• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于直接關(guān)系圖方法的丁酸甲酯燃燒反應(yīng)機(jī)理的框架簡(jiǎn)化

    2016-09-13 03:10:12王全德
    物理化學(xué)學(xué)報(bào) 2016年3期
    關(guān)鍵詞:全德物理化學(xué)丁酸

    王全德

    (中國(guó)礦業(yè)大學(xué)低碳能源研究院,江蘇 徐州221008)

    基于直接關(guān)系圖方法的丁酸甲酯燃燒反應(yīng)機(jī)理的框架簡(jiǎn)化

    王全德*

    (中國(guó)礦業(yè)大學(xué)低碳能源研究院,江蘇 徐州221008)

    由于直接關(guān)系圖 (DRG)方法的概念簡(jiǎn)單和計(jì)算量較小,使得DRG方法目前已經(jīng)成為詳細(xì)燃燒反應(yīng)機(jī)理框架簡(jiǎn)化的主流方法。DRG方法中評(píng)價(jià)物種之間依賴關(guān)系的相互作用系數(shù)和關(guān)系圖連接權(quán)重的計(jì)算方法控制著DRG方法的簡(jiǎn)化效果。采用四種不同形式的相互作用系數(shù)的定義方法,分別與標(biāo)準(zhǔn)的DRG搜索算法和基于誤差傳播的搜索算法 結(jié)合,構(gòu)建了丁酸甲酯的框架燃 燒反應(yīng)機(jī)理。通過(guò)系統(tǒng)的誤差分析比較了不同簡(jiǎn)化方法構(gòu)建的框架機(jī)理的模 擬可靠性。重點(diǎn)采用基于元素流量分析的反應(yīng)路徑分析方法研究了框架機(jī)理的化學(xué)動(dòng)力學(xué)。最后,通過(guò)交集的思想構(gòu)建了一個(gè)只包含96個(gè)物種的丁酸甲酯框架燃反應(yīng)機(jī)理,并且反應(yīng)路徑分析結(jié)果表明丙烯的燃燒化學(xué)力學(xué)在丁酸甲酯燃燒過(guò)程中占有重要地位。本文通過(guò)對(duì)不同DRG方法的系統(tǒng)比較研究表明了反應(yīng)路 徑分析在框架機(jī) 理可靠性驗(yàn)證中 的重要性,對(duì)進(jìn)一步發(fā)展更為有 效的框架簡(jiǎn)化方法提供重要依據(jù) 。

    燃燒反應(yīng)機(jī)理;直接關(guān)系圖方法;框架簡(jiǎn)化;丁酸甲酯

    1 Introduction

    In the past few years,the developmentof detailed combustion reactionmechanisms of practical fuels has grown by orders of magnitude,and the sizesof thesemechanismsincrease from 10-20species for hydrogen combustion tomore than thousands of species inmany recentdetailedmechanisms for practical fuels1-4. Ithasbeen confirmed thatdetailed reactionmechanismscanprovide moreaccurate predictionsof the combustion propertiesof fuels, including ignition delay times,laminar flame speed,and the formationof pollutionsoverwide rangesof temperature,pressureand compositions5-7.However,incorporating such detailedmechanisms into multidimensional combustion simulations remains a great challenge due to thehugedemandsof computational resourcesand the stiff problem induced by the different timescalesof speciesand reactions in the detailedmechanisms.Therefore,in order tomake numerical simulations of combustion computationally affordable and comprehensively reliable,the developmentof computational methods for rigorous reduction of detailedmechanismsisessential.

    The developmentof mechanism reductionmethods hasmade significant progress and a variety ofmethodologies have been developed8,9.Mechanism reduction methods are generally classified into two classes10:the first isskeletal reduction,which directly removes unimportant species and reactions from the detailedmechanism;theotherapproach is timescale reductionwhich is via the decomposition ofmotion in phase space into fastand slow modes.Elim ination of unimportant species and reactions from detailed mechanisms can reduce the computational cost significantly,since the computational costof simulations typically scales quadratically with the number of species,while only linearly with the number of reactions.Therefore,skeletal reduction is typically the first step inmechanism reduction.The detection of unimportant species can be effectively achieved via careful inspection of the Jacobianmatrix,and variousmethods including the computational singular perturbation(CSP)method10-12,level of importance(LOI)13,and connectivity method(CM)14,15have been developed.Another classof approach for specieselimination is based on graph theory,which w as initially introduced by Bendtsen et al.16.In 2005,Lu and Law17devised an automatic mechanism reduction procedure,namely,the directed relation graph(DRG)method based on connectivity graph structures.The DRGmethod can be carried outw ith a linear scaling algorithm; thus,the com putational cost for mechanism reduction scales linearly with the number of species18.Therefore,DRG is particularly suitable as the first step to reduce largemechanisms.Due to the simple concept and low computational cost,the DRG method has been widely used for skeletalmechanism reduction and many modifications and improvements have been made following the pioneeringwork of Lu and Law19-22.

    In DRGmethod,the coupling between species is represented by a directed graph,inwhich each vertex denotesa species in the detailedmechanism,and an edge exists from vertex A to vertex B only if the removalof species Bwould directly induce significant error to the production rate of speciesA.The interaction coefficient tomeasure thecoupling effectbetween speciesand thegraph searchmethod is the key factor controlling the definitions and performances of different DRG based methods.After the pioneering work of Lu and Law,Pepiot-Desjardins and Pitsch19introduced the concept of error propagation(EP)in DRG.In addition,the authors also proposed a different definition of the interaction coefficient to improve the performance of themethod. Recently,in order to handle the large isomergroups in biodiesel mechanisms,a revised DRG approachwith a different definition for the interaction coefficient is proposed by Luo etal.20.Further, in order to improve the prediction of reaction fluxes,the so-called path flux analysis(PFA)method was proposed in which both consumption and production pathwayswere used tomeasure the coupling effectbetween species for the skeletal reduction21.

    Due to the differencesamong the above DRG basedmethods, when skeletal reduction is performed to the same detailed mechanisms,the differentDRG basedmethodsmay obtain very different skeletalmechanisms23.Generally,the validation of the skeletalmechanism isusually through comparisonsof simulation resultsof combustion propertiesw ith detailedmechanism.On the otherhand,from the chemists′opinions,nomatterwhatmethods havebeen adopted for skeletalmechanism generation,the realistic chem ical kinetics and themajor reaction pathways should be maintained,whichmeans that the resulting skeletalmechanisms should preserve allof the importantspeciesand reactions to avoid some spuriouserror cancellation during numerical simulations24,25. Therefore,a more in-depth analysis of different DRG based skeletal reductionmethods is critical.

    Based on the above considerations,in thiswork,we presenta detailed comparison of contemporary DRG based methods.More specifically,four different definitions of the interaction coefficientsin conjunctionwithboth standard DRGand EPgraph search methods are em ployed to construct skeletal mechanism s for methyl butanoate(MB)combustion by the removalof potentially redundantspeciesw ithoutsignificant lossof the accuracy of the detailedmechanism.The detailed combustionmechanism ofMB chosen in thiswork is due to the recent large amounts of utilization of biodiesel,w hichmotivates intense research efforts to achieve a comprehensiveunderstanding of biodiesel combustion chem istry.The combustion chem istry of MB providesa prototype to understand realistic combustion of biodiesel fuels26,27.Particular attentionshave been focused on the chemicalkinetics of the resulting skeletalmechanisms from differentDRG basedmethods.

    2 Mechan is mreduction and analysis methods

    2.1DRG based m ethod s

    The identification and elimination of unimportantspecies from the detailedmechanisms is complicated due to the coupling of the species.The connectivity graph structures in DRGmethod provide an effective solution for this problem.Fig.1 illustrates thegeneral idea of DRG.In all the DRG basedmethods,the first step is to map the reaction system into a graph structure,in which eachvertex in the graph denotes a species as shown in Fig.1.If the removal of species B directly induces significant error to the production rate of speciesA,then an edge exists from vertex A to vertex B.Thus,how to define the interaction coefficient to evaluate the direct influenceof one specieson another comesout to be the first question in DRG methods.In the original DRG method,the interaction coefficientwasdefined as17:

    In order to handle the large isomer groups in biodieselmechanism reductions,Luo et al.20proposed a new definition for the interaction coefficient:

    Further,in order to im prove the prediction of reaction fluxes, amore complicated interaction coefficient in the so-called path flux analysis(PFA)methodwasproposed21:

    in which

    Fig.1 Scheme of the general idea of theDRGmethods

    After the definition of the interaction coefficients,a depth first search is performed starting atuser-selected targetspecies(e.g., fuel,oxidizer)to find the dependency pathways for all species relative to the targets17.This procedure is iterated until nomore importantspeciesare chosen and the reducedmechanism is thus generated by including only importantspeciesand reactions.The size of the reducedmechanism is controlled by a threshold value (ε)which decides the existence of the vertex.However,in the standard procedures of DRG,it is assumed that every species selected to be kept in themechanism is equally important,and neglects the connection length between the coupling species.For example,in Fig.1,ifwe selectspecies A as the starting important species,speciesC is recognized as the same importanceasspecies B,which competently neglects the longer connectionway to reach speciesA.In order to overcome thisdeficiency,Pepiot-Desjardins and Pitsch19introduced the EPconcept,in which the interaction coefficient is defined as the productof intermediate interaction coefficients along the connection ways.For example,the interaction coefficientsof rACand rAEin the EP procedure would be calculated asin w hichdenotes the direct interaction coefficient in Fig.1.Pepiot-Desjardins and Pitsch19also defined a new interaction coefficient as follow ing:

    It isobvious that the four definitionsof the interaction coefficients can be used in combinationwith both the standard DRG and the EP procedures,providing eight different DRG based skeletal reductionmethodswhich are investigated in the presentwork.

    2.2Elem en t flux ana lysis

    In the present work,chemical kinetic analysis for MB combustion hasbeen performed in order to check the species retained in the resulting skeletalmechanisms.Theelement flux analysis is used as the reaction path analysismethod and is briefly outlined. In element flux analysis,theelement flux for each element(such as C)from species k1to k2at instantaneous time t is calculated via25:

    Consequently,thenormalized weightof element flux from k1to k2to the totalout flux of speciesk1can beeasily derived as

    In the presentwork,both theabove DRG basedmethodsand the element flux analysis have been implemented as post-processing programs to dealw ith the results from Chemkin software28.The detailedmechanism for MB combustion isproposed by Dooley et al.29,which consists of 275species and 1549 elementary reactions.To achieve a skeletalmechanism suitable over a wide range of applications,the DRG based methods are applied to reaction state pointsdensely sampled from constantpressureautoignition simulationswithin the parameter rangeof pressure from 1.01×105to 3.04×106Pa and equivalence ratio from 0.5to 2.0. The initial temperature for constantpressureauto-ignition isset to be650-1700K.Ithasbeen previously confirmed that reaction states solely sampled from auto-ignition simulations can exhibit good performance in generating skeletalmechanisms30.

    Fig.2 Species retained in the resu lting skeletalmechanism sw ith respect to the threshold valuesby using different DRG basedm ethods

    3 Results and discussion

    3.1Resu lts o f skeletal reduction

    As previously stated,the size of the skeletalmechanism is controlled by a threshold valuewhich decides the existence of the vertex,and the resulting skeletalmechanisms can be traditionally validated via comparing simulation results of combustion propertieswith detailedmechanism.In order to check the performance of the skeletalmechanism for differentcombustion propertiesover a wide range of parameters,the validation procedures should cover the frequently-used combustion properties including ignition,extinction,and laminar flame speed.However,thegenerally used extinction simulations and laminar flame speed only represent high-temperature combustion properties,which cannot reflect the low-temperature combustion chem istry.Therefore, ignition delay time is selected as the only parameter for error control in mechanism reduction,and the error of the reduced mechanism is calculated via the following equation:

    whereτign,skelandτign,detrepresent ignition delay time due to the skeletal and detailed mechanisms,respectively.In thiswork,ignition delay time isdefined as the time pointwhen the temperature is increased by 400K com pared w ith the initial tem perature.

    Fig.2 shows the number of species retained in the resulting skeletalmechanisms versus the threshold valuesby using the four definitions of the interaction coefficients in conjunction without or w ith the EP procedure,while Fig.3 exhibits the resulting skeletalmechanism sw ith different number of species versus the maximum errorof the predicted ignition delay timeatequivalence ratio(φ)of 1.0and pressure of 2.02×106Pawithin the temperature ranges from 700to 1800K.For the four definitionsof the interaction coefficients in combination with the standard DRG procedure,it can be seen that as the threshold value increases,the numberof species retained in the resulting skeletalmechanisms by using theoriginalDRGmethod17decreases faster than theother three definitions.The results derived from the revised definition by Luo et al.20tend to be very stable as the threshold value increases.However,from Fig.3,it is obvious that the definition proposed in the PFAmethod shows thebest reduction results.The maximum relativeerror in the predicted ignition delay time isstill w ithin 10%even though the number of species retained in the skeletalmechanism has been reduced to be 104.For the four definitionsof the interaction coefficients in conjunction w ith the EPprocedure,thenumberof the species in the derived skeletal mechanisms decreasesmuch steeper as the threshold value increases.From the predicted error analysis of the ignition delay time as shown in Fig.3,it can be seen that the two definitions proposed in the PFA and original DRGEPmethods19exhibitbetter performance than the definitions in theoriginal and Luo′s revised DRGmethods.The critical reason for the different performances in the resulting skeletalmechanism s is due to the species selections by the different definitions,and the combustion chemical kinetics inwhich degree can be captured by the skeletalmechanisms directly controls the performance of the skeletalmechanisms.Therefore,in thenextsection,amore in-depth analysisby combining systematic error analysisand chem ical kinetic analysis has been performed to check the robustness of the resulting skeletalmechanisms via differentDRG basedmethods.

    3.2Robustness analysis o f the skeletalm echanism

    In order to check the reliability of the resulting skeletal mechanisms,robustnessanalysesof the skeletalmechanisms have been performed through systematic erroranalysis of the predicted ignition delay time under aw ide range of simulation conditions. Figs.4and 5demonstrate theerroranalysis resultsof the predicted ignition delay timesunder certain simulation conditionsby em-ploying the chosen resulting skeletalmechanism s derived from different reductionmethods.The retained species in the corresponding skeletalmechanism togetherw ith the threshold value at which the skeletalmechanism isadopted arealso explicitly shown in Figs.4and 5.It can be seen that the relative errorsof the predicted ignition delay timesunder the selected simulation conditions via all the resulting skeletalmechanisms arew ithin 15%, indicating thegood performancesof the skeletalmechanisms.It isalso noted that themaximum errorsusually occur at fuel-lean combustion conditions.Further,it should be noted that when skeletalmechanismswithmuch less speciesareused,the relative errorsof the predicted ignition delay times tend to increasemore than 20%at some simulation conditions.Thus,the selected skeletalmechanisms used in Figs.4and 5seem to be the best candidate skeletal mechanisms derived from corresponding reductionmethods.

    Fig.3 Skeletalm echan ism sw ith different num ber of species versus themaximum error of thepredicted ignition delay time

    Fig.4Relativeerrorsof predicted ignition delay timesusing resu lting skeletalmechanism s from the four DRG m ethodsw ithou t EPprocedure under certain sim u lation conditions

    3.3Reac tion path analysis

    Besides robustness analysis of the skeletalmechanism via different reductionmethodsbased on systematic error analysis, reaction path analysis by em ploying the detailedmechanism has been performed to understand the realistic combustion chem istry processes.Time-integrated element flux analysishasbeen adopted to perform reaction path analysis in simulationsof the constantvolume ignition processes.Fig.6shows themajor initial reaction paths during the oxidation of MB atdifferent temperatures.The percentages of the conversions(Figs.4-6)calculated from the detailedmechanism from top to bottom represent theanalysis at initial temperatures of 700,900,and 1200K w ith equivalence ratio of 1.0and pressureof 1.01×105Pa.The percentageof the conversions isdefined as the percentageof the flux of elementC from one species to anotherw ith respect to the total flux of C.From Fig.6,itcan be seen that the initial reaction path forMB is dominantby the H-abstraction reactions to the formation of corresponding fuelalkyl radicals,namely,MBMJ,MB2J,MB3Jand MB4J.The directpyrolysis reactionsofMB to the formation of BAOJwith CH3(methyl radical)and ME2Jw ith C2H5(ethyl radical)only play aminorpart.The following step is theβ-scission reactions of the fuel alkyl radicals to the formation of small molecules,which proceed very fast.There are a number of reaction channels through which MB2J can decompose,but the pyrolysis reaction ofMB2Jto the production of MP2D with CH3isdominant.ForMBMJ,the following step is almostcompletely controlled by theβ-scission reaction to the formation of formaldehyde(CH2O)and the NC3H7CO radical.MB3J and MB4J undergo similar reaction path to MBMJ,and theβ-scission reaction controls the following step.Itshould be noted thatat low temperatures,the primary fuel alkyl radicals also undergo the abstraction reaction of an O atom from HO2or RO2(e.g.,CH3O2) to the formation of“MBXO”,which represents the fouralkoxyradicals.Fig.7 exhibits this phenomenon via instantaneous element flux analysisat700and 1200K(the initial temperatureof the simulation is680K w ith equivalence ratio of 1.0and pressure of 1.01×105Pa.),which clearly demonstrates the different reaction paths of the four alkoxy radicals at low and high temperatures.The results of reaction path analysis are also in good agreementwith the results via flux analysis by Dooley et al29. Figs.8-9 show the reaction path analysis results forMP2D and C3H6(propene),which are important intermediates during combustion processesofMB.ForMP2D,there area largenumberof reaction channels to undergo pyrolysis,and the C2and C3species constitutes themajor products.The reaction paths for C3H6and other related smallmolecules including C2H4(ethylene)and C2H2(acetylene)are shown by Fig.9.The result is also in good agreementwith previousstudies25,29.

    Fig.5Relative er rors of predicted ignition delay tim es using resulting skeletalm echanism s from the four DRGmethodsw ith EP proceduresunder certain simu lation conditions

    Fig.6Time-integrated element flux analysisofMB during constant volume auto-ignition processes

    Fig.7 Initial reaction path for MB via instantaneouselement flux analysisat700K(up)and 1200K(down)

    Fig.8 Time-integrated element flux analysisofMP2D during constant volume au to-ignition processes

    Fig.9 Tim e-integrated elem en t flux analysis results of C3H6during constan tvolum eauto-ign ition processes

    Given the reaction pathanalysis results via detailedmechanism, in order to check the chem ical reality of the resulting skeletal mechanisms from different reductionmethods,the retained species in differentskeletalmechanismsw ith the predicted errorsof ignition delay time controlled at the same levelare compared in detail.Table 1 lists the species retained in the corresponding skeletalmechanisms derived from different reductionmethods. There are 96species retained in all the skeletalmechanisms,and the differentspeciesare explicitly given in Table1.From Table1 togetherwith the previous reaction path analysis,it can be seen that the speciesneeded to describe themajor initialoxidation path of MB including the primary fuel alkyl radicals and the alkoxyradicals are well-reserved in all the skeletalmechanisms.The differencesof the species among these skeletalmechanisms are mainly due to the C3species.From the reaction path analysis,it is obvious that the species to describe the oxidation of C3H6and other related smallmolecules are also covered by the96species existing in all skeletalmechanisms,w hich raises an interesting problem thatwhether the skeletalmechanism comprising of the 96species can be agood candidate skeletalmechanism forMB combustion.Fig.10shows the relative errorsof predicted ignition delay times by using the 96species skeletalmechanism under varioussimulation conditions.Clearly,the ignition delay time can be w ell predicted by the 96species skeletalmechanism and the maximum error is controlled w ithin 10%,indicating the good performance of the 96species skeletalmechanism.In order to further check the robustnessof the96speciesskeletalmechanism, laminar flame speed simulations are carried out by using the detailed and 96species skeletalmechanism,respectively.Fig.11 show s the lam inar flame speed asa function of the equivalence ratio atpressuresof 1.01×105Paw ith initial inlet temperature of 400K.It can be seen that the skeletalmechanism also predicts the laminar flame speed accurately compared w ith the detailed mechanism,indicating that the96speciesskeletalmechanism also exhibits good performance in flame simulations.To further demonstrate the performanceof the skeletalmechanism,species profiles in perfectly stirred reactor are also compared between detailed and reduced skeletalmechanism.Fig.12 shows the calculatedmole fraction of some important speciesas a function oftem perature using the detailed and skeletal mechanisms,respectively,with equivalence ratio of 1.0ata pressureof 1.01×105Pa,and residence time of 0.07 s.It can be seen that themole fractions of important species resulting from the skeletalmechanism are still rather close to those from the detailedmechanism, indicating the good performance of the 96species skeletal mechanism.Itshould benoted that the currentskeletalmechanism isnotdirectly reduced forapplications in practical computational fluid dynamics simulations,and itshould be further reduced via themethod of quasi-steady stateapproximation and so on in order to be used for engine designs.

    Table1 Retained species in the corresponding skeletalm echanism sw ith the predicted errors of ignition delay tim e controlled w ithin 15%

    Fig.10Relativeerrorsof predicted ignition delay timesusing the 96speciesskeletalmechanism under varioussimu lation conditions

    Fig.11 Lam inar flame speed versus equivalence ratio p redicted by the detailed and 96species skeletalm echanism

    Fig.12 Mole fraction ofmajor speciesasa function of tem perature via detailed(lines)and 96species skeletalmechanism(symbols)

    4Conclusions

    In the present work,w ithin the DRG framework,detailed comparisons of contemporary DRG basedmethods for skeletal reduction of detailed combustion mechanisms have been performed.Specifically,four contemporary different definitions of the interaction coefficients in conjunction w ith both standard DRG and EPgraph searchmethods are considered and employed to constructskeletalmechanisms forMB combustion by removing potentially redundant species w ithout significant loss of the accuracy of the detailedmechanism.Particularattentionshavebeen focused on the retained species in the resulting skeletalmechanisms from different DRG based methods.Major findings and conclusionsof thiswork are summarized as follows.

    (1)Although the errorsof predicted combustion properties by using skeletalmechanism s derived from different DRG based methods are controlled at the same level,the retained species in these skeletalmechanisms generated from different DRG based methods remains different due to the different selections of importantspecies.

    (2)A more in-depth analysis by combining systematic error analysis and chemical kinetic analysis has been performed to check the robustness of the resulting skeletalmechanisms via different DRG basedmethods.The PFAmethod and theoriginal DRGEPmethod proposed by Pepiot-Desjardinsand Pitsch exhibit better performance among the DRG basedmethods studied in this work.

    (3)All of the skeletalmechanisms generated from different reduction methods demonstrate good performance in both predicting combustion properties and reserving chem ical kinetics. How ever,none of the DRG basedmethods can directly create an optimalskeletalmechanism retaining all the important properties of the detailedmechanism butwith the leastspecies,implying that there isstilla possibility to further improve the DRG approach.

    (4)Reaction path analysis of reduced skeletalmechanisms is necessary beyond comparisonsof simulation resultsw ith detailed mechanism.It isworth noting thatonly the resultsof reaction path analysisbased on detailedmechanism are explicitly shown in this work because the importantspeciesdemonstrated via reaction path analysisareall retained in the reduced skeletalmechanisms and they account for nearly one hundred percentage of the conversions ofmajor species,which indicates that the resultsof reaction path analysis from skeletalmechanisms are nearly identical to the detailedmechanism.

    (5)A 96species skeletalmechanism for MB combustion is obtained via the idea of intersection of skeletalmechanisms from different reductionmethods and further validated through simulations of key combustion properties.Reaction path analysis highlights the importance of propene chemistry during MB oxidation.

    Acknow ledgment:We thank National Supercomputing Center in Shenzhen for providing the computational resources and Chemkin software(v.15131).

    References

    (1)Simmie,J.M.Prog.Energy Combust.Sci.2003,29,599.doi: 10.1016/S0360-1285(03)00060-1

    (2)Wang,Q.D.RSC Adv.2014,4,4564.doi:10.1039/c3ra45959d

    (3)Guo,J.J.;Hua,X.X.;Wang,F.;Tan,N.X.;Li,X.Y.Acta Phys.-Chim.Sin.2014,30,1027.[郭俊江,華曉筱,王繁,談寧馨,李象遠(yuǎn).物理化學(xué)學(xué)報(bào),2014,30,1027.]doi:10.3866/ PKU.WHXB201404031

    (4)Westbrook,C.K.;Pitz,W.J.;Herbinet,O.;Curran,H.J.; Silke,E.J.Combust.Flame2009,156,181.doi:10.1016/j. combustflame.2008.07.014

    (5)Battin-Leclerc,F.;Blurock,E.;Bounaceur,R.;Fournet,R.;Glaude,P.A.;Herbinet,O.;Sirjeana,B.;Wartha,V.Chem. Soc.Rev.2011,40,4762.doi:10.1039/C0CS00207K

    (6)Battin-Leclerc,F.Prog.Energy Combust.Sci.2008,34,440. doi:10.1016/j.pecs.2007.10.002

    (7)Xu,J.Q.;Guo,J.J.;Liu,A.K.;Wang,J.L.;Tan,N.X.;Li,X. Y.Acta Phys.-Chim.Sin.2015,31,643.[徐佳琪,郭俊江,劉愛(ài)科,王健禮,談寧馨,李象遠(yuǎn).物理化學(xué)學(xué)報(bào),2015,31, 643.]doi:10.3866/PKU.WHXB201503022

    (8)Lu,T.F.;Law,C.K.Prog.Energy Combust.Sci.2009,35, 192.doi:10.1016/j.pecs.2008.10.002

    (9)Fang,Y.M.;Wang,Q.D.;Wang,F.;Li,X.Y.Acta Phys.-Chim.Sin.2012,28,2536.[方亞梅,王全德,王繁,李象遠(yuǎn).物理化學(xué)學(xué)報(bào),2012,28,2536.]doi:10.3866/PKU. WHXB201208201

    (10)Valorani,M.;Creta,F.;Goussis,D.A.;Lee,J.C.;Najm,H.N. Combust.Flame 2006,146,29.doi:10.1016/j. combustflame.2006.03.011

    (11)Valorani,M.;Creta,F.;Donato,F.;Najm,H.N.;Goussis,D.A. Proc.Combust.Inst.2007,31,483.doi:10.1016/j. proci.2006.07.027

    (12)Prager,J.;Najm,H.N.;Valorani,M.;Goussis,D.A.Proc. Combust.Inst.2009,32,509.doi:10.1016/j.proci.2008.06.074

    (13)L?v?s,T.Combust.Flame 2009,156,1348.doi:10.1016/j. combustflame.2009.03.009

    (14)Nagy,T.;Turányi,T.Combust.Flame 2009,156,417.doi: 10.1016/j.combustflame.2008.11.001

    (15)Zsély,I.G.;Nagy,T.;Simmie,J.M.;Curran,H.J.Combust. Flame 2011,158,1469.doi:10.1016/j. combustflame.2010.12.011

    (16)Bendtsen,A.B.;Glarborg,P.;Dam-Johansen,K.Computers& Chemistry2001,25,161.doi:10.1016/S0097-8485(00)00077-2

    (17)Lu,T.F.;Law,C.K.Proc.Combust.Inst.2005,30,1333.doi: 10.1016/j.proci.2004.08.145

    (18)Lu,T.F.;Law,C.K.Combust.Flame 2006,144,24.doi: 10.1016/j.combustflame.2005.02.015

    (19)Pepiot-Desjardins,P.;Pitsch,H.Combust.Flame2008,154, 67.doi:10.1016/j.combustflame.2007.10.020

    (20)Luo,Z.Y.;Lu,T.F.;Maciaszek,M.J.;Som,S.;Longman,D. E.Energy Fuels2010,24,6283.doi:10.1021/ef1012227

    (21)Sun,W.;Chen,Z.;Gou,X.;Ju,Y.Combust.Flame 2010,157, 1298.doi:10.1016/j.combustflame.2010.03.006

    (22)Jiang,Y.;Qiu,R.Acta Phys.-Chim.Sin.2009,25,1019.[蔣勇,邱榕.物理化學(xué)學(xué)報(bào),2009,25,1019.]doi:10.3866/ PKU.WHXB20090426

    (23)Tosatto,L.;Bennett,B.A.V.;Smooke,M.D.Combust.Flame 2013,160,1572.doi:10.1016/j.combustflame.2013.03.024

    (24)Wang,Q.D.Energy Fuels2013,27,4021.doi:10.1021/ ef4007774

    (25)Wang,Q.D.;Fang,Y.M.;Wang,F.;Li,X.Y.Proc.Combust. Inst.2013,34,187.doi:10.1016/j.proci.2012.06.011

    (26)Fisher,E.M.;Pitz,W.J.;Curran,H.J.;Westbrook,C.K.Proc. Combust.Inst.2000,28,1579.doi:10.1016/S0082-0784(00) 80555-X

    (27)Coniglio,L.;Bennadji,H.;Glaude,P.A.;Herbinet,O.; Billaud,F.Prog.Energy Combust.Sci.2013,39,340.doi: 10.1016/j.pecs.2013.03.002

    (28)Chemkin,v.15131;Reaction Design:San Diego.

    (29)Dooley,S.;Curran,H.J.;Simmie,J.M.Combust.Flame 2008, 153,2.doi:10.1016/j.combustflame.2008.01.005

    (30)Wang,Q.D.;Fang,Y.M.;Wang,F.;Li,X.Y.Combust.Flame 2012,159,91.doi:10.1016/j.combustflame.2011.05.019

    Skeletal Mechanism Generation for Methyl Butanoate Combustionvia Directed Relation Graph Based Methods

    WANG Quan-De*
    (Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province, P. R. China)

    Directed relation graph (DRG) based skeletal reduction methods have become the mainstreamapproach for skeletal mechanism generation because of their simple concept and low computational cost. Withinthe DRG framework, the definitions of the interaction coefficients and the connection weights in different DRGmethods control the resulting skeletal mechanisms. In this work, based on DRG methods, four contemporarydefinitions of the interaction coefficients in conjunction with both standard DRG and error propagation (EP) graphsearch methods are used to derive skeletal mechanisms for methyl butanoate (MB) combustion. Detailedcomparisons of contemporary DRG based methods are performed by systematic error analysis. To furtherevaluate the performance of the different DRG-based methods, reaction paths are investigated via element fluxanalysis to check the chemical kinetics of the resulting skeletal mechanisms. Furthermore, a 96-species skeletalmechanism for MB combustion is proposed. Reaction path analysis highlights the importance of propenechemistry during MB oxidation. This work reveals the applicability of reaction path analysis in skeletal reductionusing different DRG-based methods, and also provides critical information for further development of skeletalreduction methods.

    Combustionmechanism; Directed relation graphmethod; Skeletal reduction; Methyl butanoate

    October 15, 2015; Revised: December 18, 2015; Published onWeb: December 21, 2015.

    O643

    10.3866/PKU.WHXB201512211

    **Corresponding author. Email: wqd198686@126.com.

    The project was supported by the Fundamental Research Funds for the Central Universities of China (2013QNA08) and National Natural ScienceFoundation of China (21403296).

    中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(2013QNA08)和國(guó)家自然科學(xué)基金(21403296)資助項(xiàng)目

    猜你喜歡
    全德物理化學(xué)丁酸
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    丁酸梭菌的篩選、鑒定及生物學(xué)功能分析
    復(fù)合丁酸梭菌制劑在水產(chǎn)養(yǎng)殖中的應(yīng)用
    HIV-1感染者腸道產(chǎn)丁酸菌F.prausnitzii和R.intestinalis變化特點(diǎn)
    傳染病信息(2021年6期)2021-02-12 01:52:14
    關(guān)于痔瘡防治的科普知識(shí)
    百歲翁的健腦方
    百歲翁的健腦方
    特別健康(2018年8期)2018-09-07 00:35:50
    Chemical Concepts from Density Functional Theory
    丁酸乙酯對(duì)卷煙煙氣的影響
    煙草科技(2015年8期)2015-12-20 08:27:06
    免费av观看视频| 国产一区二区亚洲精品在线观看| 欧美乱妇无乱码| 一卡2卡三卡四卡精品乱码亚洲| 精品国内亚洲2022精品成人| 不卡一级毛片| 老汉色av国产亚洲站长工具| 国产真实乱freesex| 国产色爽女视频免费观看| 婷婷亚洲欧美| 国产欧美日韩一区二区精品| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产精品合色在线| 国产一区二区在线观看日韩 | 色吧在线观看| 午夜亚洲福利在线播放| 真人一进一出gif抽搐免费| 尤物成人国产欧美一区二区三区| 中文字幕av在线有码专区| 色哟哟哟哟哟哟| 99热只有精品国产| 真人一进一出gif抽搐免费| 国产色爽女视频免费观看| 国产老妇女一区| 在线观看一区二区三区| 日本 欧美在线| 色综合欧美亚洲国产小说| 亚洲午夜理论影院| 午夜福利18| 精品久久久久久久毛片微露脸| 毛片女人毛片| 窝窝影院91人妻| av在线蜜桃| 色吧在线观看| 午夜精品久久久久久毛片777| 亚洲在线观看片| 国产亚洲精品久久久久久毛片| 日本 av在线| 99国产精品一区二区蜜桃av| 日韩欧美在线二视频| 99久久九九国产精品国产免费| 五月伊人婷婷丁香| 色精品久久人妻99蜜桃| 欧美大码av| 在线观看66精品国产| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av熟女| 色综合欧美亚洲国产小说| 欧美日韩瑟瑟在线播放| 黄色女人牲交| 嫁个100分男人电影在线观看| 中文字幕人妻熟人妻熟丝袜美 | 在线观看日韩欧美| 在线播放无遮挡| 午夜福利在线在线| 精品免费久久久久久久清纯| 日本在线视频免费播放| 日韩中文字幕欧美一区二区| 五月玫瑰六月丁香| 热99re8久久精品国产| 精品久久久久久久人妻蜜臀av| 欧美一区二区精品小视频在线| 国产av不卡久久| 精品一区二区三区视频在线 | 欧美一区二区亚洲| 亚洲av不卡在线观看| 伊人久久精品亚洲午夜| 日韩欧美一区二区三区在线观看| 久久久色成人| 亚洲成av人片在线播放无| 国产精品影院久久| 国内毛片毛片毛片毛片毛片| 成人亚洲精品av一区二区| 亚洲国产精品合色在线| 日韩欧美三级三区| 在线观看日韩欧美| 欧美高清成人免费视频www| 国产三级中文精品| 日韩欧美免费精品| 久久伊人香网站| av福利片在线观看| 高清日韩中文字幕在线| 久久午夜亚洲精品久久| 午夜视频国产福利| 2021天堂中文幕一二区在线观| 叶爱在线成人免费视频播放| 蜜桃久久精品国产亚洲av| 白带黄色成豆腐渣| 亚洲18禁久久av| 精品欧美国产一区二区三| 国产色婷婷99| 亚洲乱码一区二区免费版| 我要搜黄色片| svipshipincom国产片| 日本成人三级电影网站| 老汉色av国产亚洲站长工具| 夜夜夜夜夜久久久久| 国产伦在线观看视频一区| 18禁黄网站禁片免费观看直播| 欧美成人性av电影在线观看| 久久国产精品人妻蜜桃| 97碰自拍视频| 一个人观看的视频www高清免费观看| 国产精品 欧美亚洲| 九九在线视频观看精品| 国产精品三级大全| 日本黄色片子视频| 精品不卡国产一区二区三区| 十八禁网站免费在线| 成人av在线播放网站| 日韩欧美在线乱码| 最新中文字幕久久久久| 俺也久久电影网| 99热精品在线国产| 国产午夜精品久久久久久一区二区三区 | 日本一二三区视频观看| 午夜日韩欧美国产| 3wmmmm亚洲av在线观看| 精品欧美国产一区二区三| 波多野结衣巨乳人妻| 日本与韩国留学比较| 91在线精品国自产拍蜜月 | 亚洲熟妇熟女久久| 又爽又黄无遮挡网站| 国产乱人伦免费视频| 宅男免费午夜| xxxwww97欧美| 手机成人av网站| 色吧在线观看| 久久久久性生活片| 变态另类成人亚洲欧美熟女| 国产精品日韩av在线免费观看| 亚洲一区高清亚洲精品| 在线天堂最新版资源| 国产欧美日韩精品亚洲av| 51国产日韩欧美| 一个人看视频在线观看www免费 | 搡老熟女国产l中国老女人| 搡老岳熟女国产| 亚洲五月天丁香| 国内精品久久久久精免费| 亚洲精品亚洲一区二区| 18禁美女被吸乳视频| www.熟女人妻精品国产| 99久久久亚洲精品蜜臀av| 亚洲av成人av| 日本黄色片子视频| 国产极品精品免费视频能看的| 成年女人永久免费观看视频| 国产精品久久电影中文字幕| 91久久精品电影网| 免费观看人在逋| 亚洲久久久久久中文字幕| 九九在线视频观看精品| 久久久久久久午夜电影| 欧美国产日韩亚洲一区| 99国产极品粉嫩在线观看| 日日干狠狠操夜夜爽| 国产高清videossex| 91久久精品电影网| 国产精品 国内视频| 国产成人a区在线观看| 99国产极品粉嫩在线观看| 69av精品久久久久久| 男女那种视频在线观看| 亚洲国产精品999在线| 欧美xxxx黑人xx丫x性爽| 啦啦啦韩国在线观看视频| 精品久久久久久,| 麻豆久久精品国产亚洲av| 成人特级av手机在线观看| 又爽又黄无遮挡网站| 久久香蕉精品热| 午夜福利免费观看在线| 日本在线视频免费播放| av中文乱码字幕在线| 久久亚洲真实| 看免费av毛片| 啦啦啦免费观看视频1| 国产亚洲av嫩草精品影院| 日日摸夜夜添夜夜添小说| 麻豆久久精品国产亚洲av| 舔av片在线| 亚洲av不卡在线观看| 精品一区二区三区人妻视频| 18禁美女被吸乳视频| 欧美极品一区二区三区四区| 91九色精品人成在线观看| 黄色日韩在线| 高潮久久久久久久久久久不卡| 老司机在亚洲福利影院| 日韩欧美精品v在线| 露出奶头的视频| 18美女黄网站色大片免费观看| 亚洲人成网站在线播| 精品福利观看| 亚洲美女黄片视频| 国产伦人伦偷精品视频| 国产亚洲欧美98| 国产精品乱码一区二三区的特点| 久久人人精品亚洲av| 久久精品影院6| 亚洲五月婷婷丁香| 最新美女视频免费是黄的| 女同久久另类99精品国产91| 男女做爰动态图高潮gif福利片| 亚洲欧美日韩卡通动漫| 亚洲人与动物交配视频| 欧美一级a爱片免费观看看| 亚洲 欧美 日韩 在线 免费| 欧美在线黄色| av视频在线观看入口| 欧美成人免费av一区二区三区| 757午夜福利合集在线观看| 中文字幕人成人乱码亚洲影| 男女之事视频高清在线观看| 很黄的视频免费| 可以在线观看毛片的网站| 在线天堂最新版资源| 男女做爰动态图高潮gif福利片| 免费看十八禁软件| 国产精品久久电影中文字幕| 久久国产精品影院| 老汉色av国产亚洲站长工具| 久久久久精品国产欧美久久久| 亚洲av成人不卡在线观看播放网| 欧美成人一区二区免费高清观看| 国产探花极品一区二区| 一个人免费在线观看的高清视频| 夜夜躁狠狠躁天天躁| 男女午夜视频在线观看| 成人av在线播放网站| 国语自产精品视频在线第100页| 国产精品三级大全| 国产色爽女视频免费观看| 91av网一区二区| 欧美色视频一区免费| 欧美精品啪啪一区二区三区| a级毛片a级免费在线| 亚洲天堂国产精品一区在线| 国产真人三级小视频在线观看| 99精品久久久久人妻精品| 757午夜福利合集在线观看| 床上黄色一级片| 久久精品国产99精品国产亚洲性色| 国产一区二区三区视频了| 69人妻影院| 可以在线观看毛片的网站| 99久久精品热视频| 一卡2卡三卡四卡精品乱码亚洲| 欧美+亚洲+日韩+国产| 久久久久九九精品影院| 亚洲av五月六月丁香网| 精品免费久久久久久久清纯| 在线播放无遮挡| 亚洲国产欧洲综合997久久,| 一本精品99久久精品77| 亚洲片人在线观看| 99久久综合精品五月天人人| 亚洲成人精品中文字幕电影| 欧美色欧美亚洲另类二区| 日本黄大片高清| 天天躁日日操中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 麻豆国产97在线/欧美| 精品久久久久久久久久久久久| 亚洲国产精品sss在线观看| 国产欧美日韩一区二区精品| 成年女人看的毛片在线观看| 在线观看午夜福利视频| 欧美日韩精品网址| 一个人免费在线观看电影| 日日夜夜操网爽| 国产私拍福利视频在线观看| 婷婷丁香在线五月| 最好的美女福利视频网| 51国产日韩欧美| 国产视频一区二区在线看| 欧美一区二区亚洲| 欧美日本视频| 一个人免费在线观看的高清视频| 真人做人爱边吃奶动态| 长腿黑丝高跟| 制服人妻中文乱码| 久久这里只有精品中国| 久久久久性生活片| 欧美+亚洲+日韩+国产| 亚洲成av人片免费观看| av天堂中文字幕网| 老鸭窝网址在线观看| 在线观看舔阴道视频| 国产精品免费一区二区三区在线| 亚洲久久久久久中文字幕| 大型黄色视频在线免费观看| 一边摸一边抽搐一进一小说| 婷婷丁香在线五月| 99精品在免费线老司机午夜| 12—13女人毛片做爰片一| 亚洲狠狠婷婷综合久久图片| 精品99又大又爽又粗少妇毛片 | 天美传媒精品一区二区| 欧美日韩亚洲国产一区二区在线观看| 国产精品1区2区在线观看.| 国产高清视频在线观看网站| e午夜精品久久久久久久| 国内精品美女久久久久久| 一边摸一边抽搐一进一小说| 欧美日韩综合久久久久久 | 热99在线观看视频| 午夜福利成人在线免费观看| 国产一区在线观看成人免费| 成年女人毛片免费观看观看9| 国产精品影院久久| 欧美zozozo另类| www.999成人在线观看| 天天躁日日操中文字幕| 国产aⅴ精品一区二区三区波| 亚洲精品一卡2卡三卡4卡5卡| 99精品欧美一区二区三区四区| 无人区码免费观看不卡| 好看av亚洲va欧美ⅴa在| 日本 av在线| 日韩亚洲欧美综合| 无限看片的www在线观看| 精品国产美女av久久久久小说| 国产欧美日韩一区二区精品| 欧美+日韩+精品| 午夜免费观看网址| 一级黄片播放器| 亚洲色图av天堂| 亚洲熟妇中文字幕五十中出| 日本黄色片子视频| 亚洲人成网站在线播放欧美日韩| 成年女人永久免费观看视频| 欧美日韩亚洲国产一区二区在线观看| 身体一侧抽搐| 欧美成人性av电影在线观看| 国产探花在线观看一区二区| 国产真人三级小视频在线观看| 1024手机看黄色片| 久久精品亚洲精品国产色婷小说| 91av网一区二区| 91av网一区二区| 美女cb高潮喷水在线观看| 亚洲欧美日韩东京热| 小说图片视频综合网站| 国产高清视频在线播放一区| 丝袜美腿在线中文| 亚洲在线观看片| 欧美在线黄色| 真人一进一出gif抽搐免费| 激情在线观看视频在线高清| 免费av毛片视频| 午夜激情欧美在线| 白带黄色成豆腐渣| 久久久久久久午夜电影| 色综合婷婷激情| 久久久国产精品麻豆| 丁香六月欧美| 舔av片在线| 中文资源天堂在线| 欧美日韩乱码在线| 天天一区二区日本电影三级| 亚洲av熟女| 国产精品一区二区三区四区免费观看 | 亚洲人成伊人成综合网2020| 国产野战对白在线观看| 国产成人欧美在线观看| 一a级毛片在线观看| 校园春色视频在线观看| 他把我摸到了高潮在线观看| 99热这里只有是精品50| 亚洲熟妇中文字幕五十中出| 国产激情偷乱视频一区二区| 乱人视频在线观看| 免费看光身美女| 狠狠狠狠99中文字幕| 在线十欧美十亚洲十日本专区| 国产高清有码在线观看视频| 欧美日韩精品网址| 久久久久九九精品影院| 两个人的视频大全免费| 99热6这里只有精品| 精品人妻1区二区| 成年免费大片在线观看| 国产成人系列免费观看| 欧美极品一区二区三区四区| 他把我摸到了高潮在线观看| 天堂网av新在线| 亚洲18禁久久av| 啦啦啦韩国在线观看视频| 国产一区二区在线av高清观看| 啦啦啦观看免费观看视频高清| 床上黄色一级片| 亚洲av中文字字幕乱码综合| 最近视频中文字幕2019在线8| 久久久久免费精品人妻一区二区| 一夜夜www| 激情在线观看视频在线高清| 久久久久九九精品影院| 99久久久亚洲精品蜜臀av| 亚洲成人久久爱视频| 久久欧美精品欧美久久欧美| www国产在线视频色| 欧美bdsm另类| 国内久久婷婷六月综合欲色啪| 久久久成人免费电影| 亚洲第一电影网av| 亚洲av美国av| 成人精品一区二区免费| 一个人免费在线观看电影| 欧美激情久久久久久爽电影| a在线观看视频网站| 亚洲 欧美 日韩 在线 免费| 女警被强在线播放| 亚洲美女黄片视频| 欧美中文综合在线视频| 免费电影在线观看免费观看| 亚洲在线自拍视频| 国产三级黄色录像| 国产熟女xx| 日本免费a在线| 老熟妇乱子伦视频在线观看| 欧美xxxx黑人xx丫x性爽| 熟女电影av网| 午夜精品久久久久久毛片777| 此物有八面人人有两片| 老司机午夜福利在线观看视频| 一a级毛片在线观看| 99久久综合精品五月天人人| 亚洲激情在线av| 精品99又大又爽又粗少妇毛片 | 91av网一区二区| 内地一区二区视频在线| 在线免费观看的www视频| 午夜精品一区二区三区免费看| 久久精品综合一区二区三区| 国产免费男女视频| 免费看十八禁软件| 日韩免费av在线播放| 国产亚洲欧美98| 一a级毛片在线观看| 亚洲天堂国产精品一区在线| 国产一区二区在线av高清观看| 韩国av一区二区三区四区| 69人妻影院| 麻豆成人av在线观看| 欧美色视频一区免费| 国产精品久久久久久亚洲av鲁大| 一卡2卡三卡四卡精品乱码亚洲| 亚洲熟妇中文字幕五十中出| 最近最新中文字幕大全电影3| 亚洲内射少妇av| 欧美日韩国产亚洲二区| 欧美日韩精品网址| 天天躁日日操中文字幕| 国产免费一级a男人的天堂| 非洲黑人性xxxx精品又粗又长| 成人三级黄色视频| 国产综合懂色| 露出奶头的视频| 少妇熟女aⅴ在线视频| 午夜老司机福利剧场| 一进一出抽搐gif免费好疼| 国内精品久久久久久久电影| 午夜a级毛片| xxx96com| 淫秽高清视频在线观看| 成年版毛片免费区| 1024手机看黄色片| 亚洲欧美日韩无卡精品| 国产久久久一区二区三区| 国产私拍福利视频在线观看| 一区二区三区国产精品乱码| 天美传媒精品一区二区| 国产精品久久久久久久电影 | 嫩草影视91久久| 欧美黄色淫秽网站| 亚洲国产精品999在线| 美女高潮的动态| 人人妻人人澡欧美一区二区| 国产一区二区激情短视频| 美女 人体艺术 gogo| 国产免费一级a男人的天堂| 在线观看午夜福利视频| 韩国av一区二区三区四区| 国产精品一及| av黄色大香蕉| 99久久精品热视频| 午夜福利成人在线免费观看| 国产真实伦视频高清在线观看 | 午夜福利高清视频| 久久九九热精品免费| 在线天堂最新版资源| 国产成人影院久久av| 亚洲专区国产一区二区| 最近最新免费中文字幕在线| 国产精品国产高清国产av| 成人午夜高清在线视频| 欧美激情久久久久久爽电影| 免费人成视频x8x8入口观看| 国产精品国产高清国产av| 女人十人毛片免费观看3o分钟| 日本熟妇午夜| 久久6这里有精品| 少妇高潮的动态图| 免费人成视频x8x8入口观看| 国产黄片美女视频| 99riav亚洲国产免费| 亚洲av成人不卡在线观看播放网| 欧美中文综合在线视频| 国产成人福利小说| 99久久九九国产精品国产免费| 毛片女人毛片| 久久国产乱子伦精品免费另类| 制服人妻中文乱码| 叶爱在线成人免费视频播放| 夜夜看夜夜爽夜夜摸| 两人在一起打扑克的视频| 香蕉av资源在线| 亚洲午夜理论影院| 日韩高清综合在线| 2021天堂中文幕一二区在线观| 国产在视频线在精品| 午夜福利免费观看在线| 久久国产精品影院| 99热6这里只有精品| 国产蜜桃级精品一区二区三区| 精品久久久久久久人妻蜜臀av| 成人午夜高清在线视频| ponron亚洲| 亚洲人成网站在线播| 麻豆国产97在线/欧美| 手机成人av网站| 在线观看免费午夜福利视频| 一区福利在线观看| 看黄色毛片网站| 天天躁日日操中文字幕| 波多野结衣高清无吗| 成人18禁在线播放| 国产精品爽爽va在线观看网站| 变态另类成人亚洲欧美熟女| 午夜激情欧美在线| 国产精品久久久人人做人人爽| 亚洲av中文字字幕乱码综合| 免费搜索国产男女视频| 97碰自拍视频| 中文字幕人妻熟人妻熟丝袜美 | 国产乱人伦免费视频| 国产成人aa在线观看| 久久婷婷人人爽人人干人人爱| 天堂av国产一区二区熟女人妻| 免费人成视频x8x8入口观看| 成人国产一区最新在线观看| svipshipincom国产片| 亚洲av电影在线进入| 午夜两性在线视频| 成人鲁丝片一二三区免费| 国产精品一区二区三区四区久久| 国产精品国产高清国产av| 亚洲成人久久爱视频| 国产免费av片在线观看野外av| 欧美日本视频| 亚洲成av人片免费观看| 日韩 欧美 亚洲 中文字幕| av专区在线播放| 久久天躁狠狠躁夜夜2o2o| 人人妻人人澡欧美一区二区| 淫妇啪啪啪对白视频| 久久久久久久精品吃奶| 日韩精品青青久久久久久| 国产aⅴ精品一区二区三区波| 欧美日韩乱码在线| 老熟妇仑乱视频hdxx| 国产精品久久电影中文字幕| a级毛片a级免费在线| 国产精品久久久久久久电影 | 亚洲精品色激情综合| 国产精品乱码一区二三区的特点| 操出白浆在线播放| 亚洲激情在线av| 久久精品国产亚洲av涩爱 | 午夜免费男女啪啪视频观看 | 久久国产乱子伦精品免费另类| 人妻丰满熟妇av一区二区三区| 色播亚洲综合网| 午夜免费成人在线视频| 国产精品一区二区免费欧美| 69人妻影院| 亚洲 国产 在线| 九色国产91popny在线| 岛国在线免费视频观看| 日韩精品青青久久久久久| 国产高清三级在线| 99国产精品一区二区蜜桃av| 久久欧美精品欧美久久欧美| 国产在线精品亚洲第一网站| 日韩av在线大香蕉| 亚洲精品亚洲一区二区| 日本一本二区三区精品| 国产精品久久久久久人妻精品电影| 欧美+亚洲+日韩+国产| 国产高清三级在线| 日韩av在线大香蕉| 国产av在哪里看| 国产探花在线观看一区二区| 中国美女看黄片| 搡老岳熟女国产| 久久久久久久久中文| 成年人黄色毛片网站| 国产精品av视频在线免费观看| 一本综合久久免费| 熟女人妻精品中文字幕| 国产欧美日韩一区二区三| 亚洲最大成人中文|