156:803-811.

    [16]Wang Y,Wei G,Campbell W H,Bourquin S.A framework of induced hyperspace dynamical systems equipped with the hit-or-miss topology[J].Chaos,Solitons and Fractals,2009,41:1708-1717.

    [17]Dolecki S,Greco G H,Lechicki A.When do the upper Kuratowski topology(homeomorphically,Scott topology)and the co-compact topology coincide?[J].Trans.Amer.Math.Soc.,1995,347(8):2869-2884.

    [18]Engelking R.General Topology,PWN-Polish[M].Warszawa:Scientific Publishers,1977.

    [17]Flachsmeyer J.Verschiedene topologisierungen im raum der abgeschlossenen teilmengen[J].Math.Nachr.,1964,26:321-337.

    [19]Beer G.On the Fell topology[J].Set-Valued Anal.,1993,1:69-80.

    [20]Zsilinszky L.Note on hit-and-miss topologies[J].Rend.Circ.Mat.Palermo,2000,49:371-380.

    [21]Rockafellar R T,Wets R J B.Variational Systems,An Introduction in:A.Dold,B.Eckmann(eds.),Lecture Notes in Mathematics,1091[M].New York:Springer-Verlag,1984.

    [22]Rockafellar R T,Wets R J B.Variational analysis,Grundlehren der Mathematischen Wissenschaften[M]. Berlin:Springer-Verlag,1998.

    [23]Zhou X.A natural metric on the space of all closed subsets of Rn[J].J.of Shantou University Natural Science Edition,2001,16:62-67.

    [24]Wei G,Wang Y.On metrization of the hit-or-miss topology using Alexandroff compactification[J].Interna. J.Approx.Reason.,2007,46:47-64.

    [25]Lechicki A,Levi S.Wijsman convergence in the hyperspace of a metric space[J].Bull.Un.Mat.Ital.,1987,7(1-B):439-452.

    [26]Wang Y,Wei G,Li R.On metrics of the hit-or-miss topology:direct extensions[J].Pure and Appl.Math.,2008,24:643-645.

    [24]Nguyen H T.An Introduction to Random Sets[M].New York:Chapman and Hall,2006.

    [25]Schreiber T.Statistical inference from set-valued observations[J].Probability and Mathematical Statistics,2000,20:223-235.

    [27]Choquet G.Theory of capacities[J].Ann.Inst.Fourier.,1953-54,5:131-295.

    [28]Aumann R J,Shapley L S.Values of Non-Atomic Games[M].New Jersey:Princeton Univ.Press,1974.

    [29]Denneberg D.Non-Additive Measure and Integral[M].New York:Kluwer Acad.Publ.,1994.

    [30]Dobrakov I.On Submeasures I[M].New Jersey:Diss.Math.,1974.

    [31]Falconer K.Fractal Geometry[M].New York:John Wiley and Sons,1990.

    [32]Grabisch M,Nguyen H T,Walker E A.Fundamentals of Uncertainity Calculi with Application to Fuzzy Inference[M].New York:Kluwer Acad.Publ.,1995.

    [33]Huber P J.The use of Choquet capacities in statistics[J].Bull.Int.Inst.Statist.,1973,45:181-191.

    [34]Pap E.Null-Additive Set Functions[M].New York:Kluwer Acad.Publ.Ister.,1995.

    [35]Sugeno M,Murofushi T.Pseudo-additive measures and integrals[J].J.Math.Anal.Appl.,1987,122:197-222.

    [36]Wang Z,Klir G.Fuzzy Measure Theory[M].New York:Plenum Press,1992.

    [37]Shapley L S.A Value for N-Person Games,in Contributions to the Theory of Games[M].New Jersey:Princeton University Press,1953.

    [38]Sriboonchitta S,Wong W-K,Sompong D,et al.Stochastic Dominance and Applications to Finance,Risk and Economics[M].Florida:Chapman and Hall/CRC Press,2009.

    [39]Marinacci M,Montrucchio L.Introduction to the mathematics of ambiguity,in:I.Gilboa(ed.),Uncertainty in Economic Theory[M].New York:Routledge,2004.

    [40]Grabisch M.Fuzzy integral in multicriteria decision making[J].Fuzzy sets and Systems,1995,69:279-298.

    [41]Grabisch M.The application of fuzzy integrals in multicriteria decision making[J].European Journal of Operational Research,1996,89:445-456.

    [42]Marichal J L.Aggregation operators for multicriteria decision aid[D].Aggregation operators for multicriteria decision aid[D].Belgium:Institute of Mathematics,University of Li`ege,Li`ege,1998.

    [43]Marichal J L.On an axiomatization of the quasi-arithmetic mean values without the symmetry axiom[J]. Aequationes Mathematicae,2000,59:74-83.

    [44]Kojadinovic I.An axiomatic approach to the measurment of the amount of interaction among criteria or players[J].Fuzzy Sets and Systems,2005,152:417-435.

    [45]Sugeno M.Theory of fuzzy integral and its applications[D].Japan:Tokyo Institute of Technology,1974.

    [46]Chateauneuf A,Cohen M,Denneberg D.General introduction to this special issue on Choquet integral and applications[J].Stat.Papers,2002,43:1-3.

    [47]Schmeidler D.Integral representation without additivity[J].Proc.Amer.Math.Soc.,1986,97:255-261.

    [48]Schmeidler D.Subjective probability and expected utility without additivity[J].Econometrica,1989,57:571-587.

    [49]Gilboa I,Schmeidler D.Maxmin expected utility with non-unique prior[J].J.Math.Economics,1989,18:141-153.

    [50]H′ajek J.Sampling from A Finite Population[M].New York:Marcel Dekker,1981.

    [51]Hall P.Introduction to the theory of coverage processes[M].New York:John Wiley and Sons,1988.

    [52]Mueller C,Tribe R.Hitting properties of the random string[J].Electron.J.Probab.,2002,7:1-29.

    [53]Dalang R C,Sanz-Sol′e M.Criteria for hitting probabilities with applications to systems of stochastic wave equations[J].Bernoulli,2010,16(4):1343-1368.

    [54]Dalang R C,Khoshnevisan D,Nualart E.probabilities for systems of nonlinear stochastic heat equations with additive noise[J].ALEA Lat.Am.J.Probab.Math.Stat.,2007,3:231-271.

    [55]Dalang R C,Khoshnevisan D,Nualart E.Hitting probabilities for systems of nonlinear stochastic heat equations with multiplicative noise[J].Probab.Theory Related Fields,2009,144:371-427.

    [56]Dalang R C,Mueller C,Zambotti L.Hitting probabilities of s.p.d.e.’s with reflection[J].Ann.Probab.,2006,34:1423-1450.

    [57]Dalang R C,Nualart E.Potential theory for hyperbolic SPDEs[J].Ann.Probab.,2004,32:2099-2148.

    [58]Nguyen H T,Wang Y,Wei G.On Choquet theorem for random upper semicontinuous functions[J].Interna. J.Approx.Reason.,2007,46:3-16.

    [59]Serfling R J.Approximation Theorems of Mathematical Statistics[M].New York:John Wiley&Sons,1980.

    [60]Smirnov N V.Limit distributions for the terms of a variational series[J].Trudy Mat.Inst.Steklov.,1949,25:3-60.

    [61]Resnick S I.A Probability Path[M].Boston:Birkh¨auser,1999.

    [62]Das B,Resnick S I.QQ Plots Random sets and data from a Heavy tailed distribution[J].Stochastic Models,2008,24:103-132.

    [63]Martin R,Zhang J,Liu C.Dempster-Shafer Theory and statistical inference with weak beliefs[J].Statistical Science,2010,25:72-87.

    [64]Zhang J,Liu C.Dempster-Shafer inference with weak beliefs[J].Statistica Sinica,2011,21:475-494.

    [65]Martin R,Liu C.Inferential models:Reasoning with uncertainty,Monographs in Statistics and Applied Probability Series[M].Chapman:CRC Press,2015.

    [66]Molchanov I.Limit Theorems for Unions of Random Closed Sets,Lecture Notes in Mathematics 1561[M]. New york:Springer-Verlag,1997.

    [67]Molchanov I.A generalization of the Choquet theorem for random sets with a given class of realizations[J]. Theory of Probab.and Math.Statist.,1984,28:99-106.

    [68]Nguyen H T,Ogura Y,Tasena S,et al.A Note on Random upper Semicontinuous Functions,in:Soft Methods for Integrated Uncertainty Modeling[M].New york:Springer-Verlag,2006.

    [69]Stoyan D,Kendall W S,Mecke J.Stochastic Geometry and its Applications[M].2nd ed.Chichester:John Wiley&Sons,1995.

    [70]Wei G,Wang Y,Li R.On the relations between ergodic Choquet capacity systems and ergodic hyperspace dynamical systems[J].J.of Northwest University(Natural Science Edition),2010,40:377-378.

    [71]Wei G,Wang Y,Yang Z.Methods for constructing Choquet-capacity preserving and ergodic systems:examples[J].Interna.J.Intelligent Tech.Appl.Stat.,2011,4:201-220.

    [72]Meyer P A.Probabiliti′es et Potentiel[M].Paris:Hermann,1966.

    [73]Devaney R L.An Introduction to Chaotic Dynamical Systems[M].2nd ed.New York:Addison-Wesley,1989.

    [74]Aoki N,Hiraide K.Topological Theory of Dynamical Systems,Recent Advances,North-Holland Mathematical Library 52[M].Amsterdam:Elsevier Science B.V.,1994.

    [75]Halmos P R.Lectures on Ergodic Theory[M].Tokyo:the Mathematical Society of Japan,1956.

    [76]Sidorov Ye A.Connection between topological transitivity and ergodicity[J].Izv.vysh.utcheb.zav.,Mat.,1969,83(4):77-82.

    [77]Sidorov Ye A.The existence of topologically indecomposable transformations in an n-dimensional region which are not ergodic[J].Mat.Zametki,1968,3(4):427-430.

    [78]Sidorov Ye A.Topologically indecomposable transformations of the n-dimensional space[J].Volzh.Mat. sbornik,1966,5:326-330.

    [79]Sidorov Ye A.Smooth topologocally transitive dynamical systems[J].Mat.Zametki,1968,4:441-452.

    [80]Hasselblatt B,Katok A.A First Course in Dynamics with A Panorama of Recent Developments[M]. Cambridge,UK:Cambridge University Press,2003.

    [81]Brin M,Stuck G.Introduction to Dynamical Systems[M].Cambridge,UK:Cambridge University Press,2002.

    [82]Walters P.An Introduction to Ergodic Theory[M].New york:Springer,1982.

    [83]Pollicott M,Yuri M.Dynamical Systems and Ergodic Theorem[M].Cambridge,UK:Cambridge University Press,1998.

    [84]Ye X,Huang W,Shao S.Topological Dynamical Systems[M].Beijing:Science Press,2008.

    [85]Brucks K M,Bruin H.Topics from One-Dimensional Dynamics[M].Cambridge,UK:Cambridge University Press,2004.

    [86]Shafer G.Non-additive probabilities in the work of Bernoulli and Lambert[J].Archive for History of Exact Sciences,1978,19:309-370.

    [87]Illanes A,Nadler S B.Jr.Hyperspace:Fundamentals and Recent Advances[M].New York:Marcel Dekker Inc.,1999.

    [88]Nadler Jr S B.Hyperspaces of Sets.Monographs Textbooks Pure Appl.Math.,vol.49[M].New York:Marcel Dekker,1978.

    [89]Peris A.Set-valued discrete chaos[J].Chaos,Solitons&Fractals,2005,26:19-23.

    [90]Banks J.Chaos for induced hyperspace maps[J].Chaos,Solitons&Fractals,2005,25:681-685.

    [91]Naimpally S A.Comparison of topologies on hyperspaces[J].Annals New York Acad.Sci.,1993,704:273-278.

    [92]Naimpally S A.All hypertopologies are hit-or-miss[J].Appl.Gen.Topol.,2002,3:45-53.

    [93]Naimpally S A.What is a hit-or-miss topology?[J].Topological Commentary,2003,1:1-3.

    [94]Wang Y,Wei G.Characterizing mixing,weak mixing and transitivity of induced hyperspace dynamical systems[J].Top.Appl.,2007,155:56-68.

    10.3969/j.issn.1008-5513.2016.04.010

    2016-06-13.

    Partially supported by HRSA,US DHHS(H49MC00068).作者簡介:李瑞(1957-),副教授,研究方向:點(diǎn)集拓?fù)浼捌鋺?yīng)用.

    Fell拓?fù)?,Choquet容量和遍歷的Choquet容量系統(tǒng)

    李瑞1,衛(wèi)國2,托馬斯·杜林3,史蒂文·布爾坎2

    (1.上海金融學(xué)院統(tǒng)計(jì)與數(shù)學(xué)學(xué)院,上海,201209 2.北卡羅萊納大學(xué)彭布羅克分校化學(xué)與物理系,北卡羅萊納,彭布羅克,28372 3.北卡羅萊納大學(xué)彭布羅克分校數(shù)學(xué)與計(jì)算機(jī)科學(xué)系,北卡羅萊納,彭布羅克,28372))

    本文描述了Fell拓?fù)涞慕Y(jié)構(gòu)與收斂條件,重新確立了關(guān)于隨機(jī)集的Choquet定理在概率論中的重要作用,并提出了不變Choquet容量的概念.此外,利用環(huán)面上的雙曲自同構(gòu)和隨機(jī)映射,具體構(gòu)造了一個遍歷的Choquet容量系統(tǒng),且進(jìn)一步探討了這種系統(tǒng)的動力性態(tài).

    Fell拓?fù)?;穩(wěn)定Poisson過程;雙曲的環(huán)面自同構(gòu);遍歷的Choquet容量

    O189

    猜你喜歡
    李瑞自同構(gòu)萊納
    江蘇萊納多智能裝備有限公司
    Molecule opacity study on low-lying states of CS
    一類無限?ernikov p-群的自同構(gòu)群
    Wimbledon Tennis
    Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling*
    萊納德已成季后賽效率王
    灌籃(2019年25期)2019-12-04 08:15:32
    關(guān)于有限Abel p-群的自同構(gòu)群
    剩余有限Minimax可解群的4階正則自同構(gòu)
    藝術(shù)百家:李瑞
    颶風(fēng)襲擊北卡羅萊納
    久久这里只有精品中国| 久9热在线精品视频| 可以免费在线观看a视频的电影网站| 免费在线观看日本一区| 婷婷精品国产亚洲av| 美女免费视频网站| 国内毛片毛片毛片毛片毛片| 精品无人区乱码1区二区| 中文在线观看免费www的网站 | 中文字幕人妻丝袜一区二区| 给我免费播放毛片高清在线观看| 国产av一区在线观看免费| 中出人妻视频一区二区| 国产1区2区3区精品| 精品国产超薄肉色丝袜足j| 国产真人三级小视频在线观看| 久久久精品欧美日韩精品| 国产真实乱freesex| 成人18禁高潮啪啪吃奶动态图| 亚洲色图av天堂| 欧美又色又爽又黄视频| 成在线人永久免费视频| 两人在一起打扑克的视频| 真人做人爱边吃奶动态| 999久久久国产精品视频| 免费在线观看完整版高清| 日本 欧美在线| 女人被狂操c到高潮| 国产成人精品久久二区二区免费| 久久人人精品亚洲av| 女生性感内裤真人,穿戴方法视频| 给我免费播放毛片高清在线观看| 窝窝影院91人妻| 欧美日韩黄片免| 香蕉av资源在线| 啪啪无遮挡十八禁网站| 中文字幕最新亚洲高清| 欧美三级亚洲精品| 国产黄a三级三级三级人| 亚洲成av人片免费观看| 久久国产精品人妻蜜桃| 999精品在线视频| 午夜福利18| 老汉色∧v一级毛片| 日本在线视频免费播放| 午夜成年电影在线免费观看| 亚洲男人的天堂狠狠| 观看免费一级毛片| 国产精品电影一区二区三区| 亚洲一区二区三区不卡视频| 国产精品免费视频内射| ponron亚洲| 欧美在线黄色| 一二三四社区在线视频社区8| 久久人妻福利社区极品人妻图片| 欧美成人一区二区免费高清观看 | 久久九九热精品免费| 日本一区二区免费在线视频| www.熟女人妻精品国产| 色综合婷婷激情| 国语自产精品视频在线第100页| 在线观看66精品国产| 成年人黄色毛片网站| 国产熟女午夜一区二区三区| 久99久视频精品免费| 首页视频小说图片口味搜索| 高清在线国产一区| 日日夜夜操网爽| 国产精品国产高清国产av| 久久婷婷成人综合色麻豆| 日韩成人在线观看一区二区三区| 色综合亚洲欧美另类图片| 亚洲熟妇中文字幕五十中出| 我要搜黄色片| 毛片女人毛片| 亚洲第一欧美日韩一区二区三区| 国产片内射在线| 一区二区三区国产精品乱码| 日韩成人在线观看一区二区三区| 色播亚洲综合网| 色尼玛亚洲综合影院| 国产精品免费视频内射| 国产一区二区在线av高清观看| 在线观看日韩欧美| 国产伦在线观看视频一区| 国产av在哪里看| 91av网站免费观看| 久久久久国产一级毛片高清牌| 超碰成人久久| 18禁国产床啪视频网站| bbb黄色大片| 亚洲精品av麻豆狂野| 欧美一区二区精品小视频在线| av有码第一页| 又爽又黄无遮挡网站| 日韩国内少妇激情av| 少妇人妻一区二区三区视频| 亚洲精华国产精华精| 天堂影院成人在线观看| 不卡一级毛片| 午夜福利免费观看在线| 国产成人欧美在线观看| 成人高潮视频无遮挡免费网站| 五月伊人婷婷丁香| 嫁个100分男人电影在线观看| 91大片在线观看| 色哟哟哟哟哟哟| 国产一区二区在线av高清观看| 午夜激情福利司机影院| 久久精品亚洲精品国产色婷小说| 国产一区在线观看成人免费| 午夜免费激情av| 啦啦啦观看免费观看视频高清| 99久久久亚洲精品蜜臀av| 久久久久久久午夜电影| 99久久综合精品五月天人人| 久久香蕉精品热| 免费电影在线观看免费观看| 精品无人区乱码1区二区| 搞女人的毛片| 日韩欧美一区二区三区在线观看| 午夜精品久久久久久毛片777| 日日摸夜夜添夜夜添小说| 97碰自拍视频| 亚洲精华国产精华精| 久久国产精品人妻蜜桃| 国产av在哪里看| 亚洲一码二码三码区别大吗| 精品久久久久久久久久久久久| 精品国产亚洲在线| 久久中文字幕一级| 中文字幕最新亚洲高清| 午夜免费成人在线视频| 这个男人来自地球电影免费观看| 国产1区2区3区精品| 村上凉子中文字幕在线| 丝袜人妻中文字幕| 中文字幕av在线有码专区| 亚洲精品美女久久久久99蜜臀| 麻豆国产av国片精品| 看黄色毛片网站| 亚洲成人精品中文字幕电影| 久久性视频一级片| 又黄又粗又硬又大视频| 精品乱码久久久久久99久播| 日本撒尿小便嘘嘘汇集6| 色老头精品视频在线观看| 国产91精品成人一区二区三区| 久久久国产成人免费| 欧美日本视频| 久久中文看片网| 日韩有码中文字幕| 日韩国内少妇激情av| 免费av毛片视频| 久久久国产成人免费| 欧美日本视频| 亚洲精品色激情综合| 热99re8久久精品国产| 特级一级黄色大片| 深夜精品福利| 精品欧美一区二区三区在线| 亚洲一区二区三区色噜噜| 色综合站精品国产| 熟女少妇亚洲综合色aaa.| 日日夜夜操网爽| 神马国产精品三级电影在线观看 | 免费在线观看成人毛片| 在线观看66精品国产| 日韩三级视频一区二区三区| 成人亚洲精品av一区二区| 亚洲 欧美 日韩 在线 免费| 国产亚洲精品久久久久5区| 国产精品永久免费网站| 午夜福利高清视频| 亚洲精华国产精华精| 亚洲 欧美一区二区三区| 亚洲自拍偷在线| 久久精品成人免费网站| 久久午夜综合久久蜜桃| 亚洲中文日韩欧美视频| 欧美人与性动交α欧美精品济南到| 性欧美人与动物交配| 脱女人内裤的视频| 成人特级黄色片久久久久久久| 五月伊人婷婷丁香| 成在线人永久免费视频| 黄色片一级片一级黄色片| 国产精品一区二区免费欧美| 国产黄片美女视频| 国产一区二区在线观看日韩 | 国产精品久久电影中文字幕| 欧美性长视频在线观看| 国产亚洲精品第一综合不卡| 变态另类丝袜制服| 日韩有码中文字幕| 真人做人爱边吃奶动态| 欧美+亚洲+日韩+国产| 久久久久久国产a免费观看| 最近最新中文字幕大全免费视频| 啦啦啦免费观看视频1| 亚洲中文av在线| 嫁个100分男人电影在线观看| 99久久99久久久精品蜜桃| av欧美777| 1024手机看黄色片| 欧美不卡视频在线免费观看 | 国产在线精品亚洲第一网站| www日本黄色视频网| 亚洲成av人片免费观看| 精品福利观看| 久久中文字幕人妻熟女| 成人欧美大片| 日韩欧美一区二区三区在线观看| 国产成人欧美在线观看| 好男人电影高清在线观看| 国产精品久久久久久人妻精品电影| 夜夜躁狠狠躁天天躁| 日韩成人在线观看一区二区三区| 女警被强在线播放| 亚洲人成网站在线播放欧美日韩| 午夜亚洲福利在线播放| 日日摸夜夜添夜夜添小说| 欧美黑人精品巨大| 在线观看免费午夜福利视频| 国语自产精品视频在线第100页| 国产精品日韩av在线免费观看| 校园春色视频在线观看| 国产精品久久久久久亚洲av鲁大| 国产欧美日韩一区二区精品| 久热爱精品视频在线9| 国产精品日韩av在线免费观看| www.精华液| 天天躁夜夜躁狠狠躁躁| 成年人黄色毛片网站| 不卡av一区二区三区| 长腿黑丝高跟| 一本精品99久久精品77| 啦啦啦免费观看视频1| 在线观看日韩欧美| 精品国产超薄肉色丝袜足j| 欧美成人性av电影在线观看| 亚洲av片天天在线观看| 国产欧美日韩精品亚洲av| 91麻豆av在线| 久久久久亚洲av毛片大全| 18禁裸乳无遮挡免费网站照片| 一本综合久久免费| 久久久国产精品麻豆| 国产人伦9x9x在线观看| 国产又色又爽无遮挡免费看| 在线看三级毛片| 一区二区三区激情视频| av超薄肉色丝袜交足视频| 黑人操中国人逼视频| 亚洲,欧美精品.| 国产成人欧美在线观看| 人人妻,人人澡人人爽秒播| 又大又爽又粗| 白带黄色成豆腐渣| 亚洲av第一区精品v没综合| 看免费av毛片| 18禁国产床啪视频网站| svipshipincom国产片| 国产精品影院久久| 日韩有码中文字幕| 亚洲 欧美 日韩 在线 免费| 久久久久国内视频| 国产精品99久久99久久久不卡| 国产精品自产拍在线观看55亚洲| 精品国内亚洲2022精品成人| 日韩欧美三级三区| 一卡2卡三卡四卡精品乱码亚洲| 精品一区二区三区视频在线观看免费| 最近最新免费中文字幕在线| www日本在线高清视频| 亚洲国产欧美人成| 久久国产精品人妻蜜桃| 香蕉av资源在线| 亚洲第一欧美日韩一区二区三区| 亚洲乱码一区二区免费版| 亚洲色图 男人天堂 中文字幕| 国产黄片美女视频| 国产成人精品无人区| 国产成人精品久久二区二区免费| 亚洲精品国产精品久久久不卡| 天堂影院成人在线观看| 久久99热这里只有精品18| 成人国语在线视频| 2021天堂中文幕一二区在线观| 给我免费播放毛片高清在线观看| 熟女电影av网| av超薄肉色丝袜交足视频| 国产伦一二天堂av在线观看| 国产一区二区三区在线臀色熟女| 窝窝影院91人妻| 国产91精品成人一区二区三区| 成人亚洲精品av一区二区| 精品人妻1区二区| 麻豆成人午夜福利视频| 亚洲中文字幕一区二区三区有码在线看 | 欧美黑人精品巨大| 一卡2卡三卡四卡精品乱码亚洲| 人人妻人人澡欧美一区二区| 美女 人体艺术 gogo| 日本黄色视频三级网站网址| 人成视频在线观看免费观看| 色老头精品视频在线观看| 91av网站免费观看| 亚洲午夜理论影院| 露出奶头的视频| 91老司机精品| 亚洲18禁久久av| 亚洲国产精品久久男人天堂| 国产主播在线观看一区二区| 欧美一级毛片孕妇| 在线视频色国产色| 国产97色在线日韩免费| 日韩成人在线观看一区二区三区| 国产69精品久久久久777片 | 中文字幕熟女人妻在线| 亚洲av中文字字幕乱码综合| 久久精品影院6| 亚洲天堂国产精品一区在线| 18禁国产床啪视频网站| xxx96com| 亚洲国产欧洲综合997久久,| 国产在线精品亚洲第一网站| 日本精品一区二区三区蜜桃| 最新美女视频免费是黄的| 久久这里只有精品中国| 国产av一区在线观看免费| 国产精品香港三级国产av潘金莲| 成熟少妇高潮喷水视频| 日韩精品免费视频一区二区三区| 校园春色视频在线观看| 亚洲片人在线观看| www.熟女人妻精品国产| 91麻豆精品激情在线观看国产| 国产激情久久老熟女| 国产在线观看jvid| 91麻豆av在线| 在线观看一区二区三区| 99热这里只有精品一区 | 欧美黑人欧美精品刺激| 成人18禁高潮啪啪吃奶动态图| 亚洲美女视频黄频| 亚洲国产中文字幕在线视频| 国产高清激情床上av| 国产精品久久电影中文字幕| 久久这里只有精品中国| 国产av一区在线观看免费| 婷婷六月久久综合丁香| 欧美国产日韩亚洲一区| 午夜免费观看网址| 九色国产91popny在线| 久久天堂一区二区三区四区| 最近最新中文字幕大全电影3| 国产精品av视频在线免费观看| 欧美日韩一级在线毛片| 99国产精品一区二区三区| 亚洲av美国av| 日本撒尿小便嘘嘘汇集6| 在线观看66精品国产| 成在线人永久免费视频| 亚洲国产欧美网| 午夜福利免费观看在线| 在线观看舔阴道视频| videosex国产| 91在线观看av| 男女之事视频高清在线观看| 不卡av一区二区三区| 一夜夜www| 搞女人的毛片| 久久久久久久精品吃奶| 在线观看66精品国产| 国模一区二区三区四区视频 | 国产欧美日韩一区二区三| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久精品电影| 国产片内射在线| 一进一出好大好爽视频| 久久热在线av| 长腿黑丝高跟| 日韩欧美在线乱码| 制服丝袜大香蕉在线| 国产精品亚洲美女久久久| 国产亚洲精品久久久久5区| 无限看片的www在线观看| av在线天堂中文字幕| 国产伦在线观看视频一区| 日本免费a在线| 99国产精品一区二区三区| 亚洲七黄色美女视频| 99国产精品一区二区三区| 国产成人精品无人区| 欧美日韩精品网址| 日本 欧美在线| 一级黄色大片毛片| 毛片女人毛片| 亚洲全国av大片| 亚洲人与动物交配视频| 日本五十路高清| 99久久精品国产亚洲精品| 男女午夜视频在线观看| 人妻久久中文字幕网| 国内揄拍国产精品人妻在线| 制服人妻中文乱码| 亚洲国产欧洲综合997久久,| 在线国产一区二区在线| 午夜亚洲福利在线播放| 国产精品99久久99久久久不卡| 国模一区二区三区四区视频 | 国产高清视频在线观看网站| 久久 成人 亚洲| 91成年电影在线观看| 欧美日本视频| 日韩av在线大香蕉| 日韩中文字幕欧美一区二区| 国产熟女午夜一区二区三区| 亚洲真实伦在线观看| 少妇的丰满在线观看| www日本黄色视频网| 欧美中文综合在线视频| 国产成年人精品一区二区| 高潮久久久久久久久久久不卡| 99在线人妻在线中文字幕| 一级毛片高清免费大全| 在线观看美女被高潮喷水网站 | 听说在线观看完整版免费高清| 国产伦一二天堂av在线观看| 成人午夜高清在线视频| 中文亚洲av片在线观看爽| 真人一进一出gif抽搐免费| 午夜福利高清视频| 欧美丝袜亚洲另类 | 少妇裸体淫交视频免费看高清 | 久久中文字幕一级| 亚洲色图av天堂| 亚洲五月婷婷丁香| 又粗又爽又猛毛片免费看| 两人在一起打扑克的视频| 12—13女人毛片做爰片一| 精品欧美国产一区二区三| 男人舔女人的私密视频| 国产v大片淫在线免费观看| 日韩精品免费视频一区二区三区| 久久久久精品国产欧美久久久| 岛国视频午夜一区免费看| 久久 成人 亚洲| 国内毛片毛片毛片毛片毛片| 婷婷精品国产亚洲av| 午夜福利视频1000在线观看| 91字幕亚洲| 又爽又黄无遮挡网站| 亚洲精品久久成人aⅴ小说| 欧美成人免费av一区二区三区| 国产精品久久久人人做人人爽| 成人18禁高潮啪啪吃奶动态图| 日韩三级视频一区二区三区| 国产伦一二天堂av在线观看| 中国美女看黄片| 人妻夜夜爽99麻豆av| bbb黄色大片| 日韩成人在线观看一区二区三区| 日韩欧美国产在线观看| 久久香蕉国产精品| 老司机深夜福利视频在线观看| 1024视频免费在线观看| 一区二区三区高清视频在线| 国产精品久久视频播放| ponron亚洲| 少妇的丰满在线观看| 丰满的人妻完整版| 99精品在免费线老司机午夜| 一个人免费在线观看电影 | 久久国产乱子伦精品免费另类| 欧洲精品卡2卡3卡4卡5卡区| 国产黄a三级三级三级人| 好看av亚洲va欧美ⅴa在| 两个人视频免费观看高清| 中文亚洲av片在线观看爽| 18禁黄网站禁片午夜丰满| 亚洲国产精品sss在线观看| 黄色丝袜av网址大全| 19禁男女啪啪无遮挡网站| 欧美乱色亚洲激情| 十八禁人妻一区二区| 欧美+亚洲+日韩+国产| 婷婷丁香在线五月| 男女床上黄色一级片免费看| 一本综合久久免费| 又大又爽又粗| 亚洲av成人不卡在线观看播放网| 成人亚洲精品av一区二区| 欧美黑人欧美精品刺激| 国产午夜精品论理片| 久久精品91无色码中文字幕| 成人国产一区最新在线观看| 欧美极品一区二区三区四区| 男女床上黄色一级片免费看| 特级一级黄色大片| 黄片大片在线免费观看| 亚洲av成人不卡在线观看播放网| 亚洲国产精品久久男人天堂| 国产精品九九99| 欧美精品啪啪一区二区三区| 欧美色视频一区免费| 亚洲美女黄片视频| 亚洲第一电影网av| 亚洲中文av在线| 国产精品一区二区三区四区免费观看 | 日本 av在线| 精品一区二区三区av网在线观看| 欧美日韩亚洲综合一区二区三区_| 久久国产精品影院| 操出白浆在线播放| 午夜a级毛片| 国产精品野战在线观看| 国产成人精品无人区| 不卡一级毛片| 99久久综合精品五月天人人| 88av欧美| 两性午夜刺激爽爽歪歪视频在线观看 | 国产免费男女视频| a在线观看视频网站| www.自偷自拍.com| svipshipincom国产片| av有码第一页| 精品福利观看| 美女 人体艺术 gogo| 国产精品av视频在线免费观看| 日日爽夜夜爽网站| 母亲3免费完整高清在线观看| 黄色 视频免费看| 老司机午夜福利在线观看视频| 岛国视频午夜一区免费看| 国产成+人综合+亚洲专区| 久久久久国内视频| 女人高潮潮喷娇喘18禁视频| 久久人妻av系列| 亚洲九九香蕉| 亚洲精品在线美女| 亚洲欧美精品综合久久99| 国产精品一区二区三区四区久久| 不卡av一区二区三区| 99在线视频只有这里精品首页| 搡老岳熟女国产| 啦啦啦观看免费观看视频高清| 亚洲七黄色美女视频| 老司机靠b影院| 成熟少妇高潮喷水视频| 亚洲精品国产精品久久久不卡| 白带黄色成豆腐渣| 18禁黄网站禁片午夜丰满| 99久久精品热视频| 亚洲国产欧美网| www.www免费av| 村上凉子中文字幕在线| 精品久久久久久成人av| 国产av一区二区精品久久| 亚洲第一电影网av| 国产免费av片在线观看野外av| 91麻豆av在线| 久久国产乱子伦精品免费另类| 国产高清videossex| 亚洲性夜色夜夜综合| 熟女电影av网| www国产在线视频色| АⅤ资源中文在线天堂| 亚洲av五月六月丁香网| 非洲黑人性xxxx精品又粗又长| 国产91精品成人一区二区三区| 亚洲一区二区三区不卡视频| 午夜精品在线福利| av欧美777| 欧美高清成人免费视频www| 丝袜人妻中文字幕| 国产成人系列免费观看| 看免费av毛片| 日本 欧美在线| 人人妻人人澡欧美一区二区| 国产成人av激情在线播放| 亚洲aⅴ乱码一区二区在线播放 | 国产v大片淫在线免费观看| 变态另类丝袜制服| 一二三四在线观看免费中文在| 非洲黑人性xxxx精品又粗又长| 国产私拍福利视频在线观看| 搞女人的毛片| 久99久视频精品免费| 免费av毛片视频| 免费在线观看视频国产中文字幕亚洲| 后天国语完整版免费观看| 日韩精品免费视频一区二区三区| 亚洲午夜理论影院| 香蕉国产在线看| 男女下面进入的视频免费午夜| 久久久久久久久中文| 国产亚洲av嫩草精品影院| 男人舔女人下体高潮全视频| 欧美高清成人免费视频www| 毛片女人毛片| 国内揄拍国产精品人妻在线| netflix在线观看网站| 成人手机av| 欧美黑人精品巨大| 国产午夜精品论理片| 99在线视频只有这里精品首页| 两个人免费观看高清视频| 国产伦一二天堂av在线观看| 99精品久久久久人妻精品| 亚洲激情在线av| 少妇熟女aⅴ在线视频| 国产成人aa在线观看| 美女黄网站色视频|