王麗娜,王 珍,彭建龍,王建兵,楊柯林,束 剛,王松波,朱曉彤,高 萍,江青艷
(華南農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)學(xué)院,國(guó)家生豬種業(yè)工程技術(shù)研究中心,廣州 510642)
?
表沒(méi)食子兒茶素沒(méi)食子酸酯對(duì)育肥豬骨骼肌纖維類(lèi)型的影響
王麗娜,王珍,彭建龍,王建兵,楊柯林,束剛,王松波,朱曉彤,高萍,江青艷*
(華南農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)學(xué)院,國(guó)家生豬種業(yè)工程技術(shù)研究中心,廣州 510642)
本試驗(yàn)主要研究在飼糧中添加表沒(méi)食子兒茶素沒(méi)食子酸酯(Epigallocatechin gallate,EGCG)對(duì)育肥豬肌纖維類(lèi)型的影響。試驗(yàn)選用156日齡“杜×長(zhǎng)×大”三元雜交育肥豬180頭,平均體重為(85.02±1.15) kg,按組間體重、性別比例一致的原則,將育肥豬隨機(jī)分成3組,每組6個(gè)重復(fù),每個(gè)重復(fù)10頭豬(5公5母)。對(duì)照組飼喂基礎(chǔ)飼糧,試驗(yàn)組飼喂在基礎(chǔ)飼糧上分別添加0.025%、0.05% EGCG的試驗(yàn)飼糧。研究結(jié)果表明:1)育肥豬飼糧中添加0.025%的EGCG,能顯著下調(diào)背最長(zhǎng)肌乳酸脫氫酶(Lactate dehydrogenase,LDH)的活性(P<0.05),減少M(fèi)yHCⅠ、PGC-1α和mtTFA蛋白水平和MyHCⅠ、Tnnt1、Cytc和COXⅣmRNA的表達(dá)(P<0.05);顯著下調(diào)腰大肌LDH和琥珀酸脫氫酶(Succinate dehydrogenase,SDH)的活性(P<0.05),顯著上調(diào)Ⅰ型肌纖維比例(P<0.05),顯著下調(diào)MyHCⅠmRNA的表達(dá)(P<0.05),而MyHCⅡa、MyHCⅡx、MyHCⅡb 的mRNA顯著上調(diào)(P<0.05)。2)育肥豬飼糧中添加0.050%的EGCG,能顯著下調(diào)背最長(zhǎng)肌LDH和SDH的活性(P<0.05),降低活性氧(Reactive oxygen species,ROS)水平(P<0.05),抑制AMPK的磷酸化、下調(diào)MyHC Ⅰ、PGC-1α、mtTFA和NRF-1的蛋白和mRNA表達(dá)(P<0.05);顯著下調(diào)腰大肌LDH和SDH的活性(P<0.05),降低ROS水平(P<0.05),下調(diào)MyHC Ⅰ蛋白和mRNA的表達(dá)、抑制AMPK的磷酸化和NRF-1的蛋白表達(dá)(P<0.05),顯著上調(diào)Ⅰ型肌纖維比例(P<0.05)。綜上,育肥豬飼糧中添加EGCG后,可能通過(guò)EGCG清除ROS后引起AMPK活性減弱,降低PGC-1α表達(dá),最終導(dǎo)致線(xiàn)粒體生物合成下降和慢肌纖維形成減少。
EGCG;育肥豬;肌纖維類(lèi)型;線(xiàn)粒體生物合成
隨著生活水平的不斷提高,人們對(duì)肉品質(zhì)的要求也越來(lái)越高。肌纖維類(lèi)型與肉品質(zhì)密切相關(guān),直接影響肌肉色澤、嫩度和肌內(nèi)脂肪含量。根據(jù)不同肌纖維中表達(dá)的特有肌球蛋白重鏈亞型可以將哺乳動(dòng)物骨骼肌纖維類(lèi)型分為Ⅰ型、Ⅱa、Ⅱx和Ⅱb型,前者為慢肌纖維,后三者為快肌纖維。而骨骼肌具有高度可塑性,機(jī)體的自然生長(zhǎng)發(fā)育或當(dāng)機(jī)體受到某些生理變化、病理刺激和應(yīng)激等時(shí),細(xì)胞內(nèi)相關(guān)信號(hào)通路就會(huì)發(fā)生改變,調(diào)節(jié)肌纖維特異基因的表達(dá)從而誘發(fā)肌纖維類(lèi)型的轉(zhuǎn)化[1]。已有研究表明,運(yùn)動(dòng)可以促進(jìn)慢肌纖維的形成,且運(yùn)動(dòng)可以產(chǎn)生活性氧(Reactive oxygen species,ROS),這揭示著ROS的增多可能促進(jìn)慢肌纖維的形成[2-3]。并有報(bào)道ROS主要是通過(guò)激活腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)從而促進(jìn)過(guò)氧化物酶體增殖物激活受體γ輔激活子1α(Peroxisome-proliferators-activated receptor γ coactivator-1α,PGC-1α)的表達(dá)[4-5],而PGC-1α可以促進(jìn)線(xiàn)粒體生物合成和慢肌形成[6-7]。表沒(méi)食子兒茶素沒(méi)食子酸酯(Epigallocatechin gallate,EGCG),是茶多酚生物活性的主要成份,具有抗氧化清除自由基的功能,在抗癌和心血管疾病中擔(dān)當(dāng)了重要角色,那么EGCG在清除自由基后對(duì)肉品質(zhì)會(huì)不會(huì)有影響呢。
本試驗(yàn)采用飼糧中添加EGCG飼喂“杜×長(zhǎng)×大”三元雜交育肥豬來(lái)研究EGCG對(duì)肌纖維類(lèi)型的影響,為EGCG改變?nèi)馄焚|(zhì)提供重要的理論依據(jù)。
1.1試驗(yàn)材料
試驗(yàn)所用EGCG純度99%,購(gòu)自美國(guó)Sigma公司;Trizol、M-MLV Reverse Transcriptase、SYBR Green Realtime PCR Master Mix均購(gòu)自美國(guó)Promega公司;RIPA細(xì)胞裂解液購(gòu)自北京百泰克生物技術(shù)有限公司;BCA法總蛋白測(cè)定試劑盒購(gòu)自美國(guó)Thermo scientific公司;試驗(yàn)中所用一抗MyHC Ⅰ購(gòu)自英國(guó)Abcam,MyHC Ⅱ購(gòu)自美國(guó)Millipore,AMPKα、p-AMPK、PGC-1α、NRF-1均購(gòu)自美國(guó)Cell signaling technology,mtTFA購(gòu)自美國(guó)Santa Cruz Biotechnology;二抗有羊抗兔、兔抗羊、羊抗鼠抗體,均購(gòu)自北京博奧森生物技術(shù)有限公司;引物合成由美國(guó)life technology公司合成。ROS、己糖激酶(Hexokinase,HK)、乳酸脫氫酶(Lactic dehydrogenase,LDH)、琥珀酸脫氫酶(Succinatedehydrogenase,SDH)檢測(cè)試劑盒均購(gòu)自南京建成生物工程研究所。
1.2試驗(yàn)設(shè)計(jì)
試驗(yàn)采用單因素完全隨機(jī)設(shè)計(jì),選用156日齡三元雜交育肥豬180頭,平均體重為(85.02±1.15) kg,按組間體重、性別比例一致的原則,將育肥豬分成3組,每組6個(gè)重復(fù),每個(gè)重復(fù)10頭豬(5公5母)。其中第1組為對(duì)照組,飼喂基礎(chǔ)飼糧;第2組為0.025% EGCG組,飼喂每千克基礎(chǔ)飼糧中添加了0.25 g EGCG的試驗(yàn)飼糧;第3組為0.05% EGCG組,飼喂每千克基礎(chǔ)飼糧中添加了0.5 g EGCG的試驗(yàn)飼糧。飼喂基礎(chǔ)飼糧3 d后開(kāi)始試驗(yàn),正式試驗(yàn)期為35 d?;A(chǔ)飼糧組成和營(yíng)養(yǎng)水平見(jiàn)表1。
1.3試驗(yàn)管理
試驗(yàn)豬全期按豬場(chǎng)生產(chǎn)管理規(guī)程進(jìn)行,保持各試驗(yàn)組管理與環(huán)境條件一致。按照豬場(chǎng)要求進(jìn)行常規(guī)防疫,飼養(yǎng)欄舍為封閉、漏縫地板式豬舍。試驗(yàn)期間記錄投料量,觀察豬只健康。每個(gè)重復(fù)10頭育肥豬飼養(yǎng)于同一欄中,每天定時(shí)喂料,自由采食及飲水。
表1基礎(chǔ)飼糧組成及營(yíng)養(yǎng)水平(風(fēng)干基礎(chǔ))
Table 1Composition and nutrient levels of the basal diet (air-dry basis)
%
1).每千克預(yù)混料含有:VA 5 300 IU,VD 1 500 IU,VE 24 mg,VK 1.16 mg,VB11.16 mg,泛酸5.6 mg,煙酸11.6 mg,VB61.68 mg,葉酸0.56 mg,生物素0.15 mg,VC 200 mg,膽堿600 mg,Mn 20 mg,Zn 52 mg,F(xiàn)e 56 mg,Cu 36 mg,I 0.36 mg,Se 0.2 mg。2).消化能為計(jì)算值,其余均為實(shí)測(cè)值
1).Contained the following per kg of premix:VA 5 300 IU,VD 1 500 IU,VE 24 mg,VK 1.16 mg,VB11.16 mg,pantothenic acid 5.6 mg,nicotinic acid 11.6 mg,VB61.68 mg,folic acid 0.56 mg,biotin 0.15 mg,VC 200 mg,choline 600 mg,Mn 20 mg,Zn 52 mg,F(xiàn)e 56 mg,Cu 36 mg,I 0.36 mg,Se 0.2 mg.2).DE was a calculated value,while the others were measured values
1.4檢測(cè)指標(biāo)
1.4.1樣品采集試驗(yàn)結(jié)束,在每個(gè)重復(fù)中挑選1或者2個(gè)接近每組平均體重的個(gè)體頸靜脈放血處死。固定部位采集背最長(zhǎng)肌和腰大肌的肌肉樣品,-80 ℃保存,用于組織切片ATPase染色、基因mRNA和蛋白表達(dá)水平檢測(cè)、活性氧(ROS)水平和酶活性測(cè)定。
1.4.2ROS水平及糖代謝相關(guān)酶活性的測(cè)定背最長(zhǎng)肌和腰大肌中ROS水平及己糖激酶、乳酸脫氫酶和琥珀酸脫氫酶的活性檢測(cè)按南京建成生物工程研究所提供的試劑盒說(shuō)明書(shū),在多功能酶標(biāo)儀上進(jìn)行測(cè)定。
1.4.3肌纖維分型(ATPase染色)將在-80 ℃保存的肌肉樣品先置于冰凍切片的恒溫箱內(nèi)(-20 ℃)平衡,待樣品溫度平衡至-20 ℃時(shí),垂直于肌纖維走向?qū)⒔M織塊修成1 cm × 1 cm × 0.5 cm的整齊樣品塊。用包埋劑將組織塊粘貼于組織樣品冷凍頭(切面與纖維走向垂直),按照10 μm的厚度切片。制備好的切片分別經(jīng)過(guò)酸性和堿性預(yù)孵后,依次進(jìn)行SDH和ATP孵育,最后經(jīng)CoCl2置換后用硫化銨顯色,蘇木精復(fù)染后脫水封片。
分型后的切片在40倍鏡下拍照,每張切片4個(gè)視野。采用Motic Images Advanced 3.2軟件分別計(jì)算MyHC Ⅰ、MyHC Ⅱa和MyHC Ⅱb型肌纖維數(shù)量的相對(duì)百分比。
1.4.4qPCR檢測(cè)采用Trizol法提取背最長(zhǎng)肌和腰大肌的總RNA,采用M-MLV及隨機(jī)引物反轉(zhuǎn)錄成cDNA,用于后續(xù)的實(shí)時(shí)熒光定量PCR(Real-time qPCR)檢測(cè)并計(jì)算各基因mRNA表達(dá)豐度。具體反轉(zhuǎn)錄和Real-time qPCR的步驟:
反轉(zhuǎn)錄:2 μg消化后總RNA、3.0 μL 5 μmol·L-1的Oligo d(T)-18,加入DEPC水至15.0 μL,70 ℃預(yù)變性5 min,迅速取出并立即冰浴5 min。分別加入5.0 μL 5×Buffer、1.0 μL 200 U·mL-1M-MLV反轉(zhuǎn)錄酶、0.625 μL 40 U·μL-1Ribonuclease inhibitor、1.25 μL 10 mmol·L-1dNTP,加入DEPC水至25.0 μL;42 ℃反應(yīng)60 min,70 ℃ 10 min。
Real-time qPCR:根據(jù)NCBI中GenBank發(fā)表的基因序列,采用Primer Primier 5.0軟件設(shè)計(jì)各基因的上、下游引物(表2)。反應(yīng)體系:1.0 μL 反轉(zhuǎn)錄產(chǎn)物、0.8 μL 5 μmol·L-1引物、10.0 μL 2×SYBR Green I Mix,加入去離子水至20.0 μL。反應(yīng)條件:94 ℃ 預(yù)變性1 min;94 ℃ 15 s,53~62 ℃ 15 s,72 ℃ 40 s,40個(gè)循環(huán)。獲得各基因Ct值,以GAPDH為內(nèi)參,采用2-△Ct法計(jì)算樣品中各基因mRNA表達(dá)豐度。
表2基因引物序列
Table 2Primer sequences of the target genes
序列號(hào)GenBankNo.基因Gene引物序列(5'-3')Primersequence產(chǎn)物大小/bpProductsize退火溫度/℃AnnealingtemperatureNM_213855MyHCⅠSense:AAGGGCTTGAACGAGGAGTAGAAntisens:TTATTCTGCTTCCTCCAAAGGG11458NM_214136MyHCⅡaSense:GCTGAGCGAGCTGAAATCCAntisense:ACTGAGACACCAGAGCTTCT13758NM_001104951MyHCⅡxSense:AGAAGATCAACTGAGTGAACTAntisense:AGAGCTGAGAAACTAACGTG14955NM_001123141MyHCⅡbSense:ATGAAGAGGAACCACATTAAntisense:TTATTGCCTCAGTAGCTTG16652NM_213963PGC-1αSense:GTCCTTCCTCCATGCCTGACAntisense:TGGTTTGCATGGTTCTGGGT14560AY923074mtTFASense:GGTCCATCACAGGTAAAGCTGAAAntisense:ATAAGATCGTTTCGCCCAACTTC16754AY496013NRF-1Sense:TCCCTGGTGGTTCAGTAAGTAntisense:CAGAACAAGTAAGGGAGGACA26858BC049623COXⅣSense:CCAAGTGGGACTACGACAAGAACAntisense:CCTGCTCGTTTATTAGCACTGG13155NM_001129970CytcSense:CGACTCGTCCAAACCTCCAAntisense:CTTCGCTTTCTCCCTTCTTCTTA19858NM_213748Tnnt1Sense:ACAGGGCGTGAGATGAAACAntisense:GTGGCTGATGCGGTTGTA20458NM_001001863Tnnt3Sense:CCCAAACTCACTGCTCCTAAGAntisense:AACTCTGCTGCTCGGCTCT20558AF043486GAPDHSense:ATTCCACGGCACAGTCAAntisense:GGACTCCACGACATACTCAG13058
1.4.5Western Blot檢測(cè)根據(jù)RIPA裂解組織樣品的說(shuō)明書(shū)裂解背最長(zhǎng)肌和腰大肌肌肉樣品,提取出總蛋白,并按BCA試劑盒說(shuō)明書(shū)進(jìn)行蛋白濃度測(cè)定,按20 μg單管分裝樣品,用于Western Blot的檢測(cè)。使用5%濃縮膠和10%分離膠90 V電壓電泳分離上述制備好的蛋白樣品100 min,隨后110 V電壓將蛋白轉(zhuǎn)移至PVDF膜上,目的條帶用5%脫脂牛奶室溫封閉2 h,之后按照如下稀釋比例用TBST稀釋一抗,將膜在相應(yīng)的一抗稀釋液中4 ℃過(guò)夜孵育:MyHC Ⅰ(1∶2 000)、MyHC Ⅱ(1∶2 000)、PGC-1α(1∶2 000)、NRF-1(1∶2 000)、mtTFA(1∶500)、AMPKα(1∶2 000)、p-AMPK(1∶2 000),接著用TBST洗5次,一次3~5 min,使用對(duì)應(yīng)的二抗孵育1~2 h,并在多色熒光成像系統(tǒng)掃描拍照,最后使用蛋白灰度分析軟件掃描灰度,統(tǒng)計(jì)各目的蛋白的表達(dá)結(jié)果。
1.4.6數(shù)據(jù)統(tǒng)計(jì)與分析采用 SPSS 17.0統(tǒng)計(jì)軟件,應(yīng)用單因素方差分析(One-way ANOVA)進(jìn)行差異顯著性分析,采用LSD法進(jìn)行多重比較,結(jié)果以“平均值±標(biāo)準(zhǔn)誤(Mean±S.E.)”表示。
2.1飼糧中添加EGCG對(duì)育肥豬背最長(zhǎng)肌和腰大肌ROS水平的影響
由圖1可知,與對(duì)照組相比,0.05% EGCG組的背最長(zhǎng)肌和腰大肌中的ROS水平均顯著降低(P<0.05),而0.025% EGCG組的背最長(zhǎng)肌和腰大肌中的ROS水平均無(wú)顯著變化(P>0.05)。
2.2飼糧中添加EGCG對(duì)育肥豬背最長(zhǎng)肌和腰大肌糖代謝相關(guān)酶活的影響
由圖2A、2B、2C可知,與對(duì)照組相比,0.05% EGCG組的背最長(zhǎng)肌琥珀酸脫氫酶和乳酸脫氫酶的活性顯著降低(P<0.05)。0.025% EGCG組中,乳酸脫氫酶活性也顯著降低(P<0.05),而己糖激酶活性無(wú)顯著變化(P>0.05)。從圖2D、2E、2F可知,0.025% EGCG組和0.05% EGCG組的腰大肌琥珀酸脫氫酶和乳酸脫氫酶的活性顯著降低(P<0.05),而己糖激酶活性無(wú)顯著變化(P>0.05)。
2.3飼糧中添加EGCG對(duì)背最長(zhǎng)肌和腰大肌肌纖維類(lèi)型的影響
由圖3可知,與對(duì)照組相比,0.025% EGCG組和0.05% EGCG組背最長(zhǎng)肌中肌纖維分型均無(wú)顯著變化(P>0.05)。而在0.025% EGCG組和0.05% EGCG組腰大肌中Ⅰ型肌纖維比例均顯著高于對(duì)照組(P<0.05),而腰大肌中Ⅱa和Ⅱb型肌纖維的比例在3組中均無(wú)顯著差異(P>0.05)。
A和B分別為背最長(zhǎng)肌和腰大肌的ROS水平,無(wú)相同字母代表組間差異顯著(P<0.05)A and B are the level of ROS in longissimus dorsi and psoas major,respectively,columns not sharing common letter are significantly different (P<0.05)圖1 EGCG對(duì)育肥豬背最長(zhǎng)肌和腰大肌ROS水平的影響(n=8)Fig.1 Effect of EGCG on the level of ROS in longissimus dorsi and psoas major in pigs (n=8)
A、B、C.背最長(zhǎng)肌中HK、LDH和SDH的酶活性;D、E、F.腰大肌中HK、LDH和SDH的酶活性。無(wú)相同字母代表組間差異顯著(P<0.05)A,B,C.The activity of HK,LDH and SDH in longissimus dorsi;D,E,F.The activity of HK,LDH and SDH in psoas major.Columns not sharing common letter are significantly different (P<0.05)圖2 EGCG對(duì)育肥豬背最長(zhǎng)肌和腰大肌糖代謝相關(guān)酶活的影響(n=8)Fig.2 Effect of EGCG on glycometabolism related enzyme activity in longissimus dorsi and psoas major in pigs (n=8)
A.背最長(zhǎng)肌和腰大肌的ATP酶染色圖(400×);B.背最長(zhǎng)肌和腰大肌的肌纖維類(lèi)型切片染色統(tǒng)計(jì)圖。無(wú)相同字母代表組間差異顯著(P<0.05)A.The ATPase staining of longissimus dorsi and psoas major(400×);B.The statistics of muscle fiber types in longissimus dorsi and psoas major.Columns not sharing common letter are significantly different (P<0.05)圖3 EGCG對(duì)育肥豬背最長(zhǎng)肌和腰大肌肌纖維類(lèi)型分布的影響(n=4)Fig.3 Effect of EGCG on muscle fiber types distribution of longissimus dorsi and psoas major in pigs (n=4)
由圖4A可知,與對(duì)照組相比,0.025% EGCG組和0.050% EGCG組的背最長(zhǎng)肌MyHC Ⅰ的蛋白表達(dá)均顯著降低(P<0.05),而MyHC Ⅱ的蛋白表達(dá)無(wú)顯著差異(P>0.05)。由圖4B可知,與對(duì)照組相比,0.05% EGCG組背最長(zhǎng)肌中MyHCⅠ、MyHCⅡb和Tnnt1的mRNA表達(dá)均顯著降低(P<0.05),且MyHCⅠ和Tnnt1在0.025% EGCG組mRNA表達(dá)也顯著降低(P<0.05)。而飼糧中添加EGCG對(duì)背最長(zhǎng)肌中MyHCⅡa、MyHCⅡx和Tnnt3的表達(dá)均無(wú)顯著影響(P>0.05)。 由圖4C可知,與對(duì)照組相比,0.050% EGCG組腰大肌中MyHC Ⅰ的蛋白表達(dá)顯著降低(P<0.05),而0.025% EGCG組MyHC Ⅰ的蛋白表達(dá)無(wú)顯著變化(P>0.05),各組MyHC Ⅱ的蛋白水平無(wú)顯著差異(P>0.05)。
由圖4D可知,與對(duì)照組相比,0.025% EGCG組和0.050% EGCG組腰大肌中MyHCⅠ的mRNA表達(dá)顯著降低(P<0.05),0.025% EGCG組腰大肌中MyHCⅡa、MyHCⅡx和MyHCⅡb 的mRNA表達(dá)均顯著升高(P<0.05);而飼糧中添加EGCG對(duì)腰大肌中Tnnt1和Tnnt3的表達(dá)均無(wú)顯著影響(P>0.05)。
2.4飼糧中添加EGCG對(duì)育肥豬背最長(zhǎng)肌和腰大肌線(xiàn)粒體合成相關(guān)基因的影響
由圖5A可知,0.05% EGCG組背最長(zhǎng)肌中pAMPK/AMPK、mtTFA、PGC-1α和NRF-1的蛋白表達(dá)均顯著降低(P<0.05),而0.025% EGCG組背最長(zhǎng)肌中只有PGC-1α和mtTFA的蛋白表達(dá)顯著降低(P<0.05)。 由圖5B可知,與對(duì)照組相比,只有0.050% EGCG組腰大肌中pAMPK/AMPK和NRF-1的蛋白表達(dá)顯著降低(P<0.05)。而飼糧中添加EGCG對(duì)腰大肌中PGC-1α和mtTFA的蛋白表達(dá)均無(wú)顯著影響(P>0.05)。由圖5C可知,與對(duì)照組相比,0.050% EGCG組背最長(zhǎng)肌中PGC-1α、mtTFA、NRF-1、Cytc和COXⅣ的mRNA表達(dá)均顯著降低(P<0.05),且Cytc和COXⅣ在0.025% EGCG組背最長(zhǎng)肌中mRNA表達(dá)也顯著降低(P<0.05)。由圖5D可知,與對(duì)照組相比,0.050% EGCG組腰大肌中Cytc和COXⅣ的mRNA表達(dá)顯著降低(P<0.05),0.025% EGCG組腰大肌中Cytc和COXⅣ的mRNA表達(dá)無(wú)顯著差異(P>0.05)。而飼糧中添加 EGCG對(duì)腰大肌中PGC-1α、mtTFA和NRF-1的表達(dá)均無(wú)顯著影響(P>0.05)。
A.背最長(zhǎng)肌中MyHC Ⅰ和MyHC Ⅱ的蛋白條帶圖和蛋白統(tǒng)計(jì)圖;B.背最長(zhǎng)肌中MyHC Ⅰ、MyHC Ⅱa、MyHC Ⅱx、MyHC Ⅱb、Tnnt 1、Tnnt 3的mRNA表達(dá)統(tǒng)計(jì)圖;C.腰大肌中MyHC Ⅰ和MyHC Ⅱ的蛋白條帶圖和蛋白統(tǒng)計(jì)圖;D.腰大肌MyHC Ⅰ、MyHC Ⅱa、MyHC Ⅱx、MyHC Ⅱb、Tnnt1、Tnnt3的mRNA表達(dá)統(tǒng)計(jì)圖。無(wú)相同字母代表組間差異顯著(P<0.05)A.The protein expression of MyHC Ⅰ and MyHC Ⅱ in longissimus dorsi;B.The mRNA expression of MyHC Ⅰ,MyHC Ⅱa,MyHC Ⅱx,MyHC Ⅱb,Tnnt 1 and Tnnt 3 in longissimus dorsi;C.The protein expression of MyHC Ⅰ and MyHC Ⅱ in psoas major;D.The mRNA expression of MyHC Ⅰ,MyHC Ⅱa,MyHC Ⅱx,MyHC Ⅱb,Tnnt 1 and Tnnt 3 in psoas major.Columns not sharing common letter are significantly different (P<0.05)圖4 EGCG對(duì)育肥豬背最長(zhǎng)肌和腰大肌肌纖維分型的影響(n=4)Fig.4 Effect of EGCG on muscle fiber types of longissimus dorsi and psoas major in pigs (n=4)
A.背最長(zhǎng)肌中p-AMPK、AMPK、PGC-1α、mtTFA和NRF-1的蛋白條帶圖和蛋白表達(dá)統(tǒng)計(jì)圖;B.腰大肌中p-AMPK、AMPK、PGC-1α、mtTFA和NRF-1的蛋白條帶圖和蛋白表達(dá)統(tǒng)計(jì)圖;C.背最長(zhǎng)肌中PGC-1α、mtTFA、NRF-1、Cytc和COXⅣ的mRNA表達(dá)統(tǒng)計(jì)圖;D.腰大肌中PGC-1α、mtTFA、NRF-1、Cytc和COXⅣ的mRNA表達(dá)統(tǒng)計(jì)圖。無(wú)相同字母代表組間差異顯著(P<0.05)A.The protein expression of p-AMPK,AMPK,PGC-1α,mtTFA and NRF-1 in longissimus dorsi;B.The protein expression of p-AMPK,AMPK,PGC-1α,mtTFA and NRF-1 in psoas major;C.The mRNA expression of PGC-1α,mtTFA,NRF-1,Cytc and COXⅣ in longissimus dorsi;D.The mRNA expression of PGC-1α,mtTFA, NRF-1,Cytc and COXⅣ in psoas major.Columns not sharing common letter are significantly different (P<0.05)圖5 EGCG對(duì)育肥豬背最長(zhǎng)肌和腰大肌線(xiàn)粒體生物合成相關(guān)基因表達(dá)的影響(n=4)Fig.5 Effect of EGCG on the mitochondrial biosynthesis related gene expression in longissimus dorsi and psoas major in pigs (n=4)
3.1飼糧中添加EGCG對(duì)育肥豬背最長(zhǎng)肌和腰大肌中ROS水平的影響
活性氧(ROS)是生物體有氧代謝過(guò)程中的一種副產(chǎn)物,包括氧離子、過(guò)氧化物和含氧自由基等。過(guò)高的ROS水平會(huì)對(duì)細(xì)胞和基因結(jié)構(gòu)造成損壞[8-9]。然而最近的研究發(fā)現(xiàn)了生理濃度下的ROS在正常細(xì)胞的功能中起著一個(gè)重要的作用。事實(shí)上,ROS能通過(guò)細(xì)胞信號(hào)傳導(dǎo)來(lái)調(diào)節(jié)細(xì)胞的生長(zhǎng)、分化、增殖和凋亡[9-12]。已有研究表明,運(yùn)動(dòng)可以促進(jìn)慢肌纖維的形成,且運(yùn)動(dòng)可以產(chǎn)生活性氧(ROS),這揭示著ROS的增多可能促進(jìn)慢肌纖維的形成[2-3]。而EGCG是一種抗氧化物,能夠清除ROS。本試驗(yàn)中飼糧添加0.05% EGCG后,能顯著降低育肥豬背最長(zhǎng)肌和腰大肌的ROS水平,這與EGCG清除ROS的功能是一致的,也為EGCG逆轉(zhuǎn)ROS的功能提供了可能。
3.2飼糧中添加EGCG對(duì)育肥豬背最長(zhǎng)肌和腰大肌糖代謝相關(guān)酶活的影響
根據(jù)肌纖維所含的酶系、肌纖維的代謝特性及其活性特點(diǎn),可將其分為酵解型、中間型、氧化型肌纖維。其中Ⅱb型纖維幾乎完全以糖酵解為主,而Ⅱa型纖維既可以由糖酵解供能,也可以通過(guò)糖的有氧氧化供能,Ⅱx型纖維是介于Ⅱb和Ⅱa之間的一種纖維類(lèi)型,其收縮能力和ATP酶活性也介于Ⅱb和Ⅱa之間。Ⅰ型纖維則是氧化型肌纖維,通過(guò)有氧氧化供能。因此,不同類(lèi)型的肌纖維所含的酶及活力是不同的。己糖激酶(HK)是糖酵解的第一個(gè)步驟中重要的酶。乳酸脫氫酶(LDH)是一種糖酵解酶,催化丙酮酸生成乳酸的酶,它的活力能夠反映無(wú)氧酵解的程度。琥珀酸脫氫酶(SDH)是線(xiàn)粒體的一種標(biāo)志酶,由黃素蛋白、鐵硫蛋白和2種膜蛋白亞單位組成,是唯一的同時(shí)參與三羧酸循環(huán)和電子傳遞鏈的有氧氧化酶[13]。有研究表明,EGCG能夠減少琥珀酸脫氫酶黃素蛋白亞單位的表達(dá)[14]。此外眾多的研究表明抗氧化劑能夠抑制LDH的活性:給大鼠灌服抗氧化劑茶多酚,能夠顯著下調(diào)力竭運(yùn)動(dòng)后大鼠血清LDH活性[15];給大鼠飼喂有抗氧化作用的黃芪總苷也能夠降低運(yùn)動(dòng)后骨骼肌中的乳酸水平[16]。也有文獻(xiàn)證明,用H2O2處理山羊骨骼肌細(xì)胞,能夠上調(diào)細(xì)胞內(nèi)的LDH活性[17]。這與本試驗(yàn)中添加不同濃度的ROS清除劑EGCG在不同程度上抑制背最長(zhǎng)肌和腰大肌LDH和SDH的活性(P<0.05)的結(jié)果一致。綜合以上結(jié)果,飼糧中添加EGCG能夠降低糖酵解酶酶活,同時(shí)也降低有氧氧化酶酶活。
3.3飼糧中添加EGCG對(duì)育肥豬背最長(zhǎng)肌和腰大肌肌纖維類(lèi)型的影響
以往有報(bào)道證明,ROS可以調(diào)控心肌細(xì)胞中β-MyHC的表達(dá)[18],但對(duì)骨骼肌細(xì)胞中各種類(lèi)型的MyHC的表達(dá)是否有調(diào)控作用并未見(jiàn)報(bào)道。本研究采用ATP酶染色、qPCR和Western Blot的方法從代謝和MyHC基因表達(dá)的角度探討了EGCG對(duì)骨骼肌肌纖維類(lèi)型的影響。ATPase染色結(jié)果表明,飼糧中添加0.025%、0.050%的EGCG僅能顯著提高腰大?、裥图±w維的比例(P<0.05)。然而,從背最長(zhǎng)肌肌球蛋白重鏈(Myosin heavy chain,MyHC)蛋白及mRNA表達(dá)結(jié)果表明,飼糧中添加0.025%、0.05%的EGCG能顯著降低背最長(zhǎng)肌MyHC Ⅰ的表達(dá)(P<0.05),同時(shí)慢骨骼肌肌鈣蛋白(Troponin T type 1,Tnnt1)mRNA表達(dá)也顯著降低(P<0.05)。飼糧中添加0.050%的EGCG能顯著降低MyHC Ⅰ蛋白及mRNA表達(dá)(P<0.05),但對(duì)MyHC Ⅱ蛋白表達(dá)無(wú)顯著影響(P>0.05)。以上ATP酶染色結(jié)果與MyHC基因表達(dá)不一致,可能與檢測(cè)的方法有關(guān)。ATP酶染色的方法得出的是單位面積各種類(lèi)型肌纖維所占的比例,其結(jié)果受到肌纖維數(shù)目和肌纖維直徑的影響,處理組Ⅰ型纖維比例的上調(diào)也可能是肌纖維直徑較大,導(dǎo)致單位面積Ⅰ型纖維比例上調(diào)。而MyHC蛋白表達(dá)的結(jié)果與mRNA定量結(jié)果一致。綜合以上結(jié)果,我們認(rèn)為飼糧中添加EGCG主要減少Ⅰ型肌纖維的含量,而對(duì)Ⅱ型肌纖維的影響較小,同時(shí),飼糧添加EGCG對(duì)背最長(zhǎng)肌肌纖維類(lèi)型的影響大于腰大肌。
3.4飼糧中添加EGCG對(duì)育肥豬背最長(zhǎng)肌和腰大肌肌纖維類(lèi)型影響的機(jī)制
腺苷酸活化蛋白激酶(AMPK),是肌肉能量代謝的主要調(diào)節(jié)物,被稱(chēng)為“細(xì)胞能量調(diào)節(jié)器”[19]。過(guò)氧化物酶體增殖物激活受體PPARγ輔激活物1α(PGC-1α)是一種轉(zhuǎn)錄輔激活物,調(diào)節(jié)線(xiàn)粒體基因表達(dá)的關(guān)鍵因子。PGC-1α的過(guò)表達(dá)可以提高M(jìn)yHC Ⅰ的表達(dá)[5],PGC-1α的基因敲除可以促使Ⅱa型纖維向Ⅱx和Ⅱb轉(zhuǎn)化[20]。AMPK的激活或抑制,可以影響PGC-1α的表達(dá)[21],也可以影響MyHC基因表達(dá)和肌纖維類(lèi)型特性[22]。AMPK被激活,PGC-1α的表達(dá)升高,MyHC的表達(dá)也升高。反之AMPK被抑制時(shí),PGC-1α和MyHC的表達(dá)降低。已有研究報(bào)道,ROS能促進(jìn)AMPK活性增強(qiáng)和PGC-1α表達(dá)升高[4]。而本研究已證明在育肥豬飼糧中添加0.05%EGCG能夠顯著下調(diào)肌肉中ROS水平。同時(shí),蛋白定量結(jié)果表明背最長(zhǎng)肌和腰大肌中AMPKα的活性也被顯著抑制(P<0.05),背最長(zhǎng)肌中PGC-1α的表達(dá)顯著下調(diào)(P<0.05)。綜上,飼糧中添加EGCG可能通過(guò)清除ROS從而降低AMPKα的活性,并降低PGC-1α的表達(dá),進(jìn)而調(diào)控MyHC的表達(dá),影響肌纖維類(lèi)型。
此外,PGC-1α也可以通過(guò)誘導(dǎo)核呼吸因子1(Nuclear respiratory factor 1,NRF-1)的表達(dá),從而促進(jìn)線(xiàn)粒體的生物合成和氧化代謝[7]。而NRF-1能夠提高線(xiàn)粒體轉(zhuǎn)錄因子A(Mitochondrial transcription factor a,mtTFA)的表達(dá),mtTFA是調(diào)控線(xiàn)粒體DNA合成的一種蛋白[23]。細(xì)胞色素c(Cytochrome c,Cytc)是有氧氧化過(guò)程中的電子傳遞體,線(xiàn)粒體細(xì)胞色素c氧化酶(Cytochrome c oxidase,COXⅣ)是與線(xiàn)粒體電子傳遞相關(guān)的一種酶。在人的骨骼肌細(xì)胞中,過(guò)表達(dá)PGC-1α增加了COXⅣ和mtTFA的mRNA及蛋白表達(dá)[24]。也有一些研究報(bào)道,ROS可能通過(guò)升高NRF-1、mtTFA和PGC-1α的表達(dá)來(lái)影響線(xiàn)粒體生物合成[25-27]。本試驗(yàn)也得到類(lèi)似的結(jié)果,飼糧中添加EGCG能在不同程度上抑制背最長(zhǎng)肌和腰大肌mtTFA、NRF-1和COXⅣ的表達(dá)(P<0.05)。綜上,飼糧添加EGCG時(shí),與線(xiàn)粒體的生物合成有關(guān)的蛋白mtTFA、 NRF-1和COXⅣ表達(dá)都減少了,這與前面糖代謝酶活結(jié)果一致。
育肥豬飼糧中添加EGCG后,能夠在不同程度上降低肌肉中乳酸脫氫酶和琥珀酸脫氫酶活性,降低慢肌相關(guān)基因的表達(dá),可能是通過(guò)清除肌細(xì)胞內(nèi)ROS,抑制AMPK活性,從而抑制PGC-1α表達(dá),導(dǎo)致線(xiàn)粒體生物合成下降和慢肌纖維形成減少。
[1]楊飛云,陳代文,黃金秀,等.豬背最長(zhǎng)肌肌纖維類(lèi)型的發(fā)育性變化及品種與營(yíng)養(yǎng)影響特點(diǎn)[J].畜牧獸醫(yī)學(xué)報(bào),2008,39(12):1701-1708.
YANG F Y,CHEN D W,HUANG J X,et al.Developmental changes of myofiber types in longissimus dorsi muscle of Rongchang and DLY pigs under different nutrient condition[J].ActaVeterinariaetZootechnicaSinica,2008,39(12):1701-1708.(in Chinese)
[2]CANEPARI M,PELLEGRINO M A,D’ANTONA G,et al.Skeletal muscle fiber diversity and the underlying mechanisms[J].ActaPhysiol(Oxf),2010,199(4):465-476.
[3]FLUECK M.Tuning of mitochondrial pathways by muscle work:from triggers to sensors and expression signatures[J].ApplPhysiolNutrMetab,2009,34(3):447-453.
[4]IRRCHER I,LJUBICIC V,HOOD D A.Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells[J].AmJPhysiolCellPhysiol,2009,296(1):C116-C123.
[5]KANG C,O’MOORE K M,DICKMAN J R,et al.Exercise activation of muscle peroxisome proliferator-activated receptor-γ coactivator-1α signaling is redox sensitive[J].FreeRadicBiolMed,2009,47(10):1394-1400.
[6]LIN J,WU H,TARR P T,et al.Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres[J].Nature,2002,418(6899):797-801.
[7]WU Z,PUIGSERVER P,ANDERSSON U,et al.Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1[J].Cell,1999,98:115-124.
[8]BALABAN R S,NEMOTO S,F(xiàn)INKEL T.Mitochondria,oxidants,and aging[J].Cell,2005,120(4):483-495.
[9]DR?GE W.Free radicals in the physiological control of cell function[J].PhysiolRev,2002,82(1):47-95.
[10]ALLEN R G,TRESINI M.Oxidative stress and gene regulation[J].FreeRadicBiolMed,2000,28(3):463-499.
[11]HAWLEY J A,ZIERATH J R.Integration of metabolic and mitogenic signal transduction in skeletal muscle[J].ExercSportSciRev,2004,32(1):4-8.
[12]JI L L.Antioxidant signaling in skeletal muscle:a brief review[J].ExpGerontol,2007,42(7):582-593.
[13]OYEDOTUN K S,LEMIRE B D.The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase.Homology modeling,cofactor docking,and molecular dynamics simulation studies[J].JBiolChem,2004,279(10):9424-9431.
[14]CHEN W C,HSIEH S R,CHIU C H,et al.Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts[J].JBiomedSci,2014,21:56.
[15]吳秀琴,楊威,尹玉嬌,等.茶多酚對(duì)一次性力竭運(yùn)動(dòng)大鼠氧化應(yīng)激和炎癥反應(yīng)的影響[J].中國(guó)體育科技,2016,52(1):92-95.
WU X Q,YANG W,YIN Y J,et al.The effects of tea polyphenols supplement on oxidative stress and inflammatory response in rats after exhaustive exercise[J].ChinaSportScienceandTechnology,2016,52(1):92-95.(in Chinese)
[16]李爽,艾英偉,阿拉木斯,等.黃芪總苷對(duì)運(yùn)動(dòng)性疲勞大鼠骨骼肌抗氧化能力、ATP酶活性及乳酸含量的影響[J].吉林體育學(xué)院學(xué)報(bào),2010,26(3):68-69.
LI S,AI Y W,ALA M,et al.Effects of astragalosides on antioxidant capacity,ATPase activity and content of lactic acid in skeletal muscles of rats with exercise induced fatigue[J].JournalofJilinInstituteofPhysicalEducation,2010,26(3):68-69.(in Chinese)
[17]ZHONG R Z,ZHOU D W,TAN C Y,et al.Effect of tea catechins on regulation of antioxidant enzyme expression in H2O2-induced skeletal muscle cells of goatinvitro[J].JAgricFoodChem,2011,59(20):11338-11343.
[18]CHENG T H,SHIH N L,CHEN C H,et al.Role of mitogen-activated protein kinase pathway in reactive oxygen species-mediated endothelin-1-induced beta-myosin heavy chain gene expression and cardiomyocyte hypertrophy[J].JBiomedSci,2005,12(1):123-133.
[19]HARDIE D G,SAKAMOTO K.AMPK:a key sensor of fuel and energy status in skeletal muscle[J].Physiology(Bethesda),2006,21:48-60.
[20]HANDSCHIN C,CHIN S,LI P,et al.Skeletal muscle fiber-type switching,exercise intolerance,and myopathy in PGC-1α muscle-specific knock-out animals[J].JBiolChem,2007,282(41):30014-30021.
[22]R?CKL K S,HIRSHMAN M F,BRANDAUER J,et al.Skeletal muscle adaptation to exercise training:AMP-activated protein kinase mediates muscle fiber type shift[J].Diabetes,2007,56(8):2062-2069.
[23]SCHIAFFINO S,SANDRI M,MURGIA M.Activity-dependent signaling pathways controlling muscle diversity and plasticity[J].Physiology(Bethesda),2007,22:269-278.
[24]NIKOLIC N,RHEDIN M,RUSTAN A C,et al.Overexpression of PGC-1alpha increases fatty acid oxidative capacity of human skeletal muscle cells[J].BiochemResInt,2012,2012:714074.
[25]MIRANDA S,F(xiàn)ONCEA R,GUERRERO J,et al.Oxidative stress and upregulation of mitochondrial biogenesis genes in mitochondrial DNA-depleted HeLa cells[J].BiochemBiophysResCommun,1999,258(1):44-49.
[26]MITSUMOTO A,TAKEUCHI A,OKAWA K,et al.A subset of newly synthesized polypeptides in mitochondria from human endothelial cells exposed to hydroperoxide stress[J].FreeRadicBiolMed,2002,32(1):22-37.
[27]ST-PIERRE J,DRORI S,ULDRY M,et al.Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators[J].Cell,2006,127(2):397-408.
(編輯郭云雁)
Effects of EGCG on Muscle Fiber Types of Finishing Pigs
WANG Li-na,WANG Zhen,PENG Jian-long,WANG Jian-bing,YANG Ke-lin,SHU Gang,WANG Song-bo,ZHU Xiao-tong,GAO Ping,JIANG Qing-yan*
(NationalEngineeringResearchCenterForBreedingSwineIndustry,CollegeofAnimalScience,SouthChinaAgriculturalUniversity,Guangzhou510642,China)
The aim of this study was to investigate the effects of Epigallocatechin Gallate (EGCG) on muscle fiber types of finishing pigs.One-hundred eighty crossbred finishing pigs (Duroc × Yorkshire × Landrace,156-day-old) with an average body weight of (85.02 ± 1.15) kg were selected for this study.According to the consistent principle of weight and sex ratio between groups,pigs were randomly divided into 3 groups,and each group with 6 repeats (10 pigs/repeat(5 male,5 female)).Control group was fed with basal diet,treatment groups were fed with basal diet supplemented with 0.025% and 0.05% EGCG,respectively.The results showed that:1) 0.025% EGCG could significantly decrease the activity of LDH,the protein level of MyHCⅠ,PGC-1α,mtTFA and mRNA expression ofMyHCⅠ,Tnnt1,CytcandCOXⅣ in pigslongissimusdorsi(P<0.05);inpsoasmajormuscle,the activity of LDH and SDH and mRNA expression ofMyHCⅠwas reduced,the proportion of typeⅠmuscle fiber and mRNA expression ofMyHCⅡa,MyHCⅡx,MyHCⅡb were upregulated (P<0.05).2) Inlongissimusdorsi,0.05% EGCG treatment could significantly decrease the activity of LDH and SDH (P<0.05),the level of ROS (P<0.05),and activity of AMPK,the level of protein and mRNA expression of MyHCⅠ,PGC-1α,mtTFA and NRF-1 (P<0.05).While,inpsoasmajormuscle,0.050% EGCG treatment reduced the activity of LDH and SDH (P<0.05),the level of ROS (P<0.05),and the protein level and mRNA expression of MyHCⅠ,inhibited the phosphorylation of AMPK and protein expression of NRF-1 (P<0.05),but the proportion of typeⅠmuscle fiber was upregulated.In conclusion,the effect of EGCG onlongissimusdorsiandpsoasmajorof pigs might be completed by reducing ROS level,thus decreasing the AMPK activity and the expression of PGC-1α,eventually reducing the formation of slow-twitch muscle fibers and mitochondria biosynthesis.
EGCG;finishing pigs;muscle fiber types;mitochondria biosynthesis
10.11843/j.issn.0366-6964.2016.08.008
2015-09-06
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(2012CB124701);國(guó)家自然科學(xué)基金青年基金(31101780);博士點(diǎn)基金新教師類(lèi)(20114404120001)
王麗娜(1982),女,山西太谷人,講師,碩士生導(dǎo)師,主要從事動(dòng)物營(yíng)養(yǎng)生理研究,E-mail:wanglina@scau.edu.cn
江青艷,教授,博士生導(dǎo)師,E-mail:qyjiang@scau.edu.cn
S828;S821.2
A
0366-6964(2016)08-1581-11