• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    pH和溫度誘導(dǎo)雙親水嵌段共聚物聚甲基丙烯酸-b-聚N-(2-甲基丙烯酰氧乙基)吡咯烷酮水溶液的膠束化

    2016-09-09 09:35:48張季平程碩楨李學(xué)豐董金鳳
    物理化學(xué)學(xué)報(bào) 2016年8期
    關(guān)鍵詞:吡咯烷酮甲基丙烯酸雙親

    張季平 程碩楨 李學(xué)豐 董金鳳

    (武漢大學(xué)化學(xué)與分子科學(xué)學(xué)院,武漢430072)

    ?

    pH和溫度誘導(dǎo)雙親水嵌段共聚物聚甲基丙烯酸-b-聚N-(2-甲基丙烯酰氧乙基)吡咯烷酮水溶液的膠束化

    張季平程碩楨李學(xué)豐董金鳳*

    (武漢大學(xué)化學(xué)與分子科學(xué)學(xué)院,武漢430072)

    基于可逆加成裂解鏈轉(zhuǎn)移自由基(RAFT)聚合法開發(fā)了一系列新型雙親水嵌段共聚物——聚甲基丙烯酸-b-聚N-(2-甲基丙烯酰氧乙基)吡咯烷酮(PMAA-b-PNMP),并利用凝膠滲透色譜法(GPC)和1H NMR對(duì)其結(jié)構(gòu)進(jìn)行了表征。光散射和冷凍電鏡的結(jié)果表明,此類雙親水嵌段共聚物的水溶液具有pH和溫度誘導(dǎo)膠束化的現(xiàn)象,而且PNMP的聚合度對(duì)膠束化的pH和溫度影響都非常大。一般而言,PNMP的聚合度越大,膠束化的pH值越小,膠束化的溫度則越高。pD相關(guān)的1H NMR結(jié)果表明,PNMP與PMAA片段和水分子之間氫鍵的削弱以及PNMP與PMAA鏈之間相互作用的增強(qiáng)是pH誘導(dǎo)PMAA-b-PNMP膠束形成的主要原因,而PNMP片段與水分子之間氫鍵的削弱則是溫度誘導(dǎo)PMAA-b-PNMP膠束形成的主要原因。此外,我們發(fā)現(xiàn)在PMAA-b-PNMP體系中制備的納米金顆粒的大小可通過(guò)溶液pH進(jìn)行可控調(diào)節(jié)??傮w而言,pH值越高,金納米顆粒的粒徑越小。

    PMAA-b-PNMP;膠束化;pH;溫度;金納米顆粒

    www.whxb.pku.edu.cn

    1 Introduction

    Amphiphilic block copolymers show rich phase behaviors in solutions and can form spherical micelles,cylindrical micelles, vesicles,and even liquid crystalline as surfactants1,2,and thereby showing attractive applications in various fields,such as biological process,mesoporous materials,and catalysts fabrication,emulsification,and drug-controlled release3-5.Due to the diversity of block copolymer molecules,the interesting self-assembly behaviors of novel dual hydrophilic block copolymers are also reported recently6,7.Those block copolymers are a category of water soluble macromolecules in general,however,and show both amphiphilic and hydrophilic properties to favor self-assembly through changing the environmental conditions such as solution pH or temperature8-10.In other words,the self-assembly behaviors of dual hydrophilic block polymers are stimuli-responsive. Polymeric monomers such as acrylic acid(AA),methacrylic acid (MAA),and poly(ethylene glycol)(PEG)are most used in constructing those copolymers because the hydrophilicity of AA and MAA can be adjusted by pH whereas that of PEG relates to temperature highly,and thereby altering the hydrophilic-hydrophobic balance of polymers.

    Pyrrolidone chemicals including N-alkyl pyrrolidone and polyvinylpyrrolidone(PVP)are well-known for their low vapor pressure,low toxicity and biocompatibility,which have important application in many fields11.For example,PVP are critical in controlling the shape of novel metal nanomaterials12,13.However, only several types of pyrrolidone containing polymers are available commercially,mainly PVP with different polymerization degrees,the construct of pyrrolidone containing polymers is of great importance especially in extending their application fields. Studies on poly(N-(2-methacryloylxyethyl)pyrrolidone)(PNMP) showed that PNMP not only reserved the functions of PVP but also showed thermo-responsive property14,15.We have reported a series of diblock copolymers poly(laurylmethacrylate)-b-poly[N-(2-methacryloylxyethyl)pyrrolidone](PLMA64-b-PNMPm,m= 251,393,484,512)16,which can form self-organized micelles in tetrahydrofuran(THF)and can be used to fabricate gold nanoparticles with well-defined size.Recently,the assembly behaviors of similar block copolymers,poly(stearylmethacrylate)-poly(N-2-(methacryloyloxyethyl)pyrrolidone)17,in dodecane was reported,which were used to stabilize Pickering emulsions. However,those two categories of amphiphlic copolymer are water insoluble that limited their further applications strongly.Fabricating pyrrolidone containing dual hydrophilic block polymers might be a suitable way to solve the problem,and is also the major motivation of this work.

    In this work,four well-defined diblock copolymers PMAA-b-PNMP,poly(methacrylic acid)-b-poly[N-(2-methacryloylxyethyl) pyrrolidone],were synthesized by reversible addition-fragmentation chain transfer(RAFT)polymerization method and were characterized by1H NMR and gel permeation chromatography (GPC).Since PMAA-b-PNMP is composed of temperature-responsive PNMP and pH-responsive PMAA,and thereby showing pH-and temperature-responses in the self-assembling behaviors, which were investigated by employing static light scattering (SLS),dynamic light scattering(DLS),NMR,and cryo-TEM.Due to the pH and thermal responses of PMAA and PNMP segments, respectively,the self-assembly behaviors of PMAA-b-PNMP are responded to both pH and temperature stimuli.Specifically,they show pH and temperature-induced micellization in aqueous solution.According to structural similarity to PVP and the application in nanomaterial fabrication,PMAA-b-PNMP is also used to control the size of gold nanoparticles(Au NPs)with stimuliresponsive factors.This work not only provides new insights into the stimuli-responsive assembly behavior of pyrrolidone containing dual hydrophilic block polymers,but also shows a solid evidence in nano-material fabrications of them.

    2 Materials and methods

    2.1Materials

    2-Cyanoprop-2-yl dithiobenzoate(CPDB)was synthesized according to the reported scheme16.2,2′-Azobisisobutyronitrile (AIBN,99%,Shanghai HATECH Co.Ltd.)was recrystallized from ethanol.Methacryloyl chloride(98%,Shanghai HATECH Co.Ltd.),N-hydroxyethyl pyrrolidone(98%,TCI),and methacrylate acid(MAA,98%,Shanghai HATECH Co.Ltd.)were distilled under reduced pressure.Dimethylformamide(DMF,99%, Shanghai HATECH Co.Ltd.)was distilled under reduced pressure,mixed with 0.05 mol·L-1NaNO3(99%,Shanghai HATECH Co.Ltd.)and then filtered on 0.2 μm polytetrafluoroethylene filters prior to use in GPC.N-(2-Methacryloyloxyethyl)pyrrolidone(NMP)was synthesized by the method described elsewhere16.All other solvents and reagents were purchased from commercial sources and were used as received.

    2.2Synthesis of PMAA-b-PNMP diblock copolymers

    Diblock copolymer PMAA-b-PNMP was synthesized by RAFT polymerization method as shown in Scheme 1.Firstly,the welldefined MAA homopolymer(PMAA macro-CTA)was prepared: MAA(15.0 g,174 mmol),CPDB(0.4 g,1.81 mmol),AIBN (0.059 g,0.36 mmol),and DMF(40 mL)were charged in 100 ml schlenk tube capped with rubber septa.Subsequently,the homogenous solution was degassed with N2for 30 min and heated at 60°C for 10 h under stirring.The final mixture was diluted by methanol,and then precipitated in the mixture of diethyl ether/ethyl acetate(V/V=1/1)twice,and dried in a vacuum oven at 30°C to give a pink powder.Yield:14.2 g(92.2%),number average molecular weight(Mn)=8700 g·mol-1,weight average molecular weight(Mw)=8961 g·mol-1,Mw/Mn=1.03.

    Scheme 1 Synthetic route of PMAA-b-PNMPby RAFT polymerization method

    The resulting PMAA macro-CTA was used to synthesize PMAA-b-PNMP by the typical procedure as following:PMAA macro-CTA(1.25 g,0.143 mmol),NMP(3.75 g,17 mmol),AIBN (0.015 g,0.09 mmol),and DMF(15 mL)were charged in 25 ml schlenk tube capped with rubber septa.Subsequently,the solution was degassed with N2for 30 min,and heated at 60°C for 10 h under stirring.The final reaction mixture was diluted by DMF,and then precipitated into the mixture of diethyl ether/ethyl acetate(V/ V=1/1)at least twice,and dried in a vacuum oven at 30°C to give a pink powder.Yield:2.8 g(56.2%),Mn=38900 g·mol-1,Mw/Mn= 1.08.

    2.3Polymer characterization

    The1H NMR spectra were recorded on a Varian Mercury 300 MHz spectrometer in d6-DMSO.The GPC measurements were performed at 35°C using DMF(containing 0.05 mol·L-1NaNO3) as eluent with a flow rate of 1.0 mL·min-1.The column set is consisted of two MZ-SD plus 5 μm columns(50 nm and Linear); Wyatt Optilab DSP Interferometric refractometer and Wyatt DAWN EOS multi-angle laser light scattering detectors with a helium-neon laser light source(λ=685 nm),K5-flow cell,and a broad range of scattering angles from 45°-160°were employed. The molecular weight and polydispersity data were determined using the Wyatt ASTRA software package.The refractive index increment(dn/dc)of polymer solution was measured using an Optilab DSP refractometer at a wavelength of 685 nm,where n is the refractive index and c is the polymer concentration(g·mL-1). 2.4Sample preparation

    The PMAA-b-PNMP copolymers(0.1 g)were dissolved in 100 mL water(pH=10)at room temperature under vigorous stirring. Samples with different pH were adjusted by the addition of the HCl or NaOH aqueous.Those with the required pD for NMR measurements were prepared in D2O and titrated with DCl or NaOD,in which 3-(trimethylsilyl)propionic acid-d4sodium salt (TMSP)was used as the internal standard.The pH or pD of solutions was measured using the Rex model PHSJ-5 digital pH meter(Leici,China)with a temperature sensor using 201 D combination pH electrode,and the pD values were recalculated as pD=pHmeasurement+0.418.

    2.5Static and dynamic light scattering measurements

    The static light scattering(SLS)and dynamic light scattering (DLS)of samples were performed on Zetasizer instrument ZEN3600(Malvern,UK)with a 173°back scattering angle and He-Ne laser(λ=633 nm).To obtain the apparent hydrodynamic diameter(Dh),the intensity autocorrelation functions were analyzed using CONTIN.

    2.6Preparation of PMAA101-b-PNMP539coated gold

    nanoparticles

    The aqueous solution of HAuCl4·4H2O(2.5 mg·mL-1,0.2 mL) was added into 4.5 mL aqueous solution containing PMAA101-b-PNMP539copolymer(1 mg·mL-1)at room temperature and stirred for 20 min.Then,0.1 mL of freshly prepared aqueous solution of NaBH4(10 mg·mL-1)as a reducing agent was rapidly added into the mixture with vigorous stirring for 30 min,and the mixture was left undisturbed for 12 h at room temperature.

    2.7UV-Vis measurements

    UV-Vis spectra were carried out on a UV-Vis Tu-1901 spectrophotometer(Pgeneral,China)using ultrapure water as a blank at 25°C.

    2.8TEM measurements

    Samples for cryogen transmission electron microscopy(cryo-TEM)observation of PMAA-b-PNMP aggregates were prepared as follows:one drop of the sample dispersion was deposited on a carbon-coated copper grid.After blotting the excess dispersion away to form a thin liquid film,the grid was immediately plunged into liquid ethane.The specimens were maintained at approximately-173°C and imaged in a transmission electron microscopy(JEOL 1400)at an accelerating voltage of 200 kV under low dose conditions.

    Samples for TEM observation of PMAA-b-PNMP stabilized gold nanoparticles were prepared by placing one drop of the gold dispersion on a carbon-coated copper grid,and then dried at room temperature.The morphologies were observed on a JEM-2100 operated at an acceleration voltage of 200 kV.

    3 Results and discussion

    3.1Synthesis and characteristics of PMAA-b-PNMP diblock copolymers

    PMAA-b-PNMP is synthesized according to the methodologies as described in the experimental section(Scheme 1).Four diblock copolymers with the constant polymerization degree of PMAA and different polymerization degree of PNMP,namely PMAA101-b-PNMP153,PMAA101-b-PNMP240,PMAA101-b-PNMP420, and PMAA101-b-PNMP539,are synthesized.The details of PMAA-b-PNMP are summarized in Table 1.

    The GPC trace of each diblock copolymer shows an unimodalcharacteristics(Fig.1a),indicating the narrow Mwdistribution (polydispersity<1.3).Simultaneously,the significant shift toward the higher molecular weight confirms the chain extension of the PMAA with PNMP successfully19.The molecular structure of the PMAA-b-PNMP was further confirmed by the1H NMR spectrum as shown in Fig.1b.1H NMR(δ,d6-DMSO):0.9-1.9(CH3CCH2in backbone of both MAAand NMP units),2.1(NCH2CH2CH2CO in pyrrolidone ring),2.48(NCH2CH2CH2CO in pyrrolidone ring), 3.51-3.56(CH2NCH2in NMP unit),4.05(COOCH2in NMP unit).Thus,the GPC and1H NMR results confirm that diblock copolymers PMAA-b-PNMP are synthesized by the RAFT polymerization method successfully.

    Table 1 Molecular information of PMAA-b-PNMP

    3.2Stimuli-responsive assembly behaviors of PMAA-b-PNMP

    It is noticed that the dual hydrophilic diblock copolymers PMAA-b-PNMP are responded to both pH and temperature as shown in Fig.2.Initially,the sample is clear and transparent at pH=5.3 and 25°C,whereas it transforms into a turbid one upon decreasing pH(pH=4.8)or heating(T=60°C)and then returns to its original state through increasing solution pH or cooling, indicating the pH-and temperature-induced reversible micellization.

    3.2.1pH-induced micellization

    Generally speaking,all samples are optical transparent at about pH>5 whereas the detailed pH value relates to the polymerization degree of PNMP strongly,and they would transform into turbid ones when the solution pH is decreased.Fig.3a shows the pH-dependent light scattering intensities of 1 mg·mL-1PMAA-b-PNMP aqueous solutions.It′s clear that the light scattering intensity is increased dramatically when the solution pH is lower than a critical pH value for each PMAA-b-PNMP,indicating the formation of pH-induced aggregates.It is noticed that the pH value,where the light scattering intensity begins to increase,is decreasedfrom5.28to5.05fromPMAA101-b-PNMP153toPMAA101-b-PNMP539.In other words,the larger the polymerization degree of PNMP,the lower the transition pH.Fig.3b shows the typical pH-dependent size distribution of PMAA101-b-PNMP539that the aggregate size is increased when the solution pH is decreased.That's to say,the lower the pH,the larger the aggregate.

    Fig.1 (a)GPC traces of macro-CTAagent PMAA101and diblock copolymers PMAA-b-PNMP; (b)1H NMR spectrum of PMAA101-b-PNMP539in d6-DMSO

    Fig.2 pH-and temperature-induced reversible micellization in 1 mg·mL-1PMAA101-b-PNMP420aqueous solution

    Fig.3 (a)pH-dependent scattering intensities of 1 mg·mL-1PMAA-b-PNMPaqueous solutions at 25°C and (b)pH-dependent size distribution of 1 mg·mL-1PMAA101-b-PNMP539at 25°C

    In order to confirm the pH-induced micelles formation in PMAA-b-PNMPaqueous solutions,cryo-TEM is employed.Fig.4a and 4b show the cryo-TEM images of 1 mg·mL-1PMAA101-b-PNMP539at pH=2.1 and pH=3.9,respectively.Clearly,spherical micelles are formed in both conditions.It should be mentioned that micelles with a diameter larger than 200 nm are dominant at pH=2.1,whereas those are mainly about 100 nm at pH=3.9.The results are consistent with those obtained from DLS(Fig.3b)well.1H NMR technique is powerful in understanding the interaction and microenvironment variation of micelle formation process in the molecular level20,21.Fig.5a shows the1H NMR spectra of PMAA101-b-PNMP539at six typical pD values.On the whole,all the proton signals of PMAA101-b-PNMP539show high resolution in1H NMR spectra regardless of the solution pD,and the effect of pD on1H NMR can be observed clearly.For one thing,all the NMR signal peaks are compressed upon decreasing pD by comparing with that at pD=8.4.In the amphiphilic molecule systems,the compressed and broadened NMR signal peaks are often attributed to the formation of larger aggregates22.Herein,the compressed NMR signal peaks confirm the pH-induced micellization.Another, all the NMR signal peaks shift upfield slightly upon decreasing pD.Since the chemical shifts(δ)of molecular protons often highly relate to their location microenvironment.To make the shift more distinguishable,the shifts of two typical protons of Hgand Hcthat locate in the pyrrolidone ring and the main chain(Fig.5b),respectively,are studied.Fig.5b shows the pD-dependent chemical shifts of Hgand Hc.It is clear that the chemical shifts of Hgand Hcshow similar dependence on pD.The chemical shifts keep nearly constant when pD is above about 6.5,further decreasing pD results in the chemical shifts shifting upfield significantly until pD 5.1 and then keep constant again when pD is lower than 5.1.

    Fig.4 Cryo-TEM images of PMAA101-b-PNMP539at pH=2.1(a)and pH=3.9(b)at 25°C

    Fig.5 pD-dependent1H NMR spectra of PMAA101-b-PNMP539at 25°C(a)and pD-dependent chemical shifts of Hgand Hc(b)

    During the pH-induced micelle formation process,the effect of pH on the chemical shifts of PMAA101-b-PNMP539protons might come from the following reasons.It is well-known that PMAAis pH sensitive with an apparent pKavalue of about 5.3523therefore, it mainly appears as nonionic type polymethacrylic acid at the acidic condition instead of the ionic type sodium salt at the neutral condition.Since apparent precipitate could be observed in the mixture of PMAA and PNMP homopolymers whereas they are both water soluble individually at the same condition,indicatingthe presence of inter-and intra-chain interactions between PMAA and PNMP segments.In other words,the binding mixtures of PMAA and PNMP segments should be formed.Accordingly,the hydrogen bond interaction between water and PMAA or PNMP should be weakened,which causes the chemical shifts shifting toward upfield24.Simultaneously,the binding mixture formation of PMAAand PNMP segments could increase the hydrophobicity of PMAA-b-PNMP diblock copolymers,and thereby endowing them micellization ability.Moreover,the binding mixture is the hydrophobic part that locates in the micellar core,resulting in the chemical shifts of PMAA-b-PNMP shifting toward upfield22,25. Therefore,the pD-dependent chemical shifts of Hgand Hcshown in Fig.5b should be attributed to the mentioned factors,however, support the pH-induced micellization well.In addition,the increase in the polymerization degree of PNMP could strength the hydrophilicity of PMAA-b-PNMP,and thereby resulting in the micellization pH shifting toward lower pH value.

    3.2.2Temperature-induced micellization

    It is also noticed that the aqueous solutions of PMAA-b-PNMP could transform from clear and transparent into turbid upon heating,indicating larger aggregates formation.The temperaturedependent scattering intensity of PMAA101-b-PNMP153at different pH values(the insect image in Fig.6a)shows that the scattering intensity would increase significantly above a critical temperature at a given pH,i.e.,5.4,5.5,and 5.6,suggesting the temperatureinduced micellization.The temperature where scattering intensity beginstoincreaseisthemicellizationtemperature.Fig.6ashowsthe pH-dependentmicellizationtemperatureof1mg·mL-1PMAA101-b-PNMP153,PMAA101-b-PNMP240andPMAA101-b-PNMP420aqueous solution.The higher the solution pH,the higher the micellization temperature.It is also noticed that the micellization temperature of PMAA-b-PNMP is increased with the increase of the polymerization degree of PNMP for a given pH.Generally,the larger the polymerization degree of PNMP,the higher the micellization temperature.For example,those of PMAA101-b-PNMP153,PMAA101-b-PNMP240and PMAA101-b-PNMP420are 56,59,and 64°C at pH 5.4,respectively.The results suggest that the high polymerization degree of PNMP blocks micelles formation.

    Fig.6 (a)pH dependent micellization temperature of PMAA-b-PNMP(The insert figure represents the temperature dependent intensity of PMAA101-b-PNMP153at different pH values);(b)temperature-dependent size distribution of PMAA101-b-PNMP420;(c)size distribution of PMAA-b-PNMPat pH 5.4 and 70°C;(d)cryo-TEM image of PMAA101-b-PNMP420at pH 5.3 and 60°C

    The temperature-dependent size distribution of PMAA101-b-PNMP420at pH=5.3(Fig.6b)shows that it exhibits two distinct peaks at 50°C but only one peak above the micellization temperature,i.e.,56°C for PMAA101-b-PNMP420at pH 5.4.Upon further increasing temperature from 56 to 70°C,the micellar size is increased from 66 to 179 nm,respectively,indicating that high temperature favors micelle formation with larger size.Fig.6c shows the size distribution of 1 mg·mL-1PMAA101-b-PNMP153,PMAA101-b-PNMP240and PMAA101-b-PNMP420at pH 5.4 and 70°C,respectively.It's clear that self-organized micelles with diameter about 100 nm are formed in them.In addition,micellar size is increased slightly upon increasing the polymerization degree of PNMP from 153 to 420,i.e.,those are 83,119,and 179 nm for PMAA101-b-PNMP153,PMAA101-b-PNMP240,and PMAA101-b-PNMP420,respectively.The results suggest that PMAA-b-PNMP with a higher polymerization degree of PNMP favors larger micelle formation.It should be mentioned that no stable micelle phase can be observed in 1 mg·mL-1PMAA101-b-PNMP539from pH 5.1 to pH 5.6,however,precipitation appears rapidly upon heating instead due to the formation of micelles with very large sizes or the aggregates of micelles.To prove self-organized assemblies formation,cryo-TEM is employed as shown in Fig.6d, and spherical micelles with a diameter about tens of nanometers can be observed in 1 mg·mL-1PMAA101-b-PNMP420at pH=5.3 and 60°C,confirming temperature-induced micelles formation.

    Fig.7 Proposed mechanism of pH-and temperature-induced micellization of PMAA-b-PNMP

    It is well-known that PNMP is thermally sensitive and presents distinct cloud point,which relates to the molecular weight strongly17.Generally,the larger the molecular weight,the lower the cloud point.The cloud point suggests that the hydrogen bonds between PNMP and water is weakened upon heating.In other words,the hydrophilic PNMP segment shows hydrophobicity atthe high temperature.Thus,PMAA-b-PNMPbecomes amphiphilic molecular with its PNMPand PMAAsegments as the hydrophobic and hydrophilic parts,respectively,and thereby resulting in the temperature-induced micellization.

    Fig.8 (a)UV-Vis spectra of PMAA101-b-PNMP539stabilizedAu NPs at different pH values;TEM images of PMAA101-b-PNMP539stabilizedAu NPs and the corresponding size distribution histograms of more than 200 particles at(b)pH=6 and(c)pH=3

    3.2.3Mechanisms of pH-and temperature-induced micellization

    Based on the experimental results and the analysis mentioned above,it is clear that micelles with the binding mixture of PMAA and PNMP as the hydrophobic tail and the unbinding part of PNMP as the hydrophilic headgroup are formed upon decreasing solution pH.However,those with PNMP as the hydrophobic tail and PMAAas the hydrophilic headgroup are formed upon heating instead.Therefore,the pH-and temperature-induced micellization of diblock copolymers PMAA-b-PNMP might be represented as shown in Fig.7.

    3.3PMAA-b-PNMP stabilized glod nanoparticles

    Since pyrrolidone-based polymer such as PVP is critical in fabricating metal nanostructures with special shapes because of the strong interactions between the O atom in the pyrrolidone ring and metal nanocrystals.13The diblock copolymer PMAA-b-PNMP might shield some new findings in this field due to its stimuliresponses.Herein,we focus on the effect of solution pH on gold nanostructures.Fig.8 shows the representative photographs of gold nanoparticles(Au NPs)and the corresponding absorbance spectra of Au NPs in aqueous solution.Macroscopically,the color of the solution is changed from brown to purple gradually when the solution pH is varied from 6 to 3.In the UV-Vis absorption spectra,the characteristic surface plasmon resonance(SPR)bands ofAu NPs appear concomitantly in the range of 500-600 nm.For one thing,the characteristic absorbance peak of Au NPs shifts from about 510 to 540 nm.Another,the absorbance peak intensity near 520 nm is increased gradually upon decreasing pH from 6 to 3.The results suggest that Au NPs are successfully synthesized in the mentioned pH region.Both the red shift and intensity increase of the characteristic absorbance peak of Au NPs indicate that largerAu NPs are synthesized at the lower solution pH.

    In order to clarify the size and shape of the resultant Au NPs, TEM is employed to directly observe the colloidal particles as shown in Fig.8(b,c).It is clear that spherical Au NPs are formed in both conditions.The size distribution histograms show that the average diameter of Au NPs synthesized at pH 3 is about 6 nm, which is far larger than that prepared at pH 6(3.3 nm).The TEM results are consistent with those of UV-Vis spectra.The nucleation and growth processes are the two key factors,relating to the type and concentration of precursors,reaction time,capping agent,and so on,in controlling gold nanoparticle size26-28.Herein,the relative concentration of precursors should play an important role because PMAA101-b-PNMP539mainly presents as monomers and micelles at pH 6 and pH 3,respectively.Due to the interactions between pyrrolidone ring and AuCl4-ions,the relative concentration of AuCl4-ions binding on PMAA101-b-PNMP539micelles at pH 3,or the relative concentration of precursors,should be much higher than that on monomers at pH 6,which favors the growth of Au NPs strongly,resulting in the larger sizes.The results suggest that pH is one tool to control the size of Au NPs using diblock copolymer PMAA-b-PNMP as stabilizers.

    4 Conclusions

    In summary,we have synthesized a new series of structurally dual hydrophilic diblock copolymers PMAA-b-PNMP,by RAFT polymerization method.Compared with the previously studies on pyrrolidone containing polymers14-17,PMAA-b-PNMP homologues are responded to both pH and temperature.In specifically, they show pH-and temperature-induced micellization in aqueous solution.For one thing,the binding mixture of PMAAand PNMP endows the hydrophobicity of PMAA-b-PNMP and the micellization ability as well because of inter-and intra-chain interactions between PMAA and PNMP segments,which can be controlled by pH conventionally.Another,the dehydration of PNMP due to the weakness in the hydrogen bond interactions between PNMP and water upon heating endows the hydrophobicity of PMAA-b-PNMP,resulting in the temperature-induced micelles formation.We also provide a solid evidence in controlling the size of Au NPs through pH adjusting in the presence of PMAA-b-PNMP.According to the pH-and temperature-induced micelles formation,especially the distinguished micellar core composition at low pH and high temperature of diblock copolymers PMAA-b-PNMP in aqueous solution,they might have some potential applications in those of industrial technologies such as stimuli-responsive emulsification,controlled drug delivery,and nano-material development.

    References

    (1)Yin,L.;Lodge,T.P.;Hillmyer,M.A.Macromolecules 2012,45, 9460.doi:10.1021/ma302069s

    (2)López-Barrón,C.R.;Li,D.;Wagner,N.J.;Caplan,J.F. Macromolecules 2014,47,7484.doi:10.1021/ma501238w

    (3)Chang,X.;Dong,R.;Ren,B.;Cheng,Z.;Peng,J.;Tong,Z. Langmuir 2014,30,8707.doi:10.1021/la501652r

    (4)Wan,Y.;Shi,Y.;Zhao,D.Chem.Mater.2008,20,932. doi:10.1021/cm7024125

    (5)Groison,E.;Brusseau,S.;D′Agosto,F(xiàn).;Magnet,S.;Inoubli,R.;Couvreur,L.;Charleux,B.ACS Macro Lett.2012,1,47. doi:10.1021/mz200035b

    (6)Xuan,J.;Han,D.;Xia,H.;Zhao,Y.Langmuir 2014,30,410. doi:10.1021/la404493n

    (7)Zhang,Y.;Yin,Q.;Lu,H.;Xia,H.;Lin,Y.;Cheng,J.ACS Macro Lett.2013,2,809.doi:10.1021/mz4003672

    (8)Agut,W.;Br?let,A.;Taton,D.;Lecommandoux,C.Langmuir 2007,23,11526.doi:10.1021/la701482w

    (9)Qiao,Z.;Ji,R.;Huang,X.;Du,F.;Zhang,R.;Liang,D.;Li,Z. Biomacromolecules 2013,14,1555.doi:10.1021/bm400180n

    (10)Guinaudeau,A.;Coutelier,O.;Sandeau,A.;Mazières,S.;Thi, H.D.N.;Drogo,V.L.;Wilson,D.J.;Destarac,M. Macromolecules 2014,47,41.doi:10.1021/ma4017899

    (11)Jouyban,A.;Fakhree,M.A.;Shayanfar,A.J.Pharm.Pharm. Sci.2010,13,524.doi:10.18433/J3P306

    (12)Tsunoyama,H.;Ichikuni,N.;Sakurai,H.;Tsukuda,T.J.Am. Chem.Soc.2009,131,7086.doi:10.1021/ja810045y

    (13)Xian,J.;Hua,Q.;Jiang,Z.;Ma,Y.;Huang,W.Langmuir 2012, 28,6736.doi:10.1021/la300786w

    (14)Deng,J.;Shi,Y.;Jiang,W.;Peng,Y.;Lu,L.;Cai,Y. Macromolecules 2008,41,3007.doi:10.1021/ma800145s

    (15)Sun,J.;Peng,Y.;Chen,Y.;Liu,Y.;Deng,J.;Lu,L.;Cai,Y. Macromolecules 2010,43,4041.doi:10.1021/ma100133q

    (16)Zhang,J.;Zou,M.;Dong,J.;Li,X.Colloid Polym.Sci.2013, 291,2653.doi:10.1007/s00396-013-3020-z

    (17)Cunningham,V.J.;Armes,S.P.;Musa,O.M.Polym.Chem. 2016,7,1882.doi:10.1039/C6PY00138F

    (18)Arthur,K.;Paabo,C.M.;Robinson,R.A.;Bates,R.G.Anal. Chem.1968,40,700.doi:10.1021/ac60260a013

    (19)Convertine,A.J.;Lokitz,B.S.;Vasileva,Y.;Myrick,L.J.; Scales,C.W.;Lowe,A.B;McCormick,C.L.Macromolecules 2006,39,1724.doi:10.1021/ma0523419

    (20)Jiang,Z.;Jia,K.;Liu,X.;Dong,J.;Li,X.Langmuir 2015,31, 11760.doi:10.1021/acs.langmuir.5b02312

    (21)Zou,M.;Dong,J.;Yang,G.;Li,X.Phys.Chem.Chem.Phys. 2015,17,10265.doi:10.1039/C5CP00180C

    (22)Chaghi,R.;Ménorval,L.;Charnay,C.;Derrien,G.;Zajac,J. Langmuir 2009,25,4868.doi:10.1021/la803451q

    (23)Merle,Y.J.Phys.Chem.1987,91,3092.doi:10.1021/ j100295a089

    (24)Ma,J.;Guo,C.;Tang,Y.;Chen,L.;Bahadur,P.;Liu,H.J.Phys. Chem.B 2007,111,5155.doi:10.1021/jp070887m

    (25)Vamvakaki,M.;Palioura,D.;Spyros,A.;Armes,S.P.; Anastasiadis,S.H.Macromolecules 2006,39,5106. doi:10.1021/ma0605595

    (26)Cheng,L.;Li,X.;Dong,J.J.Mater.Chem.C 2015,3,6334. doi:10.1039/C5TC00624D

    (27)Sardar,R.;Funston,A.M.;Mulvaney,P.;Murray,R.W. Langmuir 2009,25,13840.doi:10.1021/la9019475

    (28)Han,Y.;Zhu,L.;Shen,M.;Li,H.H.Acta Phys.-Chim.Sin. 2013,29(1),131.[韓瑩,朱露,沈明,李恒恒.物理化學(xué)學(xué)報(bào),2013,29(1),131.]doi:10.3866/PKU.WHXB201210082

    pH-and Temperature-Induced Micellization of the Dual Hydrophilic Block Copolymer Poly(methacrylate acid)-b-poly(N-(2-methacryloylxyethyl) pyrrolidone)in Aqueous Solution

    ZHANG Ji-PingCHENG Shuo-ZhenLI Xue-FengDONG Jin-Feng*
    (College of Chemistry and Molecules Sciences,Wuhan University,Wuhan 430072,P.R.China)

    Anew series of structurally controllable dual hydrophilic diblock copolymers poly(methacrylate acid)-b-poly(N-(2-methacryloylxyethyl)pyrrolidone),PMAA-b-PNMP including PMAA101-b-PNMP153,PMAA101-b-PNMP240,PMAA101-b-PNMP420,and PMAA101-b-PNMP539,were synthesized by reversible addition-fragmentation chain transfer(RAFT)polymerization and characterized by gel permeation chromatography(GPC)and1H nuclear magnetic resonance(NMR).The pH-and temperature-induced micellization behavior of PMAA-b-PNMP in aqueous solution was confirmed by static light scattering(SLS)and dynamic light scattering(DLS)and cryogen transmission electron microscopy(cryo-TEM)techniques.The polymerization degree of PNMP strongly affects the micellization behavior.Generally,with higher polymerization degree,the micellization pH was lower and the micellization temperature was higher.During the micellization processes,the weakness of the hydrogen bond interactions between water and PNMP or PMAAand the strength in the inter-and intra-chain interactions between PNMP and PMAAsegments are dominant during the pH-induced micellization,as revealed by the pD-dependent1H NMR spectra.However,the weakness in the hydrogen bond interactions between water and PNMP is the major cause of the temperature-induced micellization process.We also provide solid evidence forthe ability to control the size ofAu NPs by adjusting the pH in the presence of PMAA-b-PNMP.Specifically,with higher pH,the size of theAu NPs was smaller.

    PMAA-b-PNMP;Micellization;pH;Temperature;Gold nanoparticle

    April 25,2016;Revised:May 26,2016;Published on Web:May 27,2016.

    O648

    10.3866/PKU.WHXB201605271

    *Corresponding author.Email:jfdong@whu.edu.cn;Tel:+86-27-63587628.

    The project was supported by the National Natural Science Foundation of China(21273165,21573164).

    國(guó)家自然科學(xué)基金(21273165,21573164)資助項(xiàng)目

    ?Editorial office ofActa Physico-Chimica Sinica

    [Article]

    猜你喜歡
    吡咯烷酮甲基丙烯酸雙親
    N-甲基吡咯烷酮降解菌株的篩選鑒定及應(yīng)用
    聚乙烯吡咯烷酮分子三級(jí)中紅外光譜研究
    蝶戀花·秋日憶雙親
    高效液相色譜法測(cè)定聚甲基丙烯酸酯食品材料中甲基丙烯酸酯及甲基丙烯酸向模擬食品液的遷移量
    歐盟重新評(píng)估聚乙烯吡咯烷酮(E1201)和聚乙烯聚吡咯烷酮(E1202)作為食品添加劑的安全性
    舉世無(wú)雙
    甲基丙烯酸鈰補(bǔ)強(qiáng)天然橡膠的性能研究
    乙烯-丙烯酸甲酯-甲基丙烯酸縮水甘油酯三元共聚物增韌PBT的研究
    LncRNA PCA3在甲基丙烯酸環(huán)氧丙酯誘導(dǎo)16HBE惡性轉(zhuǎn)化細(xì)胞中的表達(dá)及意義
    雙親嵌段共聚物PSt-b-P(St-alt-MA)-b-PAA的自組裝行為
    久久午夜亚洲精品久久| 欧美亚洲日本最大视频资源| 国产男靠女视频免费网站| 欧美午夜高清在线| 欧美日韩亚洲综合一区二区三区_| 91国产中文字幕| 成年女人毛片免费观看观看9| 色综合婷婷激情| 亚洲精品中文字幕在线视频| 欧美黄色片欧美黄色片| 国产成人影院久久av| 成人亚洲精品av一区二区| av电影中文网址| 久久人人97超碰香蕉20202| 久久精品国产清高在天天线| 一级片免费观看大全| 精品久久蜜臀av无| 欧美不卡视频在线免费观看 | 亚洲国产日韩欧美精品在线观看 | 日本精品一区二区三区蜜桃| 制服诱惑二区| 国产精品野战在线观看| 每晚都被弄得嗷嗷叫到高潮| 1024香蕉在线观看| 久久国产精品男人的天堂亚洲| 日韩欧美一区二区三区在线观看| 少妇被粗大的猛进出69影院| 午夜福利一区二区在线看| 国产真人三级小视频在线观看| 日本五十路高清| 午夜精品国产一区二区电影| 亚洲国产精品合色在线| 色婷婷久久久亚洲欧美| 手机成人av网站| 国产一区二区三区视频了| 欧美av亚洲av综合av国产av| 欧美在线一区亚洲| 国产亚洲欧美精品永久| 美女国产高潮福利片在线看| 美女大奶头视频| 99国产综合亚洲精品| 一进一出抽搐动态| 国产成人精品久久二区二区免费| 在线十欧美十亚洲十日本专区| 国语自产精品视频在线第100页| 亚洲专区国产一区二区| 每晚都被弄得嗷嗷叫到高潮| 一级毛片高清免费大全| 亚洲aⅴ乱码一区二区在线播放 | 欧美另类亚洲清纯唯美| 欧美日韩中文字幕国产精品一区二区三区 | www国产在线视频色| 久9热在线精品视频| 在线观看免费午夜福利视频| 欧美成人性av电影在线观看| av在线天堂中文字幕| 欧美成人一区二区免费高清观看 | 日韩欧美在线二视频| √禁漫天堂资源中文www| xxx96com| 国产亚洲精品av在线| 亚洲av片天天在线观看| 啦啦啦观看免费观看视频高清 | 欧美在线黄色| 国产精品久久久久久亚洲av鲁大| 丁香欧美五月| 午夜影院日韩av| 日本 av在线| 亚洲人成77777在线视频| 69精品国产乱码久久久| 男男h啪啪无遮挡| 少妇粗大呻吟视频| 嫩草影院精品99| 99香蕉大伊视频| 久久国产亚洲av麻豆专区| 亚洲专区中文字幕在线| 欧美日韩亚洲综合一区二区三区_| 久久久久久亚洲精品国产蜜桃av| 激情在线观看视频在线高清| 午夜a级毛片| 免费看十八禁软件| 最近最新中文字幕大全电影3 | 嫩草影视91久久| 91成年电影在线观看| 精品国产一区二区久久| av电影中文网址| 日韩精品青青久久久久久| 亚洲精品国产精品久久久不卡| 在线观看日韩欧美| 一区在线观看完整版| 一级毛片女人18水好多| 亚洲全国av大片| 成人亚洲精品一区在线观看| 国产蜜桃级精品一区二区三区| 91麻豆精品激情在线观看国产| 18禁美女被吸乳视频| 18禁裸乳无遮挡免费网站照片 | 最近最新中文字幕大全电影3 | 一级a爱片免费观看的视频| 国产伦人伦偷精品视频| 在线播放国产精品三级| 日韩精品青青久久久久久| 欧美日韩亚洲综合一区二区三区_| 中文字幕色久视频| 亚洲欧美精品综合一区二区三区| 美女高潮喷水抽搐中文字幕| 非洲黑人性xxxx精品又粗又长| 精品卡一卡二卡四卡免费| 女人高潮潮喷娇喘18禁视频| 18禁美女被吸乳视频| 国产成人啪精品午夜网站| 久热爱精品视频在线9| 日本 av在线| 桃红色精品国产亚洲av| 久久精品国产综合久久久| 97碰自拍视频| 午夜免费观看网址| 久久人妻熟女aⅴ| 青草久久国产| www国产在线视频色| 国产aⅴ精品一区二区三区波| 一本大道久久a久久精品| 亚洲色图av天堂| 国产视频一区二区在线看| 91成人精品电影| 亚洲第一青青草原| 免费观看人在逋| 久久这里只有精品19| 欧美乱码精品一区二区三区| 丰满的人妻完整版| 精品无人区乱码1区二区| 搡老熟女国产l中国老女人| 人人妻人人澡欧美一区二区 | 国内精品久久久久精免费| 99久久99久久久精品蜜桃| 久久精品亚洲精品国产色婷小说| 久久精品亚洲精品国产色婷小说| 好看av亚洲va欧美ⅴa在| 亚洲欧美激情在线| 国产又爽黄色视频| 人成视频在线观看免费观看| 午夜免费鲁丝| 天天躁狠狠躁夜夜躁狠狠躁| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区免费欧美| 亚洲国产精品sss在线观看| 亚洲国产精品成人综合色| 欧美中文综合在线视频| 久久香蕉精品热| 岛国视频午夜一区免费看| 成人手机av| 美女扒开内裤让男人捅视频| 亚洲第一欧美日韩一区二区三区| 高清在线国产一区| 日本vs欧美在线观看视频| 最近最新中文字幕大全电影3 | 亚洲第一电影网av| 亚洲一区二区三区不卡视频| 久久久久久人人人人人| 最近最新中文字幕大全免费视频| 黄色毛片三级朝国网站| 国产在线观看jvid| 一区在线观看完整版| 国产精品亚洲美女久久久| 国产高清激情床上av| 国产欧美日韩一区二区精品| 国产精品乱码一区二三区的特点 | 9191精品国产免费久久| 亚洲视频免费观看视频| 欧美色欧美亚洲另类二区 | 一级片免费观看大全| 夜夜躁狠狠躁天天躁| 男人舔女人的私密视频| 满18在线观看网站| 淫妇啪啪啪对白视频| 国产三级在线视频| 一个人观看的视频www高清免费观看 | 99精品在免费线老司机午夜| 波多野结衣巨乳人妻| 18美女黄网站色大片免费观看| 欧美色视频一区免费| 亚洲第一欧美日韩一区二区三区| 一级毛片女人18水好多| 亚洲一区二区三区色噜噜| 国产xxxxx性猛交| 亚洲人成77777在线视频| 免费在线观看黄色视频的| 黄色毛片三级朝国网站| 身体一侧抽搐| 国产欧美日韩一区二区三| 欧美在线一区亚洲| 色av中文字幕| 超碰成人久久| 日韩精品免费视频一区二区三区| 免费观看人在逋| 99久久精品国产亚洲精品| 在线国产一区二区在线| 精品国产超薄肉色丝袜足j| 亚洲成人国产一区在线观看| 1024视频免费在线观看| 久久久久国产一级毛片高清牌| 色综合婷婷激情| 亚洲 国产 在线| 亚洲av美国av| 两个人视频免费观看高清| bbb黄色大片| av天堂久久9| 国产亚洲精品久久久久久毛片| 18禁国产床啪视频网站| 日韩大码丰满熟妇| 99久久综合精品五月天人人| 免费在线观看视频国产中文字幕亚洲| 欧美一区二区精品小视频在线| 久久精品国产亚洲av香蕉五月| av有码第一页| av在线天堂中文字幕| 久久久久国内视频| 男人操女人黄网站| 色av中文字幕| 熟妇人妻久久中文字幕3abv| 日韩精品青青久久久久久| www.999成人在线观看| 久久人妻福利社区极品人妻图片| 色播亚洲综合网| av片东京热男人的天堂| 精品欧美一区二区三区在线| 亚洲天堂国产精品一区在线| 美女国产高潮福利片在线看| 97碰自拍视频| 欧美黄色片欧美黄色片| 亚洲av熟女| 精品日产1卡2卡| 757午夜福利合集在线观看| 美女高潮喷水抽搐中文字幕| 日韩欧美在线二视频| 此物有八面人人有两片| 99在线视频只有这里精品首页| 日韩精品中文字幕看吧| 91av网站免费观看| 一级毛片精品| 91麻豆精品激情在线观看国产| 女人精品久久久久毛片| 日韩免费av在线播放| 国产精品 国内视频| 丝袜美足系列| www.999成人在线观看| 校园春色视频在线观看| 色在线成人网| 国内精品久久久久久久电影| 精品国产超薄肉色丝袜足j| 亚洲精品中文字幕一二三四区| 成人欧美大片| 国产成年人精品一区二区| 精品欧美一区二区三区在线| 欧美日本亚洲视频在线播放| 久久久精品国产亚洲av高清涩受| 少妇粗大呻吟视频| 国产精品久久视频播放| 最近最新中文字幕大全电影3 | 不卡一级毛片| 日韩欧美国产一区二区入口| 亚洲精品久久成人aⅴ小说| 18禁美女被吸乳视频| 亚洲国产精品久久男人天堂| 美女午夜性视频免费| 国产精品美女特级片免费视频播放器 | 99国产精品免费福利视频| 91麻豆av在线| 亚洲精品在线观看二区| 国产国语露脸激情在线看| 在线观看免费视频日本深夜| 最近最新免费中文字幕在线| 老熟妇乱子伦视频在线观看| 亚洲成人国产一区在线观看| 无人区码免费观看不卡| 咕卡用的链子| 两性夫妻黄色片| 欧美日韩福利视频一区二区| 国产精品电影一区二区三区| 久久精品亚洲熟妇少妇任你| 久久人妻av系列| 曰老女人黄片| 美女高潮喷水抽搐中文字幕| 首页视频小说图片口味搜索| 国产亚洲av高清不卡| 亚洲国产毛片av蜜桃av| а√天堂www在线а√下载| 欧美黄色淫秽网站| 亚洲 欧美一区二区三区| 亚洲精品一区av在线观看| 男女下面插进去视频免费观看| 黄色丝袜av网址大全| 成人国产一区最新在线观看| 国产精品日韩av在线免费观看 | 日本黄色视频三级网站网址| 黄色视频不卡| 人人妻人人澡人人看| 99国产精品99久久久久| 亚洲精品一区av在线观看| 夜夜爽天天搞| 看免费av毛片| 天天躁夜夜躁狠狠躁躁| 一夜夜www| 中文字幕久久专区| 欧美在线黄色| 亚洲成av人片免费观看| 欧美激情久久久久久爽电影 | 日日摸夜夜添夜夜添小说| 国产主播在线观看一区二区| 夜夜爽天天搞| 级片在线观看| 身体一侧抽搐| av在线天堂中文字幕| 免费不卡黄色视频| 精品久久久精品久久久| 欧美黑人精品巨大| 在线观看午夜福利视频| svipshipincom国产片| 精品少妇一区二区三区视频日本电影| 国产亚洲欧美在线一区二区| 无人区码免费观看不卡| 咕卡用的链子| 他把我摸到了高潮在线观看| 国产精品美女特级片免费视频播放器 | 18禁黄网站禁片午夜丰满| 在线观看舔阴道视频| 99re在线观看精品视频| 国产成人影院久久av| 成人精品一区二区免费| 国产在线观看jvid| 久久午夜亚洲精品久久| 超碰成人久久| 久久精品aⅴ一区二区三区四区| 中国美女看黄片| 欧美一级a爱片免费观看看 | 欧美中文日本在线观看视频| 真人做人爱边吃奶动态| 啦啦啦免费观看视频1| 夜夜爽天天搞| 在线播放国产精品三级| 亚洲欧美日韩另类电影网站| 国产欧美日韩一区二区三| 欧美日韩一级在线毛片| 日韩国内少妇激情av| 国产在线精品亚洲第一网站| 一进一出抽搐gif免费好疼| 国产高清有码在线观看视频 | 亚洲第一av免费看| 色精品久久人妻99蜜桃| 亚洲中文日韩欧美视频| 国产免费av片在线观看野外av| 人人妻人人澡人人看| 又黄又爽又免费观看的视频| 国产黄a三级三级三级人| 免费在线观看亚洲国产| 精品不卡国产一区二区三区| 天堂动漫精品| 在线观看日韩欧美| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久久久久人妻精品电影| 成熟少妇高潮喷水视频| 亚洲三区欧美一区| 在线观看免费视频网站a站| 国产色视频综合| 波多野结衣巨乳人妻| 日韩欧美一区二区三区在线观看| 真人一进一出gif抽搐免费| 亚洲午夜精品一区,二区,三区| 亚洲自拍偷在线| 桃红色精品国产亚洲av| 99精品在免费线老司机午夜| 国产欧美日韩一区二区三区在线| 精品久久久久久久毛片微露脸| 女人被狂操c到高潮| 岛国在线观看网站| 久久婷婷人人爽人人干人人爱 | 亚洲av五月六月丁香网| 亚洲av美国av| 亚洲第一欧美日韩一区二区三区| 欧美日韩精品网址| 老汉色av国产亚洲站长工具| 日韩一卡2卡3卡4卡2021年| 97人妻天天添夜夜摸| 99在线人妻在线中文字幕| 成人三级做爰电影| 嫩草影视91久久| 99在线视频只有这里精品首页| 日韩中文字幕欧美一区二区| 精品国产乱码久久久久久男人| 日本在线视频免费播放| 人人妻,人人澡人人爽秒播| 这个男人来自地球电影免费观看| 成人永久免费在线观看视频| 国产亚洲欧美在线一区二区| 黄色丝袜av网址大全| 成人国产一区最新在线观看| 中亚洲国语对白在线视频| 热re99久久国产66热| 一进一出好大好爽视频| 亚洲精品国产一区二区精华液| 午夜免费成人在线视频| 高清毛片免费观看视频网站| 日日摸夜夜添夜夜添小说| 午夜免费成人在线视频| 午夜免费激情av| 欧美日韩瑟瑟在线播放| 亚洲久久久国产精品| 亚洲人成伊人成综合网2020| 在线观看www视频免费| 老鸭窝网址在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产一区二区在线av高清观看| 亚洲国产精品久久男人天堂| 99久久久亚洲精品蜜臀av| 欧美激情极品国产一区二区三区| 国产成人欧美在线观看| 身体一侧抽搐| 亚洲一码二码三码区别大吗| 免费在线观看日本一区| avwww免费| tocl精华| 97人妻天天添夜夜摸| 两个人视频免费观看高清| 精品卡一卡二卡四卡免费| 婷婷六月久久综合丁香| 日本vs欧美在线观看视频| 国产高清视频在线播放一区| 亚洲国产欧美一区二区综合| 精品国产国语对白av| 欧美黑人欧美精品刺激| 欧美成人免费av一区二区三区| 一进一出抽搐gif免费好疼| 夜夜爽天天搞| 在线国产一区二区在线| 日本 欧美在线| 日韩欧美在线二视频| 成人特级黄色片久久久久久久| а√天堂www在线а√下载| 淫妇啪啪啪对白视频| av在线播放免费不卡| 免费不卡黄色视频| 久久人人97超碰香蕉20202| 精品欧美国产一区二区三| 少妇 在线观看| 久久久久久大精品| 欧美久久黑人一区二区| 久久亚洲精品不卡| 亚洲一区高清亚洲精品| 天天躁夜夜躁狠狠躁躁| 99riav亚洲国产免费| 777久久人妻少妇嫩草av网站| 久久中文字幕人妻熟女| 黄片播放在线免费| 午夜a级毛片| 久久精品国产99精品国产亚洲性色 | 欧美成人午夜精品| 狠狠狠狠99中文字幕| 欧美久久黑人一区二区| 久久天堂一区二区三区四区| 正在播放国产对白刺激| 精品一品国产午夜福利视频| 性欧美人与动物交配| 99国产极品粉嫩在线观看| 操美女的视频在线观看| 国产av在哪里看| 久久久久久亚洲精品国产蜜桃av| 久久久久亚洲av毛片大全| 中文字幕人妻熟女乱码| 身体一侧抽搐| 久久午夜亚洲精品久久| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av第一区精品v没综合| 麻豆一二三区av精品| 美女高潮到喷水免费观看| 50天的宝宝边吃奶边哭怎么回事| 午夜免费观看网址| 国产成人啪精品午夜网站| 成人三级黄色视频| 国产成人av教育| 91字幕亚洲| 久久久精品国产亚洲av高清涩受| av天堂在线播放| 99久久国产精品久久久| 日韩免费av在线播放| 国产精品美女特级片免费视频播放器 | 一区在线观看完整版| 一级a爱视频在线免费观看| 国产成人精品在线电影| 人妻久久中文字幕网| 国产成+人综合+亚洲专区| 淫秽高清视频在线观看| 精品第一国产精品| 久久人人97超碰香蕉20202| 中文字幕人妻熟女乱码| 在线观看www视频免费| 如日韩欧美国产精品一区二区三区| 国产精品亚洲一级av第二区| 色精品久久人妻99蜜桃| 侵犯人妻中文字幕一二三四区| 日日干狠狠操夜夜爽| 久久精品亚洲精品国产色婷小说| 亚洲av电影在线进入| 日日爽夜夜爽网站| 国产一区二区三区综合在线观看| 国产aⅴ精品一区二区三区波| 国产免费av片在线观看野外av| 欧洲精品卡2卡3卡4卡5卡区| 免费少妇av软件| 亚洲人成伊人成综合网2020| 国产一级毛片七仙女欲春2 | 好男人在线观看高清免费视频 | 久久久久久人人人人人| 非洲黑人性xxxx精品又粗又长| 91成人精品电影| 国产成人一区二区三区免费视频网站| 身体一侧抽搐| 真人一进一出gif抽搐免费| 亚洲国产欧美日韩在线播放| 亚洲色图 男人天堂 中文字幕| 国产一区二区三区视频了| 波多野结衣一区麻豆| 国产午夜福利久久久久久| 精品欧美国产一区二区三| 国产精品综合久久久久久久免费 | 嫩草影视91久久| 法律面前人人平等表现在哪些方面| 亚洲熟妇中文字幕五十中出| 少妇熟女aⅴ在线视频| 好男人在线观看高清免费视频 | 国产精品久久久久久人妻精品电影| 亚洲成人久久性| 可以免费在线观看a视频的电影网站| 美女高潮喷水抽搐中文字幕| 老司机深夜福利视频在线观看| 亚洲成av人片免费观看| 97人妻精品一区二区三区麻豆 | 18禁黄网站禁片午夜丰满| 久久久久久免费高清国产稀缺| 这个男人来自地球电影免费观看| 国产精品98久久久久久宅男小说| 精品免费久久久久久久清纯| 欧美日本视频| 亚洲av美国av| 精品久久久久久久久久免费视频| 日韩欧美三级三区| 黄色a级毛片大全视频| 变态另类丝袜制服| 男男h啪啪无遮挡| 黄色视频,在线免费观看| 日韩国内少妇激情av| 一个人观看的视频www高清免费观看 | 老汉色av国产亚洲站长工具| 日韩精品中文字幕看吧| 女警被强在线播放| 国产精品久久久人人做人人爽| 99久久99久久久精品蜜桃| 日韩高清综合在线| 无遮挡黄片免费观看| 欧美一级a爱片免费观看看 | 精品国产乱码久久久久久男人| 动漫黄色视频在线观看| 老司机午夜福利在线观看视频| 99在线人妻在线中文字幕| 手机成人av网站| 午夜老司机福利片| 宅男免费午夜| 99国产精品一区二区三区| 69精品国产乱码久久久| 久久精品aⅴ一区二区三区四区| 久久久久久久久中文| 亚洲人成电影观看| 久久久国产欧美日韩av| 脱女人内裤的视频| av超薄肉色丝袜交足视频| 日本五十路高清| 久久久久久久久免费视频了| 两个人视频免费观看高清| 91字幕亚洲| 欧美大码av| 精品免费久久久久久久清纯| 精品电影一区二区在线| 中文字幕最新亚洲高清| 一夜夜www| 999久久久国产精品视频| 伦理电影免费视频| 性色av乱码一区二区三区2| 一区二区三区高清视频在线| www.熟女人妻精品国产| 国产精品自产拍在线观看55亚洲| 999久久久精品免费观看国产| 成年女人毛片免费观看观看9| 亚洲精品美女久久av网站| av免费在线观看网站| 久99久视频精品免费| 亚洲美女黄片视频| 成人18禁在线播放| av视频免费观看在线观看| www.熟女人妻精品国产| 欧美激情 高清一区二区三区| 免费在线观看日本一区| 19禁男女啪啪无遮挡网站| 亚洲av片天天在线观看| 国产高清有码在线观看视频 | 满18在线观看网站| 日本黄色视频三级网站网址| 国产国语露脸激情在线看| 中文字幕人成人乱码亚洲影| 久久热在线av| 男女下面插进去视频免费观看| 神马国产精品三级电影在线观看 | 午夜久久久在线观看| 久久中文字幕人妻熟女| 午夜视频精品福利| 日韩欧美国产在线观看| 亚洲七黄色美女视频|