• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fell topology,Choquet capacity and capacity-ergodic systems

    2016-09-13 02:01:02dedicatedtothememoryofYangengWangLiRuiWeiGuoDoolingTomBourquinStevenSchoolofStatisticsMathematicsShanghaiFinanceUniversityShanghai009ChinaDepartmentofMathematicsComputerScienceUniversityofNorthCarolinaatPembrokePembrokea
    關(guān)鍵詞:李瑞自同構(gòu)萊納

    dedicated to the memory of Yangeng WangLi Rui,Wei Guo,Dooling Tom,Bourquin Steven(.School of Statistics&Mathematics,Shanghai Finance University,Shanghai 009,China;.Department of Mathematics&Computer Science,University of North Carolina at Pembroke,Pembrokeao North Carolina 87,U.S.A. .Department of Chemistry&Physics,University of North Carolina at Pembroke,Pembroke,North Carolina 87,U.S.A.)

    Fell topology,Choquet capacity and capacity-ergodic systems

    dedicated to the memory of Yangeng Wang
    Li Rui1,Wei Guo2,Dooling Tom3,Bourquin Steven2
    (1.School of Statistics&Mathematics,Shanghai Finance University,Shanghai 201209,China;2.Department of Mathematics&Computer Science,University of North Carolina at Pembroke,Pembrokeao North Carolina28372,U.S.A. 3.Department of Chemistry&Physics,University of North Carolina at Pembroke,Pembroke,North Carolina28372,U.S.A.)

    This paper contains a review of the Fell topology,reinstalls the role of Choquet capacities in probability theory,and generalizes the notion of ergodic measures to the non-additive counterpart of ergodic Choquet capacities.Further,an ergodic capacity system is constructed through a hyperbolic toral automorphism,with relevant dynamical properties explored.

    Fell topology,stationary Poisson process,hyperbolic toral automorphism,ergodic Choquet capacity

    2010 MSC:60D05,49J45Document Code:AArticle ID:1008-5513(2016)04-0506-16

    1 Fell topology

    Given a topological space E,let F(E),G(E),and K(E)denote respectively the sets of all closed,open and compact subsets of E,abbreviated as F,G,and K(?∈F,?∈G and?∈K).

    The Fell topology τfon F(also known as H-topology[1],hit-or-miss topology[2,3],Choquet-Matheron topology[4],or weak Vietoris topology[5])is generated by the subbase

    where FK={F∈F|F∩K=?}and FG={F∈F|F∩G/=?}.A topological base of τfis

    A sequence{Fn}of closed subsets of E converges to a closed subset F of E in F iff(see Matheron[6])

    (i)If an open set G hits F,then G hits all the Fs except at the most a finite number of F′ns.

    (ii)If a compact set K is disjoint of F,then it is disjoint of all the Fn’s except at the most a finite number of Fs.

    The above criteria(i)and(ii)are respectively equivalent to the following(i)′and(ii)′.

    (i)′For every x∈F,there exists for each integer n a point xnin Fn(except,at the most, for a finite number of F)such thatxn=x in E.

    (ii)If Fis a subsequence of F,andx(x)is an arbitrary convergent sequence,′nknnknk∈Fnkthenxnkis in F.

    The Fell topology τfon arbitrary underlying spaces(Hausdorff or not)was introduced by Fell in 1962 for constructing the regularized dual space of C*-algebra[1,7].In 1975,Matheron re-discovered this topology when investigating the distribution and Choquet Theorem of random sets[6].Earlier investigation of this topology were in fact given by Watson in 1953[8]and Mrowka in 1958[9]who studied the topologies of closed convergence in locally compact separable(LCS)metric spaces and locally compact Hausdorff spaces,respectively.

    As a variation of the Vietoris topology,defined as the meet of the co-compact topology and lower Vietoris topology[3,6,10],the Fell topology is closely related to the Vietoris topology,Hausdorff metric,Wijsman topology,and upper Kuratowski topology(a topologization)(see e.g.Matheron[6],Beer[10],Michael[12],and the summary in our paper[13-16]).In particular,the Fell topology and Kuratowski topology coincide(Dolecki,Greco and Lechicki[17],Nogura and Shakhmatov[3],Beer[10]).

    In 1964,F(xiàn)lachsmeyer proved,based on Fell′s work and the Urysohn′s metrization theorem (Engelking[18]),that for any Hausdorff space E,the Fell topology is metrizable iff E is locally compact second countable(equivalently,LCS metrizable)(Flachsmeyer[19];see also Beer [10,20]).

    For non-Hausdorff underlying spaces,Zsilinszky in 2000 investigated the metrizability of the Fell topology and obtained a necessary and sufficient condition(locally compact,regular and second countable)[21].

    So far,four compatible metrics of the Fell topology are known.See 1)Watson[8],Rockafellar and Wets[22,23],Zhou[24],Wei and Wang[25]),2)Lechicki and Levi[26],3)Molchanov [2],Wei and Wang[25],and 4)Wei and Wang[13].Moreover,for the structures of compatible metrics,see Wang,Wei and Li[27].

    2 Random closed sets and their Choquet capacities

    Random sets theory provides a natural framework for representing in an elegant way the imprecision of the data available to a statistician(see Matheron[6],Molchanov[2],and Nguyen[28]for extensive references).Similar to the idea of using confidence intervals,due to the imperfection of the data acquiring procedures,it may be preferable to represent the outcome of an experiment as a set to which the true value of the measured quantity belongs rather than trying to ascribe to it some unique value(e.g.the center of the uncertainty interval)or a subjectively chosen probability distribution.In such situations it is particularly convenient to model the observation as a random set containing almost surely the random element corresponding to the true result of the experiment(Schreiber[29]).

    2.1Choquet capacities as Non-additive set functions

    The mathematical objects that govern the probabilistic laws of random closed sets(RACS) are the Choquet capacities,which share some properties of the traditional measures such as continuity from below and monotonicity,but also differ from the traditional measures,e.g.,lack of the additivity over disjoint regions and absence of the continuity from above(equivalent to upper semicontinuity).

    In contrast to the traditional measures such as the Lebesgue measure that calculate the quantity of physical extents that are contained in a set,the capacity of a set explores the ability or potential of the set to hold the physical extents subject to a certain given condition.

    For example,a capacity may describe the ability of a body to hold an electrical charge or mass for maintaining a specified equilibrium potential.It is known that for any compact set K in a space E such as Rn,there exists a unique admissible measureμdefined on K such that the resulting potential is 1 almost everywhere in K,except at most at points of a set of exterior capacity 0.Thisμis the equilibrium distribution and its potential is the equilibrium potential of K.The equilibrium distribution is the only admissible measure on K whose total charge or mass is equal to the capacity T(K)(see Choquet[30]).The mathematical formulation of this kind of physical phenomena is the Choquet capacity,which in fact holds a strong subadditivity:T(K1∪K2)+T(K1∩K2)≤T(K1)+T(K2).

    In the literature,Choquet capacities are often regarded as hitting probabilities,as preciselyillustrated Example.

    If a probability function P satisfies the countable additivity,then P is continuous from above(An↓A?P(An)↓P(A))and from below(An↑A?P(An)↑P(A));conversely,if a function P satisfies P(A)≥0 and P(S)=1,is finitely additive,and is continuous from above (at the empty set?)or continuous from below,then P is countably additive.

    A probability measureμis both continuous from below and above,and it′s(countably) additive.The additivity implies the Subset Property:For anyμ-measurable sets A and B,

    However,while a Choquet capacity T is continuous from below as well as continuous on any decreasing sequence of compact subsets,it is not necessarily continuous from above;for Choquet capacities,continuity from above is equivalent to the upper semicontinuity(see Wei,Wang,Nguyen and Beken[14]).Further,even if T is both continuous from below and from above,and holds a similar subset property:For any T-capacitable sets A and B,

    T is still not necessarily additive(Example).

    2.2Significance of Choquet capacities

    Choquet capacities,introduced by G.Choquet,a pioneer of the theory of non-additive set functions,are non-additive set functions and have influences on many parts of mathematics and different areas of sciences and technology,e.g.decision theory and social choice problems [31-39].Choquet capacities are widely applied to mathematical finance,e.g.cooperative games (Shapley[40]),stochastic dominance and risk measures(Sriboonchitta et al.[41]),uncertainty in economic theory(Marinacci et al.[42]).Specially,on the multi-criteria decision aiming at ordering multidimensional alternatives where the traditional weighted sum that relies on a rarely verified independence of criteria is replaced by a Choquet integral with respect to a capacity(Grabisch[43,44],also refer to Grabisch et al.[35];Marichal[45,46]).This approach was further developed by Kojadinovic(Kojadinovic[47]).

    In terms of Choquet capacities,the Choquet integral(see Matheron[6],Molchanov[2]and Nguyen[28])was introduced to generalize the traditional Lebesgue-Stieltjes integral(Lebesgue-Radon integral)where the latter(Lebesgue-Stieltjes integral)requires a regular Borel measure that is associated to functions of bounded variation on the real line(another integral based on monotonic set functions is Sugeno′s integral Sugeno[48]).

    Recall that E is a LCS metric space,such as Rnor other manifolds encountered in applications of mathematics.The Choquet integral of a measurable function g:E→R+withrespect to a Choquet capacity T(more general,with respect to a non-decreasing non-additive set function)is defined by

    compared to the well-known representation of the expectation of an ordinary non-negative random variable X:

    Choquet integral was rediscovered by Schmeidler in the framework of decision under uncertainty,where he was looking for representation theorems in utility theory.Schmeidler first put forward an axiomatic model of choice with non-additive beliefs.In order to axiomatize a decision model more flexible than subjective expected utility,Schmeidler weakened the classical independence axiom requiring it only for comonotonic functions and as a consequence,obtained a representation of preferences by a functional which is linear only on comonotonic functions and is exactly a Choquet integral(Chateauneuf[49],Schmeidler[50,51],Gilboa[52]).

    Another role of Choquet capacities in probability theory is the characterization of probability laws of random closed sets(RACS).RACS serve as general mathematical models for set-valued observations and irregular geometrical patterns of physical phenomena,generalize the traditional concept of ordinary random variables,which are regarded as models for point-valued observations,and play an important role in stochastic geometry.RACS have direct applications in the fields mentioned previously.Early applications of RACS in statistics include statisticians designing to understand the basic principles of(finite)population sampling(see Hajek[53]).In parameter estimation,if(?,A,Pθ,θ∈Φ)is a statistical model,then a multi-valued mapping S:? -→ 2Φsuch that S-1(θ)={ω|θ∈S(ω)}∈A for allθ∈Φ is a confidence region estimator of the true model parameter,with confidence level 1-α=inf{Pθ(ω|θ∈S(ω)),θ∈Φ}(see Hall[54]).

    Still another role is a recently explored application to the stochastic partial differential equations(SPDEs),where,due to a random noise in the equation(forcing term or coefficients),the solution of the equation can be regarded as a random function from a probability space to space of functions,i.e.,h:(?,A,P)→RnRm.Thus,h(ω)is a function(a sample path)from Rmto Rn,which stands for the(stochastic)solution of a PDE when a noise term ξ(ω)exists in the equation.Such h is referred as a random field in the literature,which is a generalization of stochastic processes(where the index set is a 2 or higher dimensional space).Now,fix a compact subset K of Rm(of positive Lebesgue measure)and a subset of A of Rn(A can be interpreted as the image of K under the solution of the corresponding non-stochastic equation without thenoise term).The interest in this setting is to estimate the following hitting probability:

    in terms of the capacity of A or the Hausdorff measure of A.See e.g.Mueller and Tribe [55],Dalang and Sanz-Sol′e[56],Dalang et al.[57-60](Gaussian stochastic waves,Malliavin calculus,non-linear stochastic waves etc).This setting is connected to our research on random upper semicontinuous functions(Nguyen,Wang and Wei[61]).

    A recent application demonstrates again the usefulness of RACS to statistics.Recall that the sample quantile is a strongly consistent estimator of the population quantile(Serfling [62],p.75),and the weak consistency of sample quantiles as estimators of population quantiles was shown by Smirnov(Smirnov[63];see also Resnick[64],p.179).Das and Resnick in 2008 applied random set theory to statistics by considering the set Snof points forming the quantilequantile plot as a RACS in R2:Under certain regularity conditions on the given heavy tailed distribution F,Snconverges in probability to a closed,non-random set(Das and Resnick[65]).

    In 2010,Martin,Zhang and Liu studied Dempster-Shafer Theory and statistical inference with weak beliefs[66].In 2011,Zhang and Liu proposed a variation of Dempster-Shafer inference([67]).

    Most recently,Martin and Liu et al.studied in a series of papers the inferential models(IMs),aiming at not only providing data-dependent probabilistic measures of uncertainty about the unknown parameter,but doing so with an automatic long-run frequency calibration property([68]).They extended the word on the theory of statistical inference with weak beliefs;for obtaining desirable frequency properties,they introduced the concepts of IMs.According to them,Dempster-Shafer inference does not have some of the desired frequency properties.

    3 Choquet capacities and Choquet Theorem

    Let E be a given LCS metric space with metric d,P the class of all subsets of E,F(xiàn) the hyperspace of all closed subsets of E equipped with the Fell topology,and K the class of all compact subsets of E.

    A capacity is a map T:P→[0,1]satisfying following three conditions(Matheron[6]):

    (i)If A,B∈P and A?B,then T(A)≤T(B);

    (ii)For A,An∈P(n∈N),if An↑A in P(i.e.,An?An+1for n∈N and∪1An=A),then T(An)↑T(A);

    (iii)For K,Kn∈K(n∈N),if Kn↓K in K(i.e.,Kn+1?Knfor n∈N and∩1Kn= K),then T(Kn)↓T(K).

    A Choquet capacity T requires an additional probability condition,alternating of infinite order which is described as follows.

    Let K,K1,K2,...be compact sets of E,and let?n(K;K1,...,Kn)be the probability for the RACS X to hit K1,...,Knbut miss K.Then all functions?ndefined below must be non-negative(see Matheron[6]):

    and consequently,(7)is equivalent to the following condition:T is monotonically increasing on K and the inequality

    holds for all n≥2(Nguyen[28]).If T is a probability measure,the inequality(9)becomes Poincar′e’s equality(see Nguyen[28]).Moreover,T can be extended to P by first to any open subset G and then to arbitrary subset A of E(see Matheron[6]and Wei et al.[14]).

    A RACS X is an A-B(F)measurable function from a probability space(?,A,P)to the measurable space(F,B(F)).Regular letter P will represent a probability function,italic P will represent the induced probability measure(P=PX-1),and N will denote the set of all non-negative integers.

    The Choquet capacity T of X characterizes the probability law P of X through the Choquet Theorem below.The Choquet Theorem has been extensively investigated in the context of probability,e.g.[2,4-6,13,14,25,28,30,61,69-74].

    Choquet Theorem:(see Matheron[6])Let E be a LCS metric space and F the space of all closed sets of E equipped with the Fell topology.Then there exists a(necessarily unique) probability measure P on the Borel σ-field B(F)generated by the topology of F satisfying T(K)=P(X∩K/=?)=P(FK)for K∈K if and only if T is a Choquet capacity on K with 0≤T≤1 and T(?)=0.

    Choquet Theorem is the foundation of random set theory.It reveals the relationship between the Choquet capacity T of X and the probability measure P of X.In this theorem,the probability law P describes the random evolution of X;the Choquet capacity T plays the role of the distribution functions of ordinary random vectors;the Fell topology governs the convergence of closed sets,which is consistent with the standard convergence of closed sets(see Matheron[6];Wei and Wang[13,14]).The theory of RACS originates from the hit-probability (miss-probability).

    In particular,any ordinary random variable taking point values in a metric space E can be viewed as a special RACS,a random singleton set,and hence it is completely characterized by its associated Choquet capacity.See e.g.,Molchanov[2],Wei and Wang[13,14].

    4 Invariant and ergodic capacities:constructing an example

    For any Choquet capacity T defined on a LCS metric space E,every Borel set B?E is capacitable(Meyer[75]),thus

    Let CTbe the set of all T-capacitable subsets of E,abbreviated as C,and f:E→E a T-capacitable transformation.

    Analogous with the measure-ergodic theory,a research on the invariant and ergodic capacities was conducted(see Wei,Wang and Li[73],2010;Wei,Wang and Yang[74],2011).

    The following definition generalizes the concept of ergodic measures to the non-additive setting of Choquet capacities.

    Definition 4.1Suppose T is f invariant(or say f preserves T),i.e.,T(f-1(B))=T(B) for B∈C.If for any T-capacitable and f-invariant set B,it holds T(B)=T(E)or T(B)=0,then T is said to be an ergodic Choquet capacity of f(or f is T-ergodic).

    We now turn to transformations on the torus,invariant Choquet capacities,and Choquet capacities on the torus.

    Hyperbolic toral automorphisms on the torusT2:

    Let A=(ai,j)be a m by m matrix with integer entries.A defines a transformation fA:Tm→Tmon the torus as follows:

    where Tm=S1×...×S1(m times)or which is the same,Tm=Rm/Zm=R/Z×...×R/Z (m times)(recall that a circle is identified with a half-open and half closed interval).

    When det(A)=±1,fAis a toral automorphism,and furthermore,if A has no eigenvalues of modulus 1,fAis hyperbolic.We assume that A satisfies these conditions in the following. It is known that fApreserves λ.Actually,all hyperbolic toral automorphisms preserve λ. All hyperbolic toral automorphisms are topologically transitive(but not minimal,since they have dense periodic points)-see Devaney[76]or Aoki and Hiraide[77].

    Topological transitivity is a necessary but not sufficient condition for ergodicity of a dynamical system(see Halmos[78],Sidorov[79-82]).

    The measure on Tmis the m-dimensional Lebesgue measure λ,normalized to λ(Tm)=1. It is known that fAdefined in(12)preserves λ and is ergodic(Devaney[76],Aoki and Hiraide [77],Halmos[78],Sidorov[79-82],Hasselblatt and Katok[83],Brin and Stuck[84],Walters [85],Pollicott and Yuri[86],Ye et al.[87],Brucks and Bruin[88]).Due to the similarity,we will take the 2-dimensional torus T2=S1×S1as the underlying space.Given a matrix A=()where a,b,c,d∈Z,A determines a mapping from the torus to itself,i.e.,

    Particularly,the Arnold’s continuous automorphism of the torus(CAT)is defined by A=(), i.e.,fA(x,y)=(2x+y mod 1,x+y mod 1).

    Example 4.1Let{Wt|t≥0}be a stationary Poisson process with intensity rate λ,and(?,A,P)the probability space for each of the random variables Wt,t≥0.For t≥0,the expected value of Wtis λt.Also,let α denote the uniform random variable on the torus T2,with(?′,A′,P′)the corresponding probability space.

    Given t>0,let α1,α2,...,αWtbe a collection of Wtmany uniform random variables on the torus T2,identically distributed and independent each other.Then,we define a random finite set Xt=Xα1,α2,...,αWt,whose probability space(?′,A′,P′)is obtained as the product probability space of(?,A,P)and(?′,A′,P′),by letting Xt(ω,ω′)contain α1(ω′),α2(ω′),...,αWt(ω)(ω′).If Wt(ω)=0,define Xt=?(thus P(Xt=?)=P(Wt=0)=e-λt).

    Now,for each t> 0,we will determine the Choquet capacity Ttof Xt(strictly,the notation is TXt),i.e.,for any compact subset K of T2,we will calculate the capacity Tt(K),the probability of Xthitting K,as follows:

    whereμis the Haar measure on T2(Lebesguq measure up to normalization). By the Choquet Theorem,the probability measure Ptof Xtsatisfies

    Properties of the Choquet capacity Tt,t>0:

    (i)Ttis both continuous from below and from above,and it possesses the subset property. However,it is non-additive.These properties can be verified using the methods given in[?].

    (ii)Ttis fA-invariant,i.e.,fApreserves the capacity Tt.

    In fact,it is known that fApreserves the Haar measureμon T2.Now,for any compact subset K of T2,we have Tt(f1(K))=1-e-λμ(f1(K))=1-e-λμ(K)=Tt(K).

    Further,for any T-capacitiable subset C of T2,it follows from

    that Tt(f1(C))=Tt(C).

    The next property is about the ergodicity of Tt.Clearly,the relation between Ttand μincludes:Tt(K)=0 iffμ(K)=0,andμ(K)=1 iff Tt(K)=1-e-λt(which is due to P(Xt=?)=P(Wt=0)=e-λt).

    Recall Definition:an f-invariant Choquet capacity T is ergodic if any f-invariant capacitiable subset has a capacity 0 or the full capacity(i.e.,the largest possible capacity).

    (iii)Ttis ergodic.It is known that fAis measure-ergodic(it is a toral automorphism determined by the matrix A that has no eigenvalues which are roots of unity).

    Hence,if K is any compact invariant set of fA,it holds thatμ(K)=1 or 0,and hence Tt(K)=1-e-λμ(K)or 0.Moreover,this property can be extended to any Tt-capacitiable and fA-invariant subset C of T2,again due to Tt(C)=sup{Tt(K)|K is compact and K?C}.

    (iv)Subsequently,we have generalized the concept of measure-ergodic systems to capacityergodic systems,and constructed such an capacity-ergodic system:(T2,C(T2),Tt,fA).

    Ending Note.Non-additive probabilities are increasingly used for modeling irregular physical quantities that are held within sets,e.g.Choquet capacities.Built upon capacities,Choquet integral generalizes the Lebesgue integral to non-additive measures.Early studies on non-additive probabilities can be tracked to Jacob Bernoulli,a 17th century pioneer in the mathematics theory of chance,and Johann Heinrich Lambert,a broad-ranging 18th century scholar(see[89]).

    Lebesgue theory and probability theory are proven to be theoretically important and practically useful parts of mathematics.Built upon Choquet capacities,Choquet integral(resp.,random set theory)accommodates non-additive physical quantities(resp.,irregular geometrical patterns,instead of pointwise ones).Therefore,a rigorous and systematic study of capacities through new probability models(capacity systems and ergodic capacity systems)will succeed in accomplishing a deeper understanding of non-additive probabilities,more suitable models for irregular physical phenomena,and significant impacts on the applications of Choquet theory for non-additive physical quantities.

    5 Appendix:Relations between Fell topology,Vietoris topology and Hausdorff metric

    The Vietoris topology τvon 2E[12](the notation CL(E)is also used,e.g.,[10,90,91]),the family of all non-empty closed subsets of E,is generated by the base[11,12,18]

    where U1,U2,...,Unare open subsets of E.Clearly,2E=F{?}.Alternatively,a subbase of the Vietoris topology on 2Ecan be obtained from(1)by replacing F by 2Eand compact subsets K by closed subsets F.It follows from these definitions that the Vietoris topology is finer than the subspace topology on 2Einduced by the Fell topology.

    The Hausdorff metric dH(which induces topology τdH)on the family of all non-empty bounded closed subsets of a metric space(E,d)is defined by[18]

    τdHand τvare consistent on the space C of non-empty compact subsets of E[18,90,92,93]. τdH?τviff(E,d)is totally bounded;τv?τdHiff(E,d)is UC,i.e.,every real-valued continuous function on(E,d)is uniformly continuous[94-96].

    When E is a compact Hausdorff space,τfand τvare both compact and consistent on 2E. When E is compact metrizable,τf,τvand τdHare all compact and consistent on 2E[1,6,12];in either of these two cases,?is an isolated point of F.

    Critically,when E is LCS metrizable,τfon F is always compact metrizable,and again LCS metrizable on 2E[6],implying that τfon F is metrizable and any consistent metric is complete,separable and totally bounded by the Urysohn’s metrization theorem[18].

    In contrast,if E is non-compact such as Rn,τvis neither metrizable nor compact[10,12]. Moreover,the use of Hausdorff metric dHon K faces a difficulty in characterizing the topological structure induced by the Hausdorff metric dH:the topology τdHinduced by dHdepends on the metric d,i.e.,τdHis not metric independent,but metric dependent(Naimpally[94-96]).

    More advantages of the Fell topology were extensively explored through the studies of RACS,see e.g.,Matheron[6],Molchanov[2],Wei and Wang[13,14,61],and hyperspace dynamics,see e.g.Wang and Wei[15,16,97].An example illustrating the differences in convergence between these hyperspace topologies was given in our paper[16].

    For the Vietoris topology and Hausdorff metric,we refer to Wei,Wang,Nguyen and Beken [14]and Wei,Wang and Yang[74].The relation between these hyperspace topologies is given by Watson[8],Rockafellar and Wets[22,23],Wei and Wang[25]),Naimpally[94-96].The construction of Borel σ-algebra on the hyperspace equipped with the Fell topology was given by Matheron[6].

    Thebibliography

    [1]Fell J M G.A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space[J].Proc. Amer.Math.Soc.,1962,13:472-476.

    [2]Molchanov I.Theory of Random Sets[M].London:Springer-Verlag,2005.

    [3]Nogura T,Shakhmatov D.When does the Fell topology on a hyperspace of closed sets coincide with meet of the upper Kuratowski and the lower Vietoris topology[J].Top.Appl.,1996,70:213-243.

    [4]Stoyan D.Models and statistics[J].Interna.Stat.Review,1998,66:1-27.

    [5]Wei G.Contributions to Distributions of Random Sets on Polish Spaces,PhD Thesis[M].New Mexico:New MexicoState University,Las Cruces,1999.

    [6]Matheron G.Random Sets and Integral Geometry[M].New York:John Wiley&Sons,1975.

    [7]Fell J M G.The structure of algebras of operator fields[J].Acta Math.,1961,106:233-280.

    [8]Watson P D.On the limits of sequences of sets[J].Quart.Jour.Math.,1953,4(2):1-3.

    [9]Mrowka S.On the convergence of nets of sets[J].Fund.Math.,1958,45:237-246.

    [10]Beer G.Topologies on Closed and Closed Convex Sets[M].Dordrecht:Kluwer Acad MIA 268,1993

    [11]Vietoris L.Bereiche zweiter ordnuang[J].Monatshefte f¨ur Mathematik und Physik,1923,33:49-62.

    [12]Michael E.Topologies on spaces of subsets[J].Trans.Amer.Math.Soc.,1951,71:152-182.

    [13]Wei G,Wang Y.Formulating stochastic convergence of random closed sets on locally compact separable metrizable spaces using metrics of the hit-or-miss topology[J].Interna.J.Intelligent Tech.Appl.Stat.,2008,1:33-57.

    [14]Wei G,Wang Y,Nguyen H T,et al.On the upper semi-continuity of Choquet capacities[J].Interna.J. Approx.Reason,2010,51:429-440.

    [15]Wang Y,Wei G,Campbell W H.Sensitive dependence on initial conditions between dynamical systems and their induced hyperspace dynamical systems[J].Top.Appl.,2009,156:803-811.

    [16]Wang Y,Wei G,Campbell W H,Bourquin S.A framework of induced hyperspace dynamical systems equipped with the hit-or-miss topology[J].Chaos,Solitons and Fractals,2009,41:1708-1717.

    [17]Dolecki S,Greco G H,Lechicki A.When do the upper Kuratowski topology(homeomorphically,Scott topology)and the co-compact topology coincide?[J].Trans.Amer.Math.Soc.,1995,347(8):2869-2884.

    [18]Engelking R.General Topology,PWN-Polish[M].Warszawa:Scientific Publishers,1977.

    [17]Flachsmeyer J.Verschiedene topologisierungen im raum der abgeschlossenen teilmengen[J].Math.Nachr.,1964,26:321-337.

    [19]Beer G.On the Fell topology[J].Set-Valued Anal.,1993,1:69-80.

    [20]Zsilinszky L.Note on hit-and-miss topologies[J].Rend.Circ.Mat.Palermo,2000,49:371-380.

    [21]Rockafellar R T,Wets R J B.Variational Systems,An Introduction in:A.Dold,B.Eckmann(eds.),Lecture Notes in Mathematics,1091[M].New York:Springer-Verlag,1984.

    [22]Rockafellar R T,Wets R J B.Variational analysis,Grundlehren der Mathematischen Wissenschaften[M]. Berlin:Springer-Verlag,1998.

    [23]Zhou X.A natural metric on the space of all closed subsets of Rn[J].J.of Shantou University Natural Science Edition,2001,16:62-67.

    [24]Wei G,Wang Y.On metrization of the hit-or-miss topology using Alexandroff compactification[J].Interna. J.Approx.Reason.,2007,46:47-64.

    [25]Lechicki A,Levi S.Wijsman convergence in the hyperspace of a metric space[J].Bull.Un.Mat.Ital.,1987,7(1-B):439-452.

    [26]Wang Y,Wei G,Li R.On metrics of the hit-or-miss topology:direct extensions[J].Pure and Appl.Math.,2008,24:643-645.

    [24]Nguyen H T.An Introduction to Random Sets[M].New York:Chapman and Hall,2006.

    [25]Schreiber T.Statistical inference from set-valued observations[J].Probability and Mathematical Statistics,2000,20:223-235.

    [27]Choquet G.Theory of capacities[J].Ann.Inst.Fourier.,1953-54,5:131-295.

    [28]Aumann R J,Shapley L S.Values of Non-Atomic Games[M].New Jersey:Princeton Univ.Press,1974.

    [29]Denneberg D.Non-Additive Measure and Integral[M].New York:Kluwer Acad.Publ.,1994.

    [30]Dobrakov I.On Submeasures I[M].New Jersey:Diss.Math.,1974.

    [31]Falconer K.Fractal Geometry[M].New York:John Wiley and Sons,1990.

    [32]Grabisch M,Nguyen H T,Walker E A.Fundamentals of Uncertainity Calculi with Application to Fuzzy Inference[M].New York:Kluwer Acad.Publ.,1995.

    [33]Huber P J.The use of Choquet capacities in statistics[J].Bull.Int.Inst.Statist.,1973,45:181-191.

    [34]Pap E.Null-Additive Set Functions[M].New York:Kluwer Acad.Publ.Ister.,1995.

    [35]Sugeno M,Murofushi T.Pseudo-additive measures and integrals[J].J.Math.Anal.Appl.,1987,122:197-222.

    [36]Wang Z,Klir G.Fuzzy Measure Theory[M].New York:Plenum Press,1992.

    [37]Shapley L S.A Value for N-Person Games,in Contributions to the Theory of Games[M].New Jersey:Princeton University Press,1953.

    [38]Sriboonchitta S,Wong W-K,Sompong D,et al.Stochastic Dominance and Applications to Finance,Risk and Economics[M].Florida:Chapman and Hall/CRC Press,2009.

    [39]Marinacci M,Montrucchio L.Introduction to the mathematics of ambiguity,in:I.Gilboa(ed.),Uncertainty in Economic Theory[M].New York:Routledge,2004.

    [40]Grabisch M.Fuzzy integral in multicriteria decision making[J].Fuzzy sets and Systems,1995,69:279-298.

    [41]Grabisch M.The application of fuzzy integrals in multicriteria decision making[J].European Journal of Operational Research,1996,89:445-456.

    [42]Marichal J L.Aggregation operators for multicriteria decision aid[D].Aggregation operators for multicriteria decision aid[D].Belgium:Institute of Mathematics,University of Li`ege,Li`ege,1998.

    [43]Marichal J L.On an axiomatization of the quasi-arithmetic mean values without the symmetry axiom[J]. Aequationes Mathematicae,2000,59:74-83.

    [44]Kojadinovic I.An axiomatic approach to the measurment of the amount of interaction among criteria or players[J].Fuzzy Sets and Systems,2005,152:417-435.

    [45]Sugeno M.Theory of fuzzy integral and its applications[D].Japan:Tokyo Institute of Technology,1974.

    [46]Chateauneuf A,Cohen M,Denneberg D.General introduction to this special issue on Choquet integral and applications[J].Stat.Papers,2002,43:1-3.

    [47]Schmeidler D.Integral representation without additivity[J].Proc.Amer.Math.Soc.,1986,97:255-261.

    [48]Schmeidler D.Subjective probability and expected utility without additivity[J].Econometrica,1989,57:571-587.

    [49]Gilboa I,Schmeidler D.Maxmin expected utility with non-unique prior[J].J.Math.Economics,1989,18:141-153.

    [50]H′ajek J.Sampling from A Finite Population[M].New York:Marcel Dekker,1981.

    [51]Hall P.Introduction to the theory of coverage processes[M].New York:John Wiley and Sons,1988.

    [52]Mueller C,Tribe R.Hitting properties of the random string[J].Electron.J.Probab.,2002,7:1-29.

    [53]Dalang R C,Sanz-Sol′e M.Criteria for hitting probabilities with applications to systems of stochastic wave equations[J].Bernoulli,2010,16(4):1343-1368.

    [54]Dalang R C,Khoshnevisan D,Nualart E.probabilities for systems of nonlinear stochastic heat equations with additive noise[J].ALEA Lat.Am.J.Probab.Math.Stat.,2007,3:231-271.

    [55]Dalang R C,Khoshnevisan D,Nualart E.Hitting probabilities for systems of nonlinear stochastic heat equations with multiplicative noise[J].Probab.Theory Related Fields,2009,144:371-427.

    [56]Dalang R C,Mueller C,Zambotti L.Hitting probabilities of s.p.d.e.’s with reflection[J].Ann.Probab.,2006,34:1423-1450.

    [57]Dalang R C,Nualart E.Potential theory for hyperbolic SPDEs[J].Ann.Probab.,2004,32:2099-2148.

    [58]Nguyen H T,Wang Y,Wei G.On Choquet theorem for random upper semicontinuous functions[J].Interna. J.Approx.Reason.,2007,46:3-16.

    [59]Serfling R J.Approximation Theorems of Mathematical Statistics[M].New York:John Wiley&Sons,1980.

    [60]Smirnov N V.Limit distributions for the terms of a variational series[J].Trudy Mat.Inst.Steklov.,1949,25:3-60.

    [61]Resnick S I.A Probability Path[M].Boston:Birkh¨auser,1999.

    [62]Das B,Resnick S I.QQ Plots Random sets and data from a Heavy tailed distribution[J].Stochastic Models,2008,24:103-132.

    [63]Martin R,Zhang J,Liu C.Dempster-Shafer Theory and statistical inference with weak beliefs[J].Statistical Science,2010,25:72-87.

    [64]Zhang J,Liu C.Dempster-Shafer inference with weak beliefs[J].Statistica Sinica,2011,21:475-494.

    [65]Martin R,Liu C.Inferential models:Reasoning with uncertainty,Monographs in Statistics and Applied Probability Series[M].Chapman:CRC Press,2015.

    [66]Molchanov I.Limit Theorems for Unions of Random Closed Sets,Lecture Notes in Mathematics 1561[M]. New york:Springer-Verlag,1997.

    [67]Molchanov I.A generalization of the Choquet theorem for random sets with a given class of realizations[J]. Theory of Probab.and Math.Statist.,1984,28:99-106.

    [68]Nguyen H T,Ogura Y,Tasena S,et al.A Note on Random upper Semicontinuous Functions,in:Soft Methods for Integrated Uncertainty Modeling[M].New york:Springer-Verlag,2006.

    [69]Stoyan D,Kendall W S,Mecke J.Stochastic Geometry and its Applications[M].2nd ed.Chichester:John Wiley&Sons,1995.

    [70]Wei G,Wang Y,Li R.On the relations between ergodic Choquet capacity systems and ergodic hyperspace dynamical systems[J].J.of Northwest University(Natural Science Edition),2010,40:377-378.

    [71]Wei G,Wang Y,Yang Z.Methods for constructing Choquet-capacity preserving and ergodic systems:examples[J].Interna.J.Intelligent Tech.Appl.Stat.,2011,4:201-220.

    [72]Meyer P A.Probabiliti′es et Potentiel[M].Paris:Hermann,1966.

    [73]Devaney R L.An Introduction to Chaotic Dynamical Systems[M].2nd ed.New York:Addison-Wesley,1989.

    [74]Aoki N,Hiraide K.Topological Theory of Dynamical Systems,Recent Advances,North-Holland Mathematical Library 52[M].Amsterdam:Elsevier Science B.V.,1994.

    [75]Halmos P R.Lectures on Ergodic Theory[M].Tokyo:the Mathematical Society of Japan,1956.

    [76]Sidorov Ye A.Connection between topological transitivity and ergodicity[J].Izv.vysh.utcheb.zav.,Mat.,1969,83(4):77-82.

    [77]Sidorov Ye A.The existence of topologically indecomposable transformations in an n-dimensional region which are not ergodic[J].Mat.Zametki,1968,3(4):427-430.

    [78]Sidorov Ye A.Topologically indecomposable transformations of the n-dimensional space[J].Volzh.Mat. sbornik,1966,5:326-330.

    [79]Sidorov Ye A.Smooth topologocally transitive dynamical systems[J].Mat.Zametki,1968,4:441-452.

    [80]Hasselblatt B,Katok A.A First Course in Dynamics with A Panorama of Recent Developments[M]. Cambridge,UK:Cambridge University Press,2003.

    [81]Brin M,Stuck G.Introduction to Dynamical Systems[M].Cambridge,UK:Cambridge University Press,2002.

    [82]Walters P.An Introduction to Ergodic Theory[M].New york:Springer,1982.

    [83]Pollicott M,Yuri M.Dynamical Systems and Ergodic Theorem[M].Cambridge,UK:Cambridge University Press,1998.

    [84]Ye X,Huang W,Shao S.Topological Dynamical Systems[M].Beijing:Science Press,2008.

    [85]Brucks K M,Bruin H.Topics from One-Dimensional Dynamics[M].Cambridge,UK:Cambridge University Press,2004.

    [86]Shafer G.Non-additive probabilities in the work of Bernoulli and Lambert[J].Archive for History of Exact Sciences,1978,19:309-370.

    [87]Illanes A,Nadler S B.Jr.Hyperspace:Fundamentals and Recent Advances[M].New York:Marcel Dekker Inc.,1999.

    [88]Nadler Jr S B.Hyperspaces of Sets.Monographs Textbooks Pure Appl.Math.,vol.49[M].New York:Marcel Dekker,1978.

    [89]Peris A.Set-valued discrete chaos[J].Chaos,Solitons&Fractals,2005,26:19-23.

    [90]Banks J.Chaos for induced hyperspace maps[J].Chaos,Solitons&Fractals,2005,25:681-685.

    [91]Naimpally S A.Comparison of topologies on hyperspaces[J].Annals New York Acad.Sci.,1993,704:273-278.

    [92]Naimpally S A.All hypertopologies are hit-or-miss[J].Appl.Gen.Topol.,2002,3:45-53.

    [93]Naimpally S A.What is a hit-or-miss topology?[J].Topological Commentary,2003,1:1-3.

    [94]Wang Y,Wei G.Characterizing mixing,weak mixing and transitivity of induced hyperspace dynamical systems[J].Top.Appl.,2007,155:56-68.

    10.3969/j.issn.1008-5513.2016.04.010

    2016-06-13.

    Partially supported by HRSA,US DHHS(H49MC00068).作者簡介:李瑞(1957-),副教授,研究方向:點(diǎn)集拓?fù)浼捌鋺?yīng)用.

    Fell拓?fù)?,Choquet容量和遍歷的Choquet容量系統(tǒng)

    李瑞1,衛(wèi)國2,托馬斯·杜林3,史蒂文·布爾坎2

    (1.上海金融學(xué)院統(tǒng)計(jì)與數(shù)學(xué)學(xué)院,上海,201209 2.北卡羅萊納大學(xué)彭布羅克分校化學(xué)與物理系,北卡羅萊納,彭布羅克,28372 3.北卡羅萊納大學(xué)彭布羅克分校數(shù)學(xué)與計(jì)算機(jī)科學(xué)系,北卡羅萊納,彭布羅克,28372))

    本文描述了Fell拓?fù)涞慕Y(jié)構(gòu)與收斂條件,重新確立了關(guān)于隨機(jī)集的Choquet定理在概率論中的重要作用,并提出了不變Choquet容量的概念.此外,利用環(huán)面上的雙曲自同構(gòu)和隨機(jī)映射,具體構(gòu)造了一個遍歷的Choquet容量系統(tǒng),且進(jìn)一步探討了這種系統(tǒng)的動力性態(tài).

    Fell拓?fù)?;穩(wěn)定Poisson過程;雙曲的環(huán)面自同構(gòu);遍歷的Choquet容量

    O189

    猜你喜歡
    李瑞自同構(gòu)萊納
    江蘇萊納多智能裝備有限公司
    Molecule opacity study on low-lying states of CS
    一類無限?ernikov p-群的自同構(gòu)群
    Wimbledon Tennis
    Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling*
    萊納德已成季后賽效率王
    灌籃(2019年25期)2019-12-04 08:15:32
    關(guān)于有限Abel p-群的自同構(gòu)群
    剩余有限Minimax可解群的4階正則自同構(gòu)
    藝術(shù)百家:李瑞
    颶風(fēng)襲擊北卡羅萊納
    床上黄色一级片| 久久精品国产亚洲av香蕉五月| 日本成人三级电影网站| 麻豆成人av在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产高清三级在线| 国产美女午夜福利| 免费在线观看亚洲国产| 日日干狠狠操夜夜爽| 免费观看人在逋| 99热只有精品国产| 亚洲av美国av| 久久精品国产亚洲av香蕉五月| 久久久成人免费电影| 九色成人免费人妻av| 噜噜噜噜噜久久久久久91| АⅤ资源中文在线天堂| 99国产综合亚洲精品| 亚洲七黄色美女视频| 欧美成人a在线观看| 久久午夜亚洲精品久久| 99在线视频只有这里精品首页| 成人性生交大片免费视频hd| 一进一出抽搐动态| 国产97色在线日韩免费| 国产淫片久久久久久久久 | 一进一出抽搐gif免费好疼| 午夜福利高清视频| 久久欧美精品欧美久久欧美| 国产成人系列免费观看| 美女黄网站色视频| 国产精品免费一区二区三区在线| 午夜福利欧美成人| 五月伊人婷婷丁香| av国产免费在线观看| 免费av毛片视频| 九色成人免费人妻av| 女人十人毛片免费观看3o分钟| 欧美性感艳星| 亚洲最大成人手机在线| 91麻豆av在线| 夜夜躁狠狠躁天天躁| 91在线观看av| 岛国在线观看网站| 国产老妇女一区| 亚洲国产精品999在线| АⅤ资源中文在线天堂| 亚洲精品久久国产高清桃花| 欧美丝袜亚洲另类 | 精品电影一区二区在线| 精品久久久久久,| 久久久久久久久久黄片| 少妇裸体淫交视频免费看高清| 在线观看美女被高潮喷水网站 | 午夜福利高清视频| 国产一区在线观看成人免费| 国产一区二区亚洲精品在线观看| 久久天躁狠狠躁夜夜2o2o| 国产97色在线日韩免费| 人妻丰满熟妇av一区二区三区| 99久久九九国产精品国产免费| 人人妻,人人澡人人爽秒播| 精品乱码久久久久久99久播| 国产高清有码在线观看视频| 欧美日韩福利视频一区二区| 中文字幕人妻熟人妻熟丝袜美 | 国产黄色小视频在线观看| tocl精华| 精品久久久久久成人av| 9191精品国产免费久久| 亚洲中文字幕一区二区三区有码在线看| 美女免费视频网站| 国产精品日韩av在线免费观看| 深爱激情五月婷婷| 一区二区三区免费毛片| 精品欧美国产一区二区三| 精品欧美国产一区二区三| 亚洲人成网站在线播| 国产探花在线观看一区二区| 亚洲最大成人中文| 熟女电影av网| 久久婷婷人人爽人人干人人爱| 色综合站精品国产| 亚洲精品粉嫩美女一区| 国产精品一及| 国产黄色小视频在线观看| 熟女人妻精品中文字幕| 欧美成人免费av一区二区三区| 真实男女啪啪啪动态图| 久久久久免费精品人妻一区二区| 亚洲人成网站在线播放欧美日韩| 91av网一区二区| 亚洲精品美女久久久久99蜜臀| 99国产综合亚洲精品| 一本一本综合久久| 精品久久久久久久久久久久久| 网址你懂的国产日韩在线| 亚洲精品日韩av片在线观看 | 国内毛片毛片毛片毛片毛片| 国产亚洲av嫩草精品影院| e午夜精品久久久久久久| 天堂av国产一区二区熟女人妻| 三级国产精品欧美在线观看| 欧美午夜高清在线| 18禁美女被吸乳视频| 欧美日韩一级在线毛片| 国产色爽女视频免费观看| 麻豆成人av在线观看| 九九久久精品国产亚洲av麻豆| 国产黄色小视频在线观看| 精品一区二区三区视频在线 | 琪琪午夜伦伦电影理论片6080| 免费电影在线观看免费观看| 有码 亚洲区| 欧美xxxx黑人xx丫x性爽| 色视频www国产| 免费人成在线观看视频色| 日韩中文字幕欧美一区二区| 热99在线观看视频| 51午夜福利影视在线观看| 欧美色欧美亚洲另类二区| 免费在线观看日本一区| 在线观看66精品国产| 日韩人妻高清精品专区| 亚洲成人精品中文字幕电影| 亚洲美女视频黄频| 舔av片在线| 一进一出抽搐动态| a级一级毛片免费在线观看| 国产免费一级a男人的天堂| www.999成人在线观看| 真人一进一出gif抽搐免费| 久久人妻av系列| 亚洲国产高清在线一区二区三| 一区福利在线观看| 嫩草影院精品99| 在线观看日韩欧美| 色av中文字幕| 国产精品亚洲美女久久久| 午夜福利高清视频| 十八禁网站免费在线| 久久性视频一级片| 蜜桃久久精品国产亚洲av| 欧美乱色亚洲激情| 此物有八面人人有两片| 精品乱码久久久久久99久播| 久久天躁狠狠躁夜夜2o2o| 午夜福利成人在线免费观看| 中文资源天堂在线| 1000部很黄的大片| 国产精品,欧美在线| 啪啪无遮挡十八禁网站| 中文字幕精品亚洲无线码一区| 国产激情欧美一区二区| 久久精品91蜜桃| 国产男靠女视频免费网站| 久久久久久国产a免费观看| 国产精华一区二区三区| 欧美中文综合在线视频| 国内精品一区二区在线观看| av天堂在线播放| 一个人免费在线观看的高清视频| 久久久国产成人免费| 男女那种视频在线观看| 黄色成人免费大全| 国产主播在线观看一区二区| 一夜夜www| 亚洲欧美激情综合另类| 国产探花在线观看一区二区| 久久精品91蜜桃| 深夜精品福利| 最后的刺客免费高清国语| 国产av一区在线观看免费| 国产精品98久久久久久宅男小说| 久久亚洲精品不卡| 国产精品久久久久久人妻精品电影| 99久国产av精品| 欧美精品啪啪一区二区三区| 97人妻精品一区二区三区麻豆| 亚洲性夜色夜夜综合| 非洲黑人性xxxx精品又粗又长| 午夜日韩欧美国产| 一区二区三区高清视频在线| 久久久久久久久久黄片| 国产成人影院久久av| 亚洲第一电影网av| 老熟妇乱子伦视频在线观看| www日本黄色视频网| 欧美性猛交╳xxx乱大交人| 两人在一起打扑克的视频| 小蜜桃在线观看免费完整版高清| 免费看a级黄色片| 俄罗斯特黄特色一大片| 夜夜夜夜夜久久久久| 91在线观看av| 精品人妻偷拍中文字幕| 天堂√8在线中文| 别揉我奶头~嗯~啊~动态视频| 精品国内亚洲2022精品成人| 国产一级毛片七仙女欲春2| 精品乱码久久久久久99久播| www.www免费av| 国产av一区在线观看免费| 一区二区三区激情视频| 一进一出好大好爽视频| 一个人免费在线观看的高清视频| 亚洲欧美一区二区三区黑人| 18禁黄网站禁片午夜丰满| 精品人妻一区二区三区麻豆 | 国产成人av激情在线播放| 亚洲一区二区三区色噜噜| 久久这里只有精品中国| 97超视频在线观看视频| 久久久久国内视频| 国产精品久久久久久久久免 | 欧美日韩福利视频一区二区| 欧美国产日韩亚洲一区| 一个人看视频在线观看www免费 | 国产亚洲欧美98| 波多野结衣巨乳人妻| 一进一出抽搐gif免费好疼| 亚洲乱码一区二区免费版| 99精品欧美一区二区三区四区| 日本免费a在线| av女优亚洲男人天堂| 亚洲男人的天堂狠狠| 法律面前人人平等表现在哪些方面| 欧洲精品卡2卡3卡4卡5卡区| 最新美女视频免费是黄的| 日日夜夜操网爽| 精品一区二区三区视频在线观看免费| 亚洲 国产 在线| 欧美一区二区国产精品久久精品| 午夜精品久久久久久毛片777| 国产久久久一区二区三区| 国产精品99久久久久久久久| 成人av一区二区三区在线看| 亚洲狠狠婷婷综合久久图片| 亚洲欧美日韩高清在线视频| 美女免费视频网站| 国产视频内射| 国产一级毛片七仙女欲春2| а√天堂www在线а√下载| 免费人成在线观看视频色| 日本 av在线| 无人区码免费观看不卡| 国产一区二区三区视频了| 69av精品久久久久久| 免费一级毛片在线播放高清视频| 中文字幕人妻丝袜一区二区| www.熟女人妻精品国产| 午夜影院日韩av| 1024手机看黄色片| 国产视频一区二区在线看| 搡老妇女老女人老熟妇| 免费在线观看日本一区| 国产精品免费一区二区三区在线| 中出人妻视频一区二区| 亚洲自拍偷在线| av女优亚洲男人天堂| 欧美最新免费一区二区三区 | 亚洲国产精品成人综合色| 午夜日韩欧美国产| 国产三级黄色录像| 99热这里只有是精品50| 日韩欧美一区二区三区在线观看| 99热这里只有精品一区| 亚洲国产精品999在线| 可以在线观看的亚洲视频| 九九在线视频观看精品| 男女视频在线观看网站免费| 日韩精品中文字幕看吧| 搡老妇女老女人老熟妇| 久久精品亚洲精品国产色婷小说| 国产精品自产拍在线观看55亚洲| 真实男女啪啪啪动态图| 国产91精品成人一区二区三区| 婷婷丁香在线五月| 亚洲国产精品999在线| 国产麻豆成人av免费视频| 亚洲 欧美 日韩 在线 免费| 99riav亚洲国产免费| 亚洲国产精品合色在线| 丰满乱子伦码专区| 精品午夜福利视频在线观看一区| 熟妇人妻久久中文字幕3abv| 午夜免费成人在线视频| 精品免费久久久久久久清纯| 亚洲av电影不卡..在线观看| 在线天堂最新版资源| 亚洲av成人av| 国产成人aa在线观看| 岛国在线观看网站| 国产精品三级大全| 亚洲精品456在线播放app | 一个人观看的视频www高清免费观看| 欧美大码av| 午夜福利高清视频| 国产精品女同一区二区软件 | a级毛片a级免费在线| 亚洲国产精品久久男人天堂| 国产乱人视频| 18美女黄网站色大片免费观看| 窝窝影院91人妻| 女人高潮潮喷娇喘18禁视频| 国内毛片毛片毛片毛片毛片| 亚洲男人的天堂狠狠| 黄色日韩在线| 亚洲av免费在线观看| 中文字幕精品亚洲无线码一区| 亚洲av五月六月丁香网| 久久久久久久精品吃奶| 又黄又爽又免费观看的视频| 亚洲狠狠婷婷综合久久图片| 亚洲成av人片在线播放无| 亚洲精品粉嫩美女一区| 丁香六月欧美| 久久精品综合一区二区三区| 成人欧美大片| 琪琪午夜伦伦电影理论片6080| 天堂网av新在线| 国产精品免费一区二区三区在线| 久久人妻av系列| 日韩欧美一区二区三区在线观看| 国内久久婷婷六月综合欲色啪| www日本黄色视频网| 美女高潮的动态| 欧美又色又爽又黄视频| 三级毛片av免费| 成人av一区二区三区在线看| 亚洲人成电影免费在线| 亚洲国产精品合色在线| 一二三四社区在线视频社区8| av中文乱码字幕在线| av欧美777| 日韩欧美精品免费久久 | 国产亚洲精品久久久com| 午夜视频国产福利| 精品久久久久久,| 俺也久久电影网| 日日摸夜夜添夜夜添小说| 亚洲欧美日韩无卡精品| 久久亚洲真实| 亚洲欧美日韩高清在线视频| 婷婷精品国产亚洲av在线| 十八禁人妻一区二区| 国产精品亚洲美女久久久| 久久精品国产清高在天天线| 精品久久久久久久久久久久久| 婷婷六月久久综合丁香| 日韩欧美国产在线观看| 国产成年人精品一区二区| 久久人妻av系列| 美女黄网站色视频| 精品一区二区三区av网在线观看| 一二三四社区在线视频社区8| 亚洲在线自拍视频| 变态另类丝袜制服| av专区在线播放| 麻豆国产97在线/欧美| 免费在线观看日本一区| 国产精品日韩av在线免费观看| av专区在线播放| 麻豆国产97在线/欧美| 日日夜夜操网爽| 有码 亚洲区| 国产伦精品一区二区三区四那| 久久精品影院6| 国产探花在线观看一区二区| 亚洲av日韩精品久久久久久密| 国产欧美日韩精品一区二区| 琪琪午夜伦伦电影理论片6080| 日日摸夜夜添夜夜添小说| 久久香蕉国产精品| 在线国产一区二区在线| 制服丝袜大香蕉在线| 99国产精品一区二区三区| 搡老妇女老女人老熟妇| 成年版毛片免费区| 国模一区二区三区四区视频| 国产午夜福利久久久久久| tocl精华| 伊人久久大香线蕉亚洲五| 非洲黑人性xxxx精品又粗又长| 国产精品影院久久| 久久草成人影院| 日韩 欧美 亚洲 中文字幕| 特大巨黑吊av在线直播| 亚洲片人在线观看| 欧洲精品卡2卡3卡4卡5卡区| 在线免费观看的www视频| 观看免费一级毛片| 床上黄色一级片| 欧美性感艳星| 无限看片的www在线观看| 69人妻影院| 老熟妇乱子伦视频在线观看| 俺也久久电影网| 国产极品精品免费视频能看的| 日韩亚洲欧美综合| 波多野结衣高清无吗| 免费在线观看成人毛片| 亚洲精品成人久久久久久| 91麻豆av在线| 久久久久久久久大av| 国产综合懂色| 国产av不卡久久| 成人精品一区二区免费| 在线观看美女被高潮喷水网站 | 亚洲人成网站在线播放欧美日韩| 好男人在线观看高清免费视频| 国内少妇人妻偷人精品xxx网站| 国产美女午夜福利| 日韩成人在线观看一区二区三区| 亚洲久久久久久中文字幕| 国产精品久久久久久精品电影| 亚洲天堂国产精品一区在线| 九色成人免费人妻av| 色综合婷婷激情| 欧美性感艳星| 熟妇人妻久久中文字幕3abv| 色播亚洲综合网| 黄色成人免费大全| 国产欧美日韩一区二区精品| av中文乱码字幕在线| 亚洲第一欧美日韩一区二区三区| 国产精品久久久久久精品电影| 亚洲av成人精品一区久久| 亚洲精品国产精品久久久不卡| 亚洲成av人片在线播放无| 搡老妇女老女人老熟妇| 小说图片视频综合网站| 欧美日韩一级在线毛片| 色在线成人网| 国产精品久久电影中文字幕| 日本精品一区二区三区蜜桃| 99久久99久久久精品蜜桃| 一个人免费在线观看电影| 网址你懂的国产日韩在线| 日本一二三区视频观看| 此物有八面人人有两片| 一卡2卡三卡四卡精品乱码亚洲| 精品国产美女av久久久久小说| 黑人欧美特级aaaaaa片| 久久久国产成人免费| 国产高清视频在线播放一区| 欧美丝袜亚洲另类 | 波多野结衣高清无吗| 亚洲精品456在线播放app | 97人妻精品一区二区三区麻豆| 亚洲男人的天堂狠狠| 丰满人妻一区二区三区视频av | 国产精品,欧美在线| 免费人成在线观看视频色| 听说在线观看完整版免费高清| 久久久久国产精品人妻aⅴ院| 最后的刺客免费高清国语| 成人av一区二区三区在线看| 又爽又黄无遮挡网站| 啦啦啦免费观看视频1| 亚洲第一欧美日韩一区二区三区| 99视频精品全部免费 在线| 亚洲国产高清在线一区二区三| 少妇裸体淫交视频免费看高清| 国产aⅴ精品一区二区三区波| 国产野战对白在线观看| 日本一二三区视频观看| 99久久九九国产精品国产免费| 欧美性猛交╳xxx乱大交人| 亚洲在线观看片| 精品乱码久久久久久99久播| 成熟少妇高潮喷水视频| 日韩人妻高清精品专区| 毛片女人毛片| 一个人看的www免费观看视频| 一夜夜www| 欧美激情久久久久久爽电影| 毛片女人毛片| 午夜福利18| 国产久久久一区二区三区| 亚洲精品美女久久久久99蜜臀| 在线观看舔阴道视频| 国产精品 国内视频| 国产午夜福利久久久久久| 久久久久性生活片| 久久精品夜夜夜夜夜久久蜜豆| 久久久精品大字幕| 国产精品女同一区二区软件 | 日本一本二区三区精品| 一个人免费在线观看的高清视频| 网址你懂的国产日韩在线| 久久久国产成人免费| 久久国产乱子伦精品免费另类| 尤物成人国产欧美一区二区三区| 亚洲av日韩精品久久久久久密| 无限看片的www在线观看| www.www免费av| 亚洲专区中文字幕在线| 老司机福利观看| 亚洲18禁久久av| 欧美日本视频| 性色avwww在线观看| 又粗又爽又猛毛片免费看| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久久黄片| 天堂网av新在线| 国产一区在线观看成人免费| 久久中文看片网| 成年女人毛片免费观看观看9| 午夜影院日韩av| 久99久视频精品免费| 国产精品久久久久久久电影 | 久久久精品大字幕| 久久中文看片网| 精品日产1卡2卡| 色在线成人网| 日本黄色片子视频| 人人妻人人澡欧美一区二区| 少妇人妻精品综合一区二区 | 色吧在线观看| 国产亚洲精品一区二区www| 午夜老司机福利剧场| 成人国产一区最新在线观看| 内地一区二区视频在线| 成年女人永久免费观看视频| 免费无遮挡裸体视频| 操出白浆在线播放| 午夜a级毛片| 国产伦精品一区二区三区四那| 欧美zozozo另类| 色哟哟哟哟哟哟| 亚洲精品456在线播放app | 九九久久精品国产亚洲av麻豆| 国产激情偷乱视频一区二区| 69av精品久久久久久| 欧美一区二区精品小视频在线| 欧美极品一区二区三区四区| 亚洲精品国产精品久久久不卡| 欧美不卡视频在线免费观看| 黄色片一级片一级黄色片| 最新中文字幕久久久久| 亚洲av中文字字幕乱码综合| 99久久无色码亚洲精品果冻| 伊人久久大香线蕉亚洲五| 欧美国产日韩亚洲一区| 嫩草影院精品99| 在线天堂最新版资源| 欧美3d第一页| 免费高清视频大片| 少妇高潮的动态图| 美女 人体艺术 gogo| 免费av毛片视频| 韩国av一区二区三区四区| 禁无遮挡网站| 五月伊人婷婷丁香| 99久久精品一区二区三区| 亚洲精华国产精华精| 婷婷精品国产亚洲av在线| 国产aⅴ精品一区二区三区波| 日韩欧美免费精品| 国产99白浆流出| 成熟少妇高潮喷水视频| 欧美日韩中文字幕国产精品一区二区三区| 婷婷精品国产亚洲av| 久久久久性生活片| 国产成年人精品一区二区| 国产精品乱码一区二三区的特点| 国产真实乱freesex| 男女下面进入的视频免费午夜| 波多野结衣巨乳人妻| 最后的刺客免费高清国语| 亚洲自拍偷在线| 看免费av毛片| 国产高清有码在线观看视频| 中文字幕av成人在线电影| av黄色大香蕉| 淫秽高清视频在线观看| 国内精品一区二区在线观看| 一边摸一边抽搐一进一小说| 波多野结衣高清无吗| 真实男女啪啪啪动态图| 超碰av人人做人人爽久久 | 亚洲av免费在线观看| www日本在线高清视频| 久久久色成人| 国内久久婷婷六月综合欲色啪| 亚洲精品色激情综合| 国产激情偷乱视频一区二区| 俄罗斯特黄特色一大片| 国内久久婷婷六月综合欲色啪| 国产精品亚洲一级av第二区| 成年人黄色毛片网站| 国产高清视频在线播放一区| 日本 欧美在线| 不卡一级毛片| 热99re8久久精品国产| 免费看a级黄色片| 内地一区二区视频在线| 深夜精品福利| 99久久99久久久精品蜜桃| 久久6这里有精品| 动漫黄色视频在线观看| 国产成人av教育| 亚洲成人中文字幕在线播放| 在线播放国产精品三级| 乱人视频在线观看| 人妻夜夜爽99麻豆av| 亚洲第一电影网av| 性色av乱码一区二区三区2| 一区二区三区高清视频在线| 级片在线观看| 成人午夜高清在线视频| 日韩精品青青久久久久久| 久久人妻av系列| 久久久久久久精品吃奶|