• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鈾酰-Salophen受體對α,β-不飽和羰基化合物及手性客體的分子識別

    2016-09-13 03:10:21高莎蘭文波林英武廖力夫聶長明
    物理化學學報 2016年3期
    關鍵詞:鈾酰南華大學羰基

    高莎 蘭文波 林英武 廖力夫 聶長明

    (南華大學化學化工學院,湖南衡陽421001)

    鈾酰-Salophen受體對α,β-不飽和羰基化合物及手性客體的分子識別

    高莎蘭文波林英武廖力夫聶長明*

    (南華大學化學化工學院,湖南衡陽421001)

    基于密度泛函理論(DFT)的計算方法,研究了不對稱鈾酰-sa lophen受體對α,β-不飽和羰基化合物客體及手性小分子的分子識別。理論計算結果表明:配合物中受體的U原子與客體的O3原子配位,且受體與客體之間結合能隨受體上芳環(huán)取代基的增大而增大;R2,R3-系列配合物中U―O3鍵的穩(wěn)定性比R1-系列的更強;配位后的α,β-不飽和羰基化合物中C=C與C=O之間的共軛效應減弱。而且,通過圓二色譜(CD)及結合能計算表明:芘基鈾酰-sa lophen(受體3)對(R)-1-(2-萘基)乙胺的分子識別選擇性優(yōu)于(S)-1-(2-萘基)乙胺。因而,這些研究結果為不對稱鈾酰-salophens具有分子識別能力提供了新的信息。

    密度泛函理論;鈾酰-salophen;α,β-不飽和羰基化合物;分子識別

    Besides,Dalla Cort etal.8used nonsymmetrically substituted uranyl-salophensas receptors and found that the receptors could producemolecular recognition9-12for aldehydes and/or ketones. With the inherent chirality of the nonsymmetrically substituted uranyl-salophens,these complexes could thus have potential applications.Inaddition,molecular recognitionsof chiralhosts for chiralguestswere studied bymany authors.For example,Liu et al.13studied themolecular recognition behavior of the chiralsalenmetalhosts towardsguestmolecules,and found that the circular dichroism(CD)spectrum method could beused to characterize the strength of thehost-guest interaction.According to Zhou etal.14the absolute configurations of chiralmolecules could be obtained by the CD spectrum calculations,which were consistentw ith the X-ray single-crystalstructure.

    Despite theseadvances,themoleculargeometriesof1-3 uranylsalophen receptors and the coordination mode betw een these receptors and guests have not been reported in theory15,16.A lso, there are no attem pts to study themolecular recognitions of the asymmetrical uranyl-salophens for chiral molecules by CD spectrum calculations.Meanwhile,it is well-known that theoretical investigation can provide theoretical guidance for experiments.Therefore,in thisstudywe selected three typical receptors and corresponding compounds as samples,as shown in Fig.1,and theoretically studied theabovemeaningfulproblems.

    Fig.1 Molecu lar structural form ulasand the num bers ofm ajor atom s

    Fig.2 Geometriesof the three optim ized uranyl-salophen recep tors

    2 Computational details

    All the calculations were performed using the Gaussian 09 software17.A ll geometrieswere optim ized using B3LYP18,19of density functional theory(DFT)method20,21.Relativistic effective core potential(RECP)22basis setwas taken into account for U atom.Forotheratoms(C,H,O,N),the 6-311G(d,p)basisset23was used.It had been studied24-26that this level of theoretical method isappropriate for lanthanide and actinide complexes to get better results of geometriesand energetics.Then theWiberg bond order indices(WBIs)27of the coordination complexeswere calculated using naturalbond orbital(NBO)analysis28,29.Based on the method of the basis setsuperposition error(BSSE)correction,the binding energies ofα,β-unsaturated carbonyl compounds w ith uranyl-salophen receptorswere also calculated.In addition,the ultraviolet-visible(UV-Vis)spectrum was calculated using B3LYP method of the time-dependentDFT(TD-DFT)30,and CD31analysis was carried outw ith theMultiw fn32program.

    3 Results and discussion

    3.1Geom etricalstruc tures o f recep tors

    At the B3LYP/6-311G(d,p)/RECP level of theory,the geometrical structuresand the harmonic vibrational frequencies of the threeuranyl-salophen receptorswere calculated,respectively.The results showed that the normalmodes of vibrations were not imaginary frequencies in these three uranyl-salophen receptors, suggesting that the geometrical configurations of the three receptorswere situated at them inimum pointof potential energy surface.The optimized geometrical structures and a partof the structural parametersof the three receptorswere shown in Fig.2 and listed in Table 1.Firstly,the calculated C2―C1―O1―U dihedral angles/C7―C8―O2―U dihedral angles in the three receptorswere 35.81°/-35.83°,38.26°/-36.56°,41.14°/-36.30°, respectively.Thesedata indicated thatthe twowingsof theuranylsalophenswere sim ilar to thoseof birds and theuranyl-salpohen moleculesw ere distorted in the plane.The average bond lengthsof the U―N,U―O,and U=O in the receptorswere consistent with theexperimental resultsvery well33.The carbon-carbon bond lengths of thebenzene rings in the three kindsof receptorswere 0.1365-0.1435nm.With the enlargementof thearomaticwalls, the N 1―U―N 2 bond-anglesbecame smaller,the O1―U―O2 bond-anglesbecame larger,butall the N1―U―O1 and N2―U―O2 bond-angles gotsmaller.For the uranyl-salophen receptors2 and 3,the dihedral angles between the benzene ring of salicylaldehyde and its unilateral aromatic group were-47.56°,-113.26°,respectively.The N1―O1―O2―N2dihedralangelof receptor1wasalmostclose to zero,showing thatN1,O1,O2,N2 were situated at the same plane;but after introduction of the aromaticwalls,the N1―O1―O2―N2dihedral angelsof receptors 2 and 3 equaled-0.23°and-0.55°,respectively.TheO1―O2―N2―U and O2―O1―N1―U dihedralangelsof three receptors did notequal zero,indicating thatN1,O1,O2,N2,and U were not situated at the same planes.Indeed,the salophens in coordination complexes adopted twisted plane structures1.Note that the geometriesof the threeuranyl-salophensdisplayed the C1symmetry.

    Table1 A par t of the structuralparam eters of three uranyl-salophen receptors

    Fig.3 Geometriesof the optim ized com plexes

    3.2Coordinationm ode o f urany l-salophens w ithα,βunsatu rated carbonyl com pounds

    3.2.1Geometricalstructures o f coordination com plexes

    At the same level of theory,the geometrical structures of a seriesof coordination complexeswereexplored.The coordination complexes(R1-series)1,2,3,4were formed by the receptor 1 coordinated with theα,β-unsaturated carbonyl compoundsa,b,c, d.In the same way,the complexes(R2-series)5,6,7,8 were produced by the receptor 2 coordinated with a,b,c,d,and the complexes(R3-series)9,10,11,12 w ere formed by the receptor 3 coordinated w ith a,b,c,d,respectively.Some of optimalgeometric configurations of receptors coordinated withα,β-unsaturated carbonyl compound guestswere shown in Fig.3.Itcould be seen that theguestswere located insideof the cleftof receptors in the coordination complexes.The planes of theunilateralaromatic wallswere almost parallel to the planes ofα,β-unsaturated carbonyl compounds in R2-seriesand R3-series complexes.Parts of themolecular geometry parameters of comp lexesw ere listed in Table 2.The simulation results show ed that theC2―C1―O1―U dihedralangelsand C7―C8―O2―U dihedralangelsof all the coordination complexeswere from 38°to 43°.The N―U bond lengths and O―U bond lengths in complexeswere longer thanthose in corresponding receptors,and the N1―U―N2 bondangles became smaller,whereas the O1―U―O2 bond-angles became larger,w hich suggests that after receptors coordinated withα,β-unsaturated carbonyl compounds,the coordination interactionsbetween N1,O1 atomsof receptors and U atom were weakened.

    Table2 A partof the structuralparametersof the com plexes

    On the other hand,for the sameα,β-unsaturated carbonyl compound guest,w ith the expanding of the unilateral aromatic walls in complexes,the O3―U bond lengthswere shortened, indicating that the coordination of O3 to the U atom weremore stable,which was consistentw ith the literature34.The dihedral angles in the coordination complexeswere obviously changed com pared to the corresponding receptors,especially for the C1―C9―C10―C11 dihedral angles in complexes thatwere smaller than those in corresponding receptors.In all the R2-series,R3-series comp lexes,the unilateral aromatic groups could provide stronger van derWaals interactionsand largerπ-πstacking to the guests.In addition,the unilateral aromatic walls of the uranylsalophen receptors 2,3 were served as steric blocking groups, which played an important role in the reactions with the asymmetric uranyl-salophen receptorsacting asasymmetric catalyst. 3.2.2 IR spec trum

    The calculated IR spectra of the three receptors and corresponding complexes3,7,11were shown in Fig.4and Fig.5,respectively.The calculatedmajor IR absorptions of the receptors 1,2,3 and the corresponding complexes 3,7,11 were listed in Table 3.The results showed the stretching frequencies of C=N and C―O of the com plexeswere close to those of corresponding receptors.The complexes had absorption peaks in 923-929 cm-1but thecorresponding receptorsappeared in 938-940cm-1,which w as assigned to the asymmetric stretching vibration absorption peak of U=O in UO22+.The reasonmay be thatafter the U atom of the receptors coordinated by O3 atom ofguests,the U=O bond weakened,resulting in red-shiftsof vibration absorption for U=O.Themain absorption peaks of the comp lexesmoved towards the low wavelength compared to the corresponding receptors,such that the stretching frequency of C=O in cyclohexenone shifted from 1762 to 1693 cm-1and that of C=C moved from 1674to ~1665cm-1.These observations indicated that the conjugation effect betw een C=O and C=C inα,β-unsaturated carbonyl compoundswasweakened after the carbonyloxygens coordinated by U atom of the receptors.Experimental studies also demonstrated that the urany l-salophen receptors show ed good catalytic activity for the conjugateaddition of cyclohexenonewith other molecules7.Wealso calculated theother two complexesand found that,for the other two guests,the rules of the stretching frequencieswere sim ilar to theabove complexes.

    Fig.4IR spectra of receptors1,2,3

    3.2.3Mo lecularorbitals

    The MOs(molecule orbitals)of severalmolecules were calculated,and Fig.6show ed Kohn-Sham representations of HOMO (the highest occupied molecular orbital),LUMO(the lowestunoccupied molecular orbital).In Fig.6,each a small parts of molecular orbitalswere com posed by the positive and negative aspectsand they were parallelwith each other.From Fig.6(left), the HOMO of uranyl was the 5f5z3-3zr2orbital,which was the hybridized orbital of the uranium combined w ith the other four atoms(O1,O2,N1,N2).But it was obviously changed when cyclohexenonewas coordinated by receptor3,asshown in Fig.6(right).It could prove that there existed bonding interaction between the carbonyl oxygen of cyclohexenone and the uranium atom.A partof occupiedmolecularorbitalsof the complex 11was shown in Fig.7.The occupiedmolecular orbitalof theunilateral aromatic wallwas almost paralleled to the occupiedmolecular orbitalof cyclohexenone.Moreover,the positive aspectof theπ bonding orbital of the unilateralaromatic wallwas faced to the negativeaspectof thebonding orbitalof the cyclohexenone.The distance between the two planes was 0.375nm.Therefore,unilateral aromatic wall in the complexes displayed certain steric hindrance effecton the conjugate addition of cyclohexenonew ith othermolecules,whichm ightbe themain reason for the chiral addition ofα,β-unsaturated carbonyl compoundsw ith reagents catalyzed by unilateralaromatic substituted uranyl-salophen.

    Fig.5IR spectra for com p lexes 3,7,11

    Tab le 3 Major IR data of the three receptorscoordinated w ith cyclohexenone

    Fig.7 A partofoccupiedmolecular orbitalsof com plex 11

    3.2.4Electronic structu re

    Asobtained by Mulliken population calculations,a part of the netatomic chargesof three kindsof receptorsand three complexes 4,8,12were listed in Table4.The complexeswere formed by the three receptors coordinatingwith perinaphthenone.Electric dipole moment(p),polarizability(α),and the totalenergy(E)werealso listed in Table 4.The unitof E iseV and p is C?m.The positive charges of U atom and negative chargesof O1 atom in the three complexesweremore than thoseof the corresponding receptors. The positive chargesof C3 atom and negative chargeof N1 atom of the three complexeswere less than ones of the corresponding receptors.The negative charges of O3 atom s of the three complexeswere-0.464e,-0.501e,-0.504e,respectively,whereas in the perinaphthenone itwas-0.362e.The electric dipolemomentsand the polarizabilitiesof three complexeswere larger than those of corresponding receptors.These changesmaymainly be attributed to the coordination between O3 and U atom.TheO3 atom offers the lone pairelectron to theU atom tomakeelectronic structure changed.

    Fig.6HOMOsof recep tor 3 and com plex 11

    3.2.5Bond orderand binding energy

    In order to better understand themetal-ligand bonding and to explain the coordination effect between the uranyl-salophen receptorsand theα,β-unsaturated carbonyl compounds,theWiberg bond order indices(WBIs)of the coordination complexeswere calculated using NBO analysis,and based on themethod of the basis set superposition error(BSSE)correction,the binding energiesofα,β-unsaturated carbonyl com pound guestsw ith uranylsalophen receptorswere also calculated.The resultsshowed thetrendsof theWBIsvaluesof the U―O3 bonds for the complexes in Fig.8.Itcould be seen that the U―O3WBIswere found to be 0.350-0.450in all the studied com plexes,thus the bonding between themetalU atomsand ligandsO atomshasa certain degree of covalent character.In addition,the U―O3 WBIs in the asymmetrically substituted uranyl-salophen complexesare higher than those in the symmetrically uranyl-salophen complexes,which indicated that,for the sameα,β-unsaturated carbonyl com pound, the U―O3 bonds of all the R2-series,R3-series complexeshave more covalentcharacters than thoseof R1-series complexes.The probable reasonsmay be that theunilateral substituted aromatic groups could have the van derWaals interaction andπ-πstacking effectson theα,β-unsaturated carbonyl compound.In addition,the U―O3WBIs of the complexes 9-12 were slightly larger than corresponding complexes5-8,whichwas in accordancewith the change rules of their U―O3 bond lengths.In other words,the shorter the U―O3 bond length,the larger the U―O3WBIs,the more the covalent character of U―O3 would be.With the same receptor,the U―O3WBIs of the R-series complexes became larger from the guests a to d,and the increase of contact area between the hostsand the guestsprobably leads to theenhanced intermolecular forces.

    Table4Calculated atom icMulliken popu lation(P)and the per formance before and after uranyl-salophens coordinatingw ith perinaph thenone

    Fig.8 Trendsof theWBIs of the U―O 3 bonds for the coordination com plexes

    The bonding energy w as calculated by the formula(1).W(R)represents thebonding energy andstands for the totalenergy of the interacting systemandstand for theenergiesof the two separatemoleculesA,B,respectively.

    Thebinding energiesof the receptors1,2and 3 coordinated by the fourα,β-unsaturated carbonyl compoundsa,b,c and dwere listed in Table 5.Therewasa general tendency for the binding energy to become larger and larger from receptors 1,2 to 3.W hen the hydrogen atom of receptor 1was replaced by phenyl or pyrenyl, the van derWaals interaction andπ-πstacking effectbetween the receptorsand theguestswould become stronger,whichmakes the guests′degreesof freedom lowerand the receptors combinedwith the guestmore tightly.Consequently,the binding energy ofα,βunsaturated carbonyl compounds has an order of receptor 3> receptor2>receptor1.

    Tab le 5Binding energies of 1-12 com p lexes

    Fig.9 UV spectra of receptor 3

    3.3Mo lecu lar recogn ition o f u ranyl-sa lophen to chira lmo lecu le

    As illustrated in Fig.9(curve:a),w hich show s the UV-Vis spectrum of pyrenyl uranyl-salophen receptor 3.There were characteristic absorption peaks around 320and 350nm,which wereassigned to theπ-π*transition of the benzene ringsand the π-π*transition of the C=N,respectively.In the corresponding CD spectraof uranyl-salophen receptor3,as shown in Fig.10(b), the CD absorption displayed a positive Cotton effect(315nm)and a negative Cotton effect(324nm)centered at320nm.Simultaneously,there w ere a positive Cotton effect(337 nm)and a negative Cotton effect(352 nm)centered at350nm.In UV-Vis spectrum,therewas characteristic absorption peak at~393 nm.It could beattributed to the n-π*transition of the lone pairelectrons of the nitrogen atom in C=N.In the corresponding CD spectra, the CD absorption displaysa positive Cotton effect(372 nm)and anegative Cotton effect(410nm)centered at393 nm.From the Cotton effect splitting patterns in the CD spectra,it could be seen that the positive Cotton effect was reflected in the shorter wavelength,meanwhile,the negative Cotton effectwas reflectedin the longer wavelength.From these observations,it could probably deduce that the absolute configuration of uranyl-salophen derivatives is.

    Fig.10CD spectra of threemolecu les

    Fig.10shows the CD spectraof theuranyl-salophen receptor3 (curve:b)and the complexes13 and 14(curves:c and d)thatwere formed by the coordination between uranyl-salophen receptor3 and two typicalchiralsmallmoleculeseand f(Fig.1),i.e.,(R)-1-(2-n-aphthy)ethylam ine and(S)-1-(2-naphthy)-ethy lam ine,respectively.Itcould be seen that therewere large differencesbetween the CD spectra of the host3 and the CD spectra of complexes 13 and 14.In the CD spectra of host 3,there were the splitting peaks around 320nm,but therewere not the splitting peaks in the CD spectra of complexes13 and 14.It could reflect thatwhen the different guestswere introduced to the host 3,it would have the same influence on theπ-π*transition of the benzene ring.As shown in Fig.10,there was a negative Cotton effect absorption peak around 320nm in the CD spectra of complex 14.However,there was a positive Cotton effect absorption peak in the CD spectra of complex 13.In 340-350nm, the positive Cotton effectabsorption peak value of complex 14was+122 L?mol-1?cm-1,but thatof the complex 13 was+438 L?mol-1?cm-1and thehost3was+273 L?mol-1?cm-1.Furthermore, in 350-360nm,thenegative Cotton effectabsorption peak value of complex 14was-103 L?mol-1?cm-1and the complex 13was-358L?mol-1?cm-1.TherewasapositiveCottoneffectabsorption peak around 500nm in the CD spectra of complex 14.However, there was a negative Cotton effect absorption peak in the CD spectraof complex 13.

    In addition,we calculated the binding energies between the receptor3 and theguesteand f,whichare87.755and 78.160kJ?mol-1,respectively.Besides,in the CD spectra,the higher the peak of absorption around the same wavelength,the better the recognition selectivity will be13.Theseobservations indicated that the host3 hasa very high recognition selectivity towards the guest(R)-1-(2-naphthy)ethylamine,which is well coincided with the intensity sequence of the CD band in Fig.10.

    4Conclusions

    Based on the theoretical studies,the following conclusions could bemade.The U atom of the receptors coordinated by the O3 atom ofα,β-unsaturated carbonyl compounds,theα,β-unsaturated carbonyl compoundsw ere located in the inside of the cleft of the uranyl-salophens in the coordination complexes.Compared with corresponding receptors,the bond lengths of N―U and O―U were shortened,the N1―U―N2 bond anglesbecame smallerand O1―U―O2 bond angles became bigger.The calculated IR spectra,electronic structures,andmolecular orbitals indicated that the conjugation effects between C=C and C=O inα,β-unsaturated carbonyl compounds in the coordination complexeswere weakened.Besides,thebond orderanalysesshowed that the U―O3 bonding in complexes had a certain covalent character.In addition,the binding energies ofα,β-unsaturated carbony l compoundsw ith uranyl-salophenswere found to increase with expanding of thearomaticwalls in complexes.The calculated UVVis spectraand CD spectraaswellas thebinding energy further indicated that the recognition selectivity of the uranyl-salophen receptor 3 for the(R)-1-(2-naphthy)ethylam ine was better than that for the(S)-1-(2-naphthy)ethylamine.Therefore,this study threw a new lighton the recognition ability of the uranyl-salophens,which provides clues for design of functional uranyl-salophen complexes in experiments.

    References

    (1)Zhang,G.L.;Liao,L.F.;Lin,Y.W.;Yang,M.;Xiao,X.L.; Nie,C.M.Anal.Chim.Acta 2013,784,47.doi:10.1016/j. aca.2013.05.002

    (2)Zhao,M.M.;Liao,L.F.;Wu,M.L.;Lin,Y.W.;Xiao,X.L.; Nie,C.M.Biosens.Bioelectron.2012,34(1),106.doi: 10.1016/j.bios.2012.01.025.

    (3)Matsumoto,K.;Watanabe,A.;Uchida,T.;Ogi,K.;Katsuki,T. Tetrahedron Lett.2004,45(11),2385.doi:10.1016/j. tetlet.2004.01.095

    (4)Ohashi,M.;Koshiyama,T.;Ueno,T.;Yanase,M.;Fujii,H.; Watanabe,Y.Angew.Chem.Int.Edit.2003,42(9),1005.doi: 10.1002/anie.200390256

    (5)Mirkhani,V.;Tangestaninejad,S.;Moghadam,M.;Moghbel, M.Bioorg.Med.Chem.2004,12(17),4673.doi:10.1016/j. bmc.2004.06.029

    (6)Serrette,A.;Carroll,P.J.;Swager,T.M.J.Am.Chem.Soc. 1992,114,1887.doi:10.1021/ja00031a057

    (7)Castelli,V.V.;Dalla Cort,A.;Mandolini,L.;Pinto,V.; Reinhoudt,D.N.;Ribaudo,F.;Sanna,C.;Schiaffino,L.; Snellink-Ru?l,B.H.M.Supramol.Chem.2002,14(2),211. doi:10.1080/10610270290026112

    (8)Dalla Cort,A.;Pasquini,C.;Schiaffino,L.Supramol.Chem. 2007,19(1),79.doi:10.1080/10610270600977714

    (9)Shen,X.;Liao,L.F.;Chen,L.;He,Y.F.;Xu,C.H.;Xiao,X. L.;Lin,Y.W.;Nie,C.M.Spectrochim.Acta PartA 2014,123, 110.doi:10.1016/j.saa.2013.12.026

    (10)Bodo,E.;Ciavardini,A.;Cort,A.D.;Giannicchi,I.;Yafteh Mihan,F.;Fornarini,S.;Vasile,S.;Scuderi,D.;Piccirillo,S. Chem.Eur.J.2014,20(37),11783.doi:10.1002/chem.201402788

    (11)Cametti,M.;Nissinen,M.;Cort,A.D.;Mandolini,L.; Rissanen,K.J.Am.Chem.Soc.2005,127(11),3831.doi: 10.1021/ja042807n

    (12)Yang,M.;Liao,L.F.;Zhang,G.L.;Xiao,X.L.;Lin,Y.W.; Nie,C.M.Anal.Bioanal.Chem.2013,405(23),7545.doi: 10.1007/s00216-013-7217-2

    (13)Liu,T.;Ruan,W.J.;Nan,J.;Zhu,Z.A.Chin.J.Chem.2003, 21,751.doi:10.1002/cjoc.20030210709

    (14)Zhou,N.;Wan,S.G.;Zhao,J.;Lin,Y.J.;Xuan,W.M.;Fang, X.M.;Zhang,H.Sci.China Ser.B 2009,52(11),1851.doi: 10.1007/s11426-009-0261-2

    (15)Lombardo,G.M.;Thompson,A.L.;Ballistreri,F.P.; Pappalardo,A.;Sfrazzetto,G.T.;Tomaselli,G.A.;Toscano, R.M.;Punzo,F.Dalton Trans.2012,41(7),1951.doi: 10.1039/C1DT11758K

    (16)Mary,Y.S.;Rajub,K.;Panickerc,C.Y.;Al-Saadid,A.A.; Thiemann,T.;Christian,V.A.Spectrochim.Acta PartA 2014, 128,638.doi:10.1016/j.saa.2014.02.194

    (17)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;etal.Gaussian 09,Revision A.01;Gaussian Inc.:Wallingford,Conn,USA, 2009.

    (18)Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B 1988,37(2),785. doi:10.1103/PhysRevB.37.785

    (19)Becke,A.D.J.Chem.Phys.1993,98(7),5648.doi:10.1063/ 1.464913

    (20)Elkechai,A.;Mani,Y.;Boucekkine,A.;Ephritikhine,M. Inorg.Chem.2012,51(12),6943.doi:10.1021/ic300811m

    (21)Kohn,W.;Sham,L.J.Phys.Rev.1965,140(4A),1133.doi: 10.1103/PhysRev.140.A1133

    (22)Gu,J.F.;Lu,C.H.;Chen,W.K.;Chen,Y.;Xu,K.;Huang,X.; Zhang,Y.F.Acta Phys.-Chim.Sin.2012,28(4),792.[辜家芳,陸春海,陳文凱,陳勇,許可,黃昕,章永凡.物理化學學報,2012,28(4),792.]doi:10.3866/PKU. WHXB201201171

    (23)Rawat,N.;Bhattacharyya,A.;Tomar,B.S.;Ghanty,T.K.; Manchanda,V.K.Thermochim.Acta 2011,518(1),111.doi: 10.1016/j.tca.2011.02.018

    (24)Vetere,V.;Maldivi,P.;Adamo,C.J.Comput.Chem.2003,24(7),850.doi:10.1002/jcc.10228

    (25)DiSanto,E.;Santos,M.;Michelini,M.C.;Marcalo,J.;Russo, N.;Gibson,J.K.J.Am.Chem.Soc.2011,133(6),1955.doi: 10.1021/ja109621n

    (26)Michelini,M.D.C.;Russo,N.;Sicilia,E.J.Am.Chem.Soc. 2007,129(14),4229.doi:10.1021/ja065683i

    (27)Luo,J.;Wang,C.Z.;Lan,J.H.;Wu,Q.Y.;Zhao,Y.L.;Chai, Z.F.;Nie,C.M.;Shi,W.Q.Dalton Trans.2015,44,3227. doi:10.1039/C4DT03321C

    (28)Carpenter,J.E.;Weinhold,F.J.Mol.Struc.:Theochem 1988, 169,41.doi:10.1016/0166-1280(88)80248-3

    (29)Foster,J.;Weinhold,F.J.Am.Chem.Soc.1980,102(24), 7211.doi:10.1021/ja00544a007

    (30)Macka,J.;Otakib,T.;Durfeed,W.S.;Kobayashib,N.; Stillmanc,M.J.J.Inorg.Biochem.2014,136,122.doi: 10.1016/j.jinorgbio.2014.01.001

    (31)Zhang,H.;Yan,J.X.;W u,S.T.;Li,D.;Wan,S.G.;D ing,L.; Lin,L.R.Acta Phys.-Chim.Sin.2013,29(12),2481.[章慧,顏建新,吳舒婷,李丹,萬仕剛,丁雷,林麗榕.物理化學學報,2013,29(12),2481.]doi:10.3866/PKU. WHXB201310152

    (32)Lu,T.;Chen,F.J.Comput.Chem.2012,33(5),580.doi: 10.1002/jcc.v33.5

    (33)Asadi,Z.;Shorkaei,M.R.Spectrochim.Acta Part A 2013, 105,344.doi:10.1016/j.saa.2012.12.024

    (34)Sessler,J.;Melfi,P.;Pantos,G.Coord.Chem.Rev.2006,250(7),816.doi:10.1016/j.ccr.2005.10.007

    (35)Li,X.L.;Luo,J.;Lin,Y.W.;Liao,L.F.;Nie,C.M.J. Radioanal.Nucl.Chem.2016,307,407.doi:10.1007/s10967-015-4326-8

    Molecular Recognition of α,β-Unsaturated Carbonyl Compounds and Chiral Guests by Uranyl-Salophen Receptors

    GAO Sha LANWen-Bo LINYing-Wu LIAO Li-Fu NIEChang-Ming*
    (SchoolofChemistry and Chemical Engineering,University ofSouth China,Hengyang 421001,Hunan Province,P.R.China)

    Based on density functional theory(DFT)calculations,themolecular recognition ofα,β-unsaturated carbony lcom pounds and chiralmo lecules by u ranyl-sa lophen recepto rs was investigated theo retica lly.The results showed that the U atom of the receptorswas coordinated by the O3 atom of the guests,and the binding energies between receptors and guests increased with the enlargementof the aromatic substituentof the uranylsalophen receptors.In addition,the U―O3 coordination bonds of R2-and R3-series com p lexes aremore stable than those o f R1-series com p lexes,and the con jugation between the C=C and C=O bonds o f theα,βunsaturated carbonylcom pounds in the coordination com p lexes was weakened.Moreover,according to circular dichroism(CD)spectra and binding-energy calculations,themolecular-recognition selectivity ofan asymmetrical pyrenyluranyl-salophen(receptor3)for(R)-1-(2-naphthyl)ethylam ine wasmuch higher than that for(S)-1-(2-naph thyl)ethylam ine.These results shed new lighton the recognition ability ofasymme tric urany l-sa lophens.

    Density functional theory;Uranyl-sa lophen;α,β-Unsaturated carbonylcom pound; Molecular recognition

    1 Introduction

    U ranyl ion(UO22+)could be coordinated by ligands such as tetradentate schiff derivatives to form a distorted plane structure, inwhich the two oxygen atomsof uranyl ion occupy the two axial positions of the bipyram idal geometry in the uranyl-salophen complex.Moreover,the uranium atom(U)could be coordinated by other ligands at the fifth coordination site1,2resulting in a pentagonal bipyramidal geometryw ith seven coordination atoms.Therefore,the uranyl-salophen complexeshad been found ahost of applications in molecular recognition and enantioselective catalysis3,such as in enzymemodelling4,5and liquid crystals6. Castelli etal.7found thaturanyl-salophen complex can serveasa chiral catalysis to catalyze the conjugate addition of thiophenol w ith cyclohexenone.They also showed thatwhen enlarging the aromatic substituents in the urany l-salophen receptors,as shown in Fig.1 and Fig.2(receptors1,2,and 3),theassociation constants of the receptorswith theguestswillbe increased,and the catalytic effectw ill also be enhanced.In otherwords,the catalytic effectof the uranyl-salophen complexes has an order of receptor 3>receptor 2>receptor 1.

    November 10,2015;Revised:December 29,2015;Published on Web:December 30,2015.

    O641

    10.3866/PKU.WHXB201512302

    *Corresponding author.Email:niecm196132@163.com;Tel:+86-13974753172.

    The projectwas supported by theNationalNatural Science Foundation of China(11275090),Natural Science Foundation of Hunan Province,China (12JJ9006,2015JJ1012),and Scientific Research Fund of Hunan Provincial Education Department,China(12A 116).

    國家自然科學基金(11275090),湖南省自然科學基金(12JJ9006,2015JJ1012)和湖南省教育廳科學研究基金(12A116)資助項目?Editorialofficeof Acta Physico-Chim ica Sinica

    猜你喜歡
    鈾酰南華大學羰基
    南華大學召開學習丁德馨同志先進事跡座談會
    SiO2包覆羰基鐵粉及其涂層的耐腐蝕性能
    陶瓷學報(2021年5期)2021-11-22 06:35:34
    獲批57項!南華大學2021年度自然科學基金立項取得好成績
    一種鈾酰配合物的合成及其光催化降解性能研究
    喜訊!南華大學2021年省級一流本科課程認定再創(chuàng)佳績!
    pH-dependent Synthesis of Octa-nuclear Uranyl-oxalate Network Mediated by U-shaped Linkers
    電噴霧串聯(lián)質譜快速鑒別水溶液中鈾酰形態(tài)及在檸檬酸鈾酰形態(tài)研究的應用
    分析化學(2019年3期)2019-03-30 10:59:24
    Wang Chuanshan
    大東方(2018年8期)2018-09-10 03:43:57
    鈾酰-Salophen與環(huán)己烯酮的作用模式
    1-叔丁基氧羰基-2'-氧-螺-[氮雜環(huán)丁烷-3,3'-二氫吲哚]的合成
    應用化工(2014年1期)2014-08-16 13:34:08
    亚洲 欧美一区二区三区| 国产日韩欧美视频二区| 国产精品久久久av美女十八| 欧美日韩中文字幕国产精品一区二区三区 | 日韩欧美一区视频在线观看| 国产精品一区二区在线观看99| 久久天躁狠狠躁夜夜2o2o| 日韩一卡2卡3卡4卡2021年| 一级毛片女人18水好多| 国产亚洲av高清不卡| 亚洲国产毛片av蜜桃av| 一个人免费在线观看的高清视频| 免费在线观看黄色视频的| av一本久久久久| 亚洲专区字幕在线| 免费看a级黄色片| 老汉色av国产亚洲站长工具| 日本av免费视频播放| 欧美国产精品一级二级三级| 手机成人av网站| 亚洲精品在线观看二区| 色94色欧美一区二区| 国产黄频视频在线观看| 男人操女人黄网站| 最新在线观看一区二区三区| 熟女少妇亚洲综合色aaa.| 精品第一国产精品| 国产成人啪精品午夜网站| 伦理电影免费视频| 制服人妻中文乱码| 脱女人内裤的视频| 亚洲中文日韩欧美视频| 美国免费a级毛片| 色婷婷久久久亚洲欧美| 亚洲专区国产一区二区| 精品一区二区三区视频在线观看免费 | 91老司机精品| 日本黄色视频三级网站网址 | 男女下面插进去视频免费观看| 欧美日韩福利视频一区二区| 国产麻豆69| 视频区图区小说| 日本撒尿小便嘘嘘汇集6| 后天国语完整版免费观看| 国产黄色免费在线视频| 欧美精品一区二区免费开放| 日本wwww免费看| 国产亚洲欧美精品永久| 国产高清国产精品国产三级| 一级毛片女人18水好多| 一本久久精品| 97人妻天天添夜夜摸| 999精品在线视频| 涩涩av久久男人的天堂| 欧美变态另类bdsm刘玥| 宅男免费午夜| 在线观看免费视频网站a站| av在线播放免费不卡| 欧美变态另类bdsm刘玥| 十八禁网站网址无遮挡| 亚洲av电影在线进入| 最近最新中文字幕大全免费视频| 国产黄色免费在线视频| 一进一出抽搐动态| 777米奇影视久久| 国产aⅴ精品一区二区三区波| 久久青草综合色| 亚洲欧美一区二区三区久久| 麻豆成人av在线观看| 精品视频人人做人人爽| 91精品三级在线观看| av网站在线播放免费| 精品国产乱码久久久久久小说| 免费看十八禁软件| 一区二区三区精品91| 久久中文字幕一级| 如日韩欧美国产精品一区二区三区| 黄色丝袜av网址大全| 国产精品免费视频内射| 人人妻人人爽人人添夜夜欢视频| 后天国语完整版免费观看| 淫妇啪啪啪对白视频| 精品国产亚洲在线| 日韩熟女老妇一区二区性免费视频| 国产欧美日韩一区二区精品| 怎么达到女性高潮| 亚洲少妇的诱惑av| 满18在线观看网站| 精品第一国产精品| 成人国产一区最新在线观看| 香蕉丝袜av| e午夜精品久久久久久久| 久久精品国产综合久久久| 国产深夜福利视频在线观看| 亚洲七黄色美女视频| 国产精品亚洲av一区麻豆| 搡老熟女国产l中国老女人| 国产精品影院久久| 亚洲av日韩在线播放| 老司机午夜福利在线观看视频 | 国产野战对白在线观看| 91成年电影在线观看| 老司机午夜十八禁免费视频| 国产精品熟女久久久久浪| 久久国产精品男人的天堂亚洲| 日本a在线网址| 久久久久视频综合| 一边摸一边抽搐一进一出视频| 精品一区二区三卡| 汤姆久久久久久久影院中文字幕| 啦啦啦在线免费观看视频4| www.自偷自拍.com| 国产成人精品无人区| 大片电影免费在线观看免费| 精品国产亚洲在线| 99国产综合亚洲精品| 国产单亲对白刺激| 在线观看免费视频日本深夜| 亚洲,欧美精品.| 亚洲七黄色美女视频| 精品国产一区二区三区久久久樱花| 久久久久久人人人人人| 99re在线观看精品视频| 国产精品国产av在线观看| 日韩欧美三级三区| 亚洲av欧美aⅴ国产| 超色免费av| av福利片在线| 精品久久久久久电影网| 亚洲欧洲日产国产| 热re99久久国产66热| 国产视频一区二区在线看| 波多野结衣av一区二区av| 中文字幕人妻丝袜一区二区| 狠狠婷婷综合久久久久久88av| 久久性视频一级片| 国产亚洲欧美精品永久| 精品卡一卡二卡四卡免费| 国产精品免费视频内射| 亚洲美女黄片视频| 日本黄色日本黄色录像| 老鸭窝网址在线观看| 桃花免费在线播放| 亚洲va日本ⅴa欧美va伊人久久| 日韩精品免费视频一区二区三区| 中文欧美无线码| 黑人猛操日本美女一级片| 国产视频一区二区在线看| 99re6热这里在线精品视频| 最黄视频免费看| 久久精品国产综合久久久| 女人爽到高潮嗷嗷叫在线视频| 国产精品亚洲一级av第二区| 波多野结衣av一区二区av| 女同久久另类99精品国产91| 熟女少妇亚洲综合色aaa.| 久久午夜综合久久蜜桃| 丝袜美足系列| 少妇 在线观看| 日韩免费av在线播放| 人妻 亚洲 视频| 大陆偷拍与自拍| 免费人妻精品一区二区三区视频| 午夜激情久久久久久久| 亚洲成人手机| 午夜视频精品福利| 精品人妻在线不人妻| 18禁美女被吸乳视频| 国产极品粉嫩免费观看在线| 国产高清videossex| 免费日韩欧美在线观看| 久久精品国产a三级三级三级| 久久毛片免费看一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲天堂av无毛| 国产一区二区在线观看av| 91老司机精品| 在线观看免费视频日本深夜| 日韩 欧美 亚洲 中文字幕| 老司机影院毛片| 中文字幕人妻熟女乱码| 久久人妻av系列| 黄色成人免费大全| 久久精品熟女亚洲av麻豆精品| 中文字幕另类日韩欧美亚洲嫩草| 最黄视频免费看| 黑人欧美特级aaaaaa片| 欧美精品亚洲一区二区| 天天影视国产精品| 91av网站免费观看| 色婷婷av一区二区三区视频| 亚洲av片天天在线观看| 亚洲精品在线观看二区| 一级,二级,三级黄色视频| 国精品久久久久久国模美| 涩涩av久久男人的天堂| 亚洲熟女精品中文字幕| 中文字幕精品免费在线观看视频| 亚洲熟妇熟女久久| 色综合欧美亚洲国产小说| 国产日韩欧美视频二区| 免费观看av网站的网址| 久久青草综合色| 亚洲欧美色中文字幕在线| 18在线观看网站| 精品卡一卡二卡四卡免费| 亚洲精品久久成人aⅴ小说| 两性夫妻黄色片| 王馨瑶露胸无遮挡在线观看| 久久天堂一区二区三区四区| 亚洲免费av在线视频| 侵犯人妻中文字幕一二三四区| 日韩三级视频一区二区三区| 国产精品 欧美亚洲| 999精品在线视频| 99re在线观看精品视频| 久久精品国产综合久久久| 国产精品一区二区精品视频观看| 一二三四在线观看免费中文在| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品二区激情视频| 美女高潮喷水抽搐中文字幕| 18禁美女被吸乳视频| 十分钟在线观看高清视频www| 99国产精品99久久久久| 国产高清视频在线播放一区| 99精品欧美一区二区三区四区| 亚洲精华国产精华精| 国产男女内射视频| 岛国在线观看网站| 啦啦啦免费观看视频1| 精品国产乱码久久久久久男人| 久久久精品国产亚洲av高清涩受| 精品高清国产在线一区| 日韩欧美国产一区二区入口| 亚洲av电影在线进入| aaaaa片日本免费| 国产精品98久久久久久宅男小说| 中文字幕另类日韩欧美亚洲嫩草| 黄色毛片三级朝国网站| 美女午夜性视频免费| 别揉我奶头~嗯~啊~动态视频| 搡老熟女国产l中国老女人| 99国产极品粉嫩在线观看| 国产免费av片在线观看野外av| 大香蕉久久网| 免费人妻精品一区二区三区视频| 99久久国产精品久久久| 精品国产乱子伦一区二区三区| 国产欧美日韩一区二区三区在线| 天天躁狠狠躁夜夜躁狠狠躁| 91成年电影在线观看| 老司机午夜十八禁免费视频| 女人久久www免费人成看片| 久久亚洲真实| av电影中文网址| 中文字幕人妻丝袜一区二区| www.熟女人妻精品国产| 国产一区有黄有色的免费视频| tocl精华| av免费在线观看网站| 国产男女超爽视频在线观看| 久久人妻av系列| 国产在线观看jvid| 色婷婷av一区二区三区视频| 久久久久久人人人人人| 欧美日韩精品网址| 精品国产乱码久久久久久男人| 怎么达到女性高潮| 18禁国产床啪视频网站| √禁漫天堂资源中文www| 黑人巨大精品欧美一区二区蜜桃| 桃红色精品国产亚洲av| 9热在线视频观看99| 91成年电影在线观看| 国产日韩一区二区三区精品不卡| 国产真人三级小视频在线观看| 18禁黄网站禁片午夜丰满| 国产老妇伦熟女老妇高清| 日韩视频在线欧美| 国产亚洲精品久久久久5区| 亚洲伊人久久精品综合| 成人精品一区二区免费| 日韩制服丝袜自拍偷拍| 少妇裸体淫交视频免费看高清 | 女人久久www免费人成看片| 国产片内射在线| 男女午夜视频在线观看| 日韩有码中文字幕| 亚洲一区中文字幕在线| 嫩草影视91久久| 一区二区三区乱码不卡18| 日韩免费av在线播放| 视频区欧美日本亚洲| 亚洲国产中文字幕在线视频| 亚洲少妇的诱惑av| 午夜福利在线观看吧| 久久国产精品人妻蜜桃| 亚洲视频免费观看视频| 2018国产大陆天天弄谢| 人人妻,人人澡人人爽秒播| 天天操日日干夜夜撸| 国产亚洲欧美精品永久| 丝袜喷水一区| 一区在线观看完整版| 精品少妇内射三级| 日韩欧美三级三区| 最新美女视频免费是黄的| 国产在线观看jvid| 国产成人欧美在线观看 | 亚洲第一av免费看| 首页视频小说图片口味搜索| 国产日韩欧美亚洲二区| 热99re8久久精品国产| 一区二区三区激情视频| 高清毛片免费观看视频网站 | 日韩欧美免费精品| 久久国产亚洲av麻豆专区| 国产伦理片在线播放av一区| 黑人猛操日本美女一级片| 亚洲欧美色中文字幕在线| 国产精品秋霞免费鲁丝片| 婷婷成人精品国产| 亚洲熟女精品中文字幕| 国产精品久久久久久精品古装| 男女边摸边吃奶| 欧美精品啪啪一区二区三区| 亚洲av第一区精品v没综合| 久久国产亚洲av麻豆专区| 高清视频免费观看一区二区| 91大片在线观看| 日韩视频在线欧美| 大片电影免费在线观看免费| 精品国产一区二区三区四区第35| 可以免费在线观看a视频的电影网站| 丝瓜视频免费看黄片| 欧美人与性动交α欧美精品济南到| 国产精品亚洲一级av第二区| 又大又爽又粗| 麻豆成人av在线观看| 亚洲黑人精品在线| 国产精品熟女久久久久浪| 久久中文字幕人妻熟女| 一本综合久久免费| 肉色欧美久久久久久久蜜桃| 国产成+人综合+亚洲专区| 亚洲av电影在线进入| 一级毛片精品| 国产在线免费精品| 国产成人免费无遮挡视频| 免费在线观看完整版高清| 久久久久精品国产欧美久久久| 国产淫语在线视频| 法律面前人人平等表现在哪些方面| 国产又爽黄色视频| 久久久国产一区二区| 丁香欧美五月| 老司机福利观看| 亚洲美女黄片视频| 成人国语在线视频| 国产亚洲精品第一综合不卡| 99热网站在线观看| 日韩成人在线观看一区二区三区| 狂野欧美激情性xxxx| 亚洲美女黄片视频| 久久久久国产一级毛片高清牌| 女人高潮潮喷娇喘18禁视频| 麻豆国产av国片精品| 757午夜福利合集在线观看| 日韩欧美三级三区| 国产单亲对白刺激| 亚洲精品国产区一区二| 国产在线视频一区二区| 一夜夜www| 91精品国产国语对白视频| 色在线成人网| 日本a在线网址| 黄色怎么调成土黄色| 在线观看一区二区三区激情| 国产成人欧美在线观看 | 亚洲,欧美精品.| 久久影院123| 久久精品国产亚洲av香蕉五月 | 国产精品免费视频内射| a在线观看视频网站| 在线观看免费视频日本深夜| 欧美精品一区二区免费开放| 少妇粗大呻吟视频| av福利片在线| 亚洲精品在线观看二区| 亚洲精品乱久久久久久| 国产xxxxx性猛交| av又黄又爽大尺度在线免费看| 国产精品久久久av美女十八| 国产男女内射视频| 久久天堂一区二区三区四区| 青青草视频在线视频观看| 男女床上黄色一级片免费看| 亚洲精品av麻豆狂野| 日韩三级视频一区二区三区| 丝袜美足系列| 国产亚洲精品久久久久5区| 99国产精品一区二区三区| 男女免费视频国产| 亚洲色图av天堂| 欧美在线一区亚洲| 亚洲五月色婷婷综合| 男女边摸边吃奶| 欧美成人午夜精品| 国产欧美日韩一区二区精品| www.自偷自拍.com| 国产单亲对白刺激| 日韩欧美一区视频在线观看| 成人18禁高潮啪啪吃奶动态图| 久久av网站| 久久99热这里只频精品6学生| 99国产精品免费福利视频| 久久青草综合色| 五月开心婷婷网| 成人精品一区二区免费| 中文字幕另类日韩欧美亚洲嫩草| 一边摸一边抽搐一进一出视频| 母亲3免费完整高清在线观看| 在线观看66精品国产| 欧美日韩成人在线一区二区| 久久久久久久大尺度免费视频| 99久久国产精品久久久| 亚洲国产毛片av蜜桃av| 欧美国产精品一级二级三级| 国产精品免费一区二区三区在线 | 亚洲欧美一区二区三区久久| 老司机影院毛片| 国产在视频线精品| 啪啪无遮挡十八禁网站| 亚洲精品中文字幕在线视频| 午夜福利影视在线免费观看| 欧美黑人精品巨大| 国产成人av教育| 嫩草影视91久久| 两人在一起打扑克的视频| 波多野结衣av一区二区av| av网站在线播放免费| av视频免费观看在线观看| 欧美久久黑人一区二区| 女性生殖器流出的白浆| 国产精品久久久久成人av| 51午夜福利影视在线观看| 水蜜桃什么品种好| 制服诱惑二区| 午夜免费成人在线视频| 亚洲精品国产一区二区精华液| 欧美黑人精品巨大| 狂野欧美激情性xxxx| www.自偷自拍.com| 亚洲精品国产精品久久久不卡| 99国产综合亚洲精品| 两个人看的免费小视频| 国产成人系列免费观看| 亚洲第一欧美日韩一区二区三区 | 另类亚洲欧美激情| 午夜免费鲁丝| 大陆偷拍与自拍| a级毛片黄视频| 嫁个100分男人电影在线观看| 中文字幕制服av| 十分钟在线观看高清视频www| avwww免费| 久久午夜综合久久蜜桃| 亚洲av日韩精品久久久久久密| 午夜福利影视在线免费观看| 久久天躁狠狠躁夜夜2o2o| 999精品在线视频| 老司机午夜十八禁免费视频| 午夜福利乱码中文字幕| 久久青草综合色| 国产精品av久久久久免费| 欧美人与性动交α欧美软件| 亚洲第一青青草原| 99国产精品免费福利视频| aaaaa片日本免费| 亚洲精品国产区一区二| 视频在线观看一区二区三区| 国产在视频线精品| 亚洲精品美女久久av网站| 淫妇啪啪啪对白视频| videosex国产| 国产精品熟女久久久久浪| 最新的欧美精品一区二区| 老熟妇仑乱视频hdxx| 首页视频小说图片口味搜索| 国产不卡av网站在线观看| 国产1区2区3区精品| 亚洲av第一区精品v没综合| 女同久久另类99精品国产91| 国产成人av教育| 久久国产精品男人的天堂亚洲| 制服人妻中文乱码| 老司机影院毛片| 欧美日韩av久久| 中文欧美无线码| 十八禁高潮呻吟视频| 法律面前人人平等表现在哪些方面| 91精品三级在线观看| 一本综合久久免费| 汤姆久久久久久久影院中文字幕| 老熟女久久久| www.精华液| 在线天堂中文资源库| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美日韩另类电影网站| 国产成人av教育| 男女无遮挡免费网站观看| 色视频在线一区二区三区| 久久中文字幕一级| 亚洲成人免费电影在线观看| 日韩一卡2卡3卡4卡2021年| 欧美黑人精品巨大| 久久国产亚洲av麻豆专区| 亚洲av日韩在线播放| 一级黄色大片毛片| 久久精品成人免费网站| 亚洲欧美日韩另类电影网站| 桃红色精品国产亚洲av| 亚洲熟女毛片儿| 大香蕉久久成人网| 热re99久久精品国产66热6| 两性夫妻黄色片| 热re99久久精品国产66热6| av片东京热男人的天堂| 日韩欧美一区二区三区在线观看 | www日本在线高清视频| 久久九九热精品免费| 丁香六月天网| 国产一区二区 视频在线| 俄罗斯特黄特色一大片| 黄网站色视频无遮挡免费观看| 操美女的视频在线观看| a级片在线免费高清观看视频| 色播在线永久视频| 一级片免费观看大全| 亚洲全国av大片| 欧美日韩亚洲国产一区二区在线观看 | 亚洲第一av免费看| 日本av手机在线免费观看| 国产免费福利视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 大码成人一级视频| 99国产精品免费福利视频| 欧美性长视频在线观看| 波多野结衣一区麻豆| 国产精品麻豆人妻色哟哟久久| 国产一区二区 视频在线| 精品国产乱码久久久久久男人| 国产亚洲一区二区精品| 久久久久视频综合| 捣出白浆h1v1| 国产精品久久久久久精品电影小说| 欧美日韩福利视频一区二区| 一区二区日韩欧美中文字幕| 午夜日韩欧美国产| 久久精品成人免费网站| 国产亚洲精品第一综合不卡| 国产在线精品亚洲第一网站| 18禁美女被吸乳视频| 每晚都被弄得嗷嗷叫到高潮| 免费久久久久久久精品成人欧美视频| 久久久水蜜桃国产精品网| 老熟妇乱子伦视频在线观看| 热99re8久久精品国产| 热99久久久久精品小说推荐| 午夜福利影视在线免费观看| 亚洲色图 男人天堂 中文字幕| 欧美在线黄色| 久久国产亚洲av麻豆专区| 久久天躁狠狠躁夜夜2o2o| av天堂在线播放| 黑人欧美特级aaaaaa片| 国产在线免费精品| av电影中文网址| a级毛片在线看网站| 国产精品久久久久久精品古装| 亚洲国产av新网站| 国产xxxxx性猛交| 久久ye,这里只有精品| 国产伦理片在线播放av一区| 久久青草综合色| 99国产综合亚洲精品| 我要看黄色一级片免费的| 亚洲精华国产精华精| 欧美亚洲日本最大视频资源| 国产麻豆69| 久久精品熟女亚洲av麻豆精品| 亚洲精品国产色婷婷电影| 啦啦啦 在线观看视频| 黄色成人免费大全| 久久久久久亚洲精品国产蜜桃av| 高清视频免费观看一区二区| a级毛片黄视频| 亚洲国产av影院在线观看| 午夜福利,免费看| 成年人午夜在线观看视频| 一区二区av电影网| 亚洲男人天堂网一区| 国产精品国产高清国产av | 国产免费视频播放在线视频| a在线观看视频网站| 亚洲第一av免费看| 午夜福利视频精品| 亚洲人成电影观看| 国产又爽黄色视频| 色综合婷婷激情| 日本av免费视频播放| 欧美黑人精品巨大| 国产成+人综合+亚洲专区| 欧美日韩一级在线毛片|