秦 巍,林升炫,文曉剛
(四川大學(xué)材料科學(xué)與工程學(xué)院,四川 成都 610065)
?
Li4Ti5O12/TiO2納米復(fù)合材料制備及其鋰離子電池性能研究
秦巍,林升炫,文曉剛
(四川大學(xué)材料科學(xué)與工程學(xué)院,四川成都610065)
以鈦酸丁酯、氫氧化鋰為原料,在聚乙二醇(PEG200)體系下通過水熱法合成了Li4Ti5O12納米片/TiO2納米顆粒復(fù)合材料,采用XRD、SEM等對材料的結(jié)構(gòu),形貌等進(jìn)行了表征。通過控制Li/Ti 的摩爾比可以較好地控制TiO2的含量,分別得到純的Li4Ti5O12納米片或Li4Ti5O12納米片/TiO2納米顆粒復(fù)合材料。測試了制得材料的鋰離子電池性能,結(jié)果表明,Li4Ti5O12-TiO2復(fù)合納米材料具有優(yōu)良的充放電容量和倍率性能。首次放電可達(dá)到172 mAh·g-1,充電可達(dá)到170 mAh·g-1,效率高達(dá)98.8%。
Li4Ti5O12-TiO2;納米片;納米顆粒;水熱法;鋰離子電池
自從1991年鋰離子電池實(shí)現(xiàn)商業(yè)化應(yīng)用以來,對人們的生活產(chǎn)生了重要的影響[1-3]。鋰離子電池已經(jīng)被廣泛地使用在各種電子設(shè)備上,近年來,鋰離子電池被認(rèn)為是最有希望應(yīng)用在電動汽車(EVs)以及混合電動汽車(HEVs)上的動力電源候選者之一,這對包括電極材料在內(nèi)的鋰離子電池體系在電池容量,快速充放電,安全性,循環(huán)性能等方面提出了更高的要求[4-6]。在鋰離子電池負(fù)極材料方面,鈦基化合物受到了廣泛的關(guān)注,其中尤其是Li4Ti5O12由于具有平坦且相對較高的充放電平臺,優(yōu)異的熱穩(wěn)定性和循環(huán)性能而具有很大的潛力[7-8]。但較低的能量密度和電子電導(dǎo)率嚴(yán)重地制約了Li4Ti5O12電池材料的商業(yè)化生產(chǎn)[9]。目前,有很多研究采用體相摻雜(Na+[10],Au3+[11],Mg2+[12],Ag+[13])和導(dǎo)電相包覆(C[14],石墨烯[15],碳納米管[16],TiO2[17-19],SnO2[20])對Li4Ti5O12材料進(jìn)行改性,取得了一些效果。最近的研究表明,如采用TiO2與Li4Ti5O12復(fù)合能使Li+快速的嵌入和脫出,以此提高Li4Ti5O12的充放電性能,同時能提高電池的容量。另外,Li4Ti5O12和TiO2的納米結(jié)構(gòu)包括形貌,尺寸,晶體結(jié)構(gòu)等對其性能有重要影響,如Li4Ti5O12-金紅石TiO2納米片結(jié)構(gòu)[17],Li4Ti5O12-TiO2納米線[18],球形顆粒狀的Li4Ti5O12-TiO2[19],銳鈦礦TiO2包覆的Li4Ti5O12納米棒[21],雙相的顆粒狀Li4Ti5O12-TiO2[22,25]等均被成功制備,顯示了比相應(yīng)純相更好的容量,倍率性能或循環(huán)穩(wěn)定性。本文中我們采用簡單的一步反應(yīng)制備了包括Li4Ti5O12納米片與少量TiO2八面體納米顆粒的復(fù)合納米材料,結(jié)果表明少量TiO2八面體納米顆粒的存在能顯著改善鋰離子Li4Ti5O12納米片的鋰離子電池性能。
1.1Li4Ti5O12-TiO2復(fù)合材料的制備
首先將10 mmol的鈦酸丁酯滴加入到25mL的PEG200中在室溫下攪拌至溶液澄清,再將溶液倒入氫氧化鋰溶液中攪拌。Li/Ti的摩爾比分別為3.8:5、4.5:5,分別標(biāo)記為LTO1和LTO2。最后將溶液倒入100mL聚四氟乙烯反應(yīng)釜中,180℃水熱反應(yīng)24 h,產(chǎn)物用乙醇和蒸餾水分別洗滌3次,在80℃下干燥,最后在管式爐內(nèi)空氣氣氛中500℃熱處理4 h,得到白色粉末產(chǎn)物用于后續(xù)的表征和性能測試。
1.2樣品的性能及表征
采用philips公司的Panalytical X’Pert型粉末X射線衍射儀和Hitachi公司的S4800型掃描電子顯微鏡對產(chǎn)物進(jìn)行表征。電池制備過程如下:將制備的活性物質(zhì)、聚偏氟乙烯(PVDF)和乙炔黑按質(zhì)量比8:1:1混合在球磨機(jī)中充分研磨2 h,加入適量的N-甲基吡咯烷酮(NMP)繼續(xù)研磨成糊狀,然后將其均勻涂到銅箔上,于真空干燥箱中80℃下干燥12 h后裁成極片,稱量并記錄質(zhì)量后在手套箱中組裝成CR2032型扣式電池。用新威爾BTS-5V/500mA電池性能測試系統(tǒng)在500 mA/g 電流密度下進(jìn)行恒流充放電性能測試,測試電壓范圍為1.0~2.5 V。
2.1樣品的物相分析
圖1是的LTO1和LTO2樣品在500℃下燒結(jié)4 h的XRD譜。從圖1可以看出,在2θ分別為18.3°,35.6°,43.2°,47.4°,57.2°,62.8°,66.1°等處出現(xiàn)了衍射峰,分別對應(yīng)于Li4Ti5O12(111)、(311)、(400)、(331)、(333)、(440)、(531)晶面,與標(biāo)準(zhǔn)Li4Ti5O12的XRD衍射峰一致(JCPDS No.49-0207)。圖1(a)中,在27.5°,41.3°,54.4°出現(xiàn)了衍射峰,分別對應(yīng)與金紅石型的TiO2(JCPDS No.21-1276)的(110)、(111)、(211)晶面。另外,在25.2°,37.8°也出現(xiàn)了銳鈦礦型的TiO2(JCPDS No.21-1272)衍射峰,由此表明LTO1為Li4Ti5O12-TiO2復(fù)合材料。由圖1(b)可以看出LTO2為純相的Li4Ti5O12,樣品的峰形尖銳且高,說明其有較高的結(jié)晶度。
圖1 LTO1(a)和LTO2(b)的XRD圖譜
2.2樣品的形貌分析
圖2是Li4Ti5O12-TiO2(LTO1)和Li4Ti5O12(LTO2)燒結(jié)前后的SEM形貌圖。圖2(a)和圖2(b)分別為Li4Ti5O12-TiO2和Li4Ti5O12燒結(jié)前的SEM形貌圖,從圖2(a)可以看出Li4Ti5O12-TiO2是由許多的小片和一些八面體結(jié)構(gòu)小顆粒堆積在一起組成,片的大小約為200 nm,厚度約為20 nm,八面體結(jié)構(gòu)小顆粒大小從150 nm到500 nm不等。從圖2(b)可以看出純Li4Ti5O12只有片狀結(jié)構(gòu),尺寸較均勻組成,大小和厚度都與圖2(a)中納米片基本一致。圖2(c)和圖2(d)分別為Li4Ti5O12-TiO2和Li4Ti5O12燒結(jié)后的SEM形貌圖,由此看出燒結(jié)前后形貌上并沒有明顯的差別,說明得到的產(chǎn)物的結(jié)構(gòu)比較穩(wěn)定。
圖2 樣品的SEM照片
2.3Li4Ti5O12材料的電化學(xué)性能
圖3是Li4Ti5O12-TiO2和Li4Ti5O12在0.2 C下首次充放電曲線,從圖3中可看出,兩者的放電平臺大約都在1.5 V,通常Li4Ti5O12材料相對于鋰電極的電位為1.55 V,這個電位平臺正好與其對應(yīng),是Li4Ti5O12材料中鋰離子嵌入和脫出過程的典型特點(diǎn),其理論充放電比容量為175 mAhg-1,實(shí)際比容量為150 mAhg-1到160 mAhg-1。Li4Ti5O12-TiO2的首次放電可達(dá)到172 mAhg-1,充電可達(dá)到170 mAhg-1,效率高達(dá)98.8%。而純Li4Ti5O12納米片的首次放電只能達(dá)到164 mAhg-1,充電只能達(dá)到143 mAhg-1,效率只有87%。Li4Ti5O12-TiO2電極在0.2 C時容量為172 mAhg-1,十分接近Li4Ti5O12的理論容量(175 mAhg-1),這是由于TiO2的放電造成的,其理論容量為336 mAhg-1。Li4Ti5O12-TiO2在一定程度上增加了容量,并使鋰離子更好地脫嵌,提高了效率。圖4是Li4Ti5O12-TiO2和Li4Ti5O12在不同電流倍率下的充放電測試結(jié)果,從圖4中可知,Li4Ti5O12-TiO2在0.2 C、0.5 C、1 C、2 C、5 C下,容量分別為172 mAhg-1、161 mAhg-1、150 mAhg-1、126 mAhg-1、113 mAhg-1,而Li4Ti5O12的容量分別只有143 mAhg-1、129 mAhg-1、114 mAhg-1、103 mAhg-1、81 mAhg-1。顯而易見,隨著電流倍率的增加,兩種材料電極的放電容量都隨之減小。最后從高倍率5 C回到低倍率0.2 C測試時,Li4Ti5O12-TiO2容量的保持率在95%以上,而Li4Ti5O12的容量只能回到120 mAhg-1,容量的保持率只有82%左右。圖5顯示了材料在5 C倍率下的循環(huán)性能,在5 C下充放電循環(huán)30次以后,Li4Ti5O12-TiO2的容量變?yōu)?05 mAhg-1,而Li4Ti5O12的容量為58 mAhg-1,其容量保持率分別為93%和71%。因此,Li4Ti5O12-TiO2展示了比Li4Ti5O12好的倍率性能,特別是在較大倍率充放電情況下,這是因?yàn)長i4Ti5O12-TiO2具有較多的相界面,按照界面儲存機(jī)理,鋰離子和電子分別儲存在兩相間的界面區(qū),產(chǎn)生一個電容,對電池的倍率性能是有利的[22-25]。另外,較小尺寸的納米片使電解液更好的滲透并與Li4Ti5O12-TiO2接觸,進(jìn)行電極反應(yīng)[26]。
圖3 Li4Ti5O12-TiO2(a) 和 Li4Ti5O12(b)在0.2 C倍率下的首次充放電曲線
圖4 Li4TiO5O12-TiO2和Li4Ti5O12不同充放電倍率下的倍率性能
圖5 Li4TiO5O12-TiO2和Li4Ti5O12電壓范圍為1~2.5 V之間5 C倍率下的充放電循環(huán)性能
本文用簡單的一步水熱法可控合成了Li4Ti5O12納米片/TiO2八面體納米顆粒和純Li4Ti5O12納米片,研究了它們的電池性能。結(jié)果表明,Li4Ti5O12-TiO2有更高的容量,更好的倍率性能。Li4Ti5O12-TiO2首次放電可達(dá)到172 mAhg-1,充電可達(dá)到170 mAhg-1,效率高達(dá)98.8%;而Li4Ti5O12的首次放電只能達(dá)到164 mAhg-1,充電只能達(dá)到143 mAhg-1,效率只有87%。倍率性能方面,從高倍率回到低倍率測試時,Li4Ti5O12-TiO2容量的保持率在95%以上,而Li4Ti5O12的容量保持率只有82%左右。高倍率循環(huán)方面,在5 C下充放電循環(huán)30次以后,Li4Ti5O12-TiO2的容量變?yōu)?05 mAhg-1,容量保持率有93%;而Li4Ti5O12的容量為58 mAhg-1,容量保持率只有71%。
[1]TAKEHARA ZL,KANAMURA K.Historical development of rechargeable lithium batteries in Japan[J].Electrochim Acta,1993,38:1169-1171.
[2]MEGAHED S,SCROSATI B.Lithium-ion rechargeable batteries[J].Power Sources,1994,51:79-104.
[3]JUGOVIC D,USKOKOVIC D.A review of recent developments in the synthesis procedures of lithium iron phosphate powders[J].Power Sources,2009,190:538-544.
[4]LIwei Su,YU Jing,ZHEN Zhou.Li ion Battery Materials with Core-Shell Nanostructures[J].Nanoscale,2011,3:3967-3983.
[5]Li H,Wang Z X,Chen L Q.Research on Advanced Materials for Li-Ion Batteries[J].Adv.Mater.,2009,21:4593-4607.
[6]Chen Z H,Belharouak I,Sun Y-K.Titanium-based Anode Materials for Safe Lithium-Ion Batteries[J].Adv.Funct.Mater.,2013,23:959-969.
[7]Tsai P-c,Hsu W-d,Lin S-k.Atomistic structure and Ab initio electrochemical properties of Li4Ti5O12defect spinel for Li ion batteries[J].Electro chem Soc,2014,161:A439-444.
[8]Yi T F,Yang S Y,Xie Y.Recent advances of Li4Ti5O12as a promising next generation anode material for high power lithiumion batteries[J].Mater Chem.A,2015,3:5750-577.
[9]Schweikert N,Hahn H,Indris S.Cycling behaviour of Li/Li4Ti5O12cells studied by electrochemical impedance spectroscopy[J].Phys.Chem.Chem.Phys,201,13:6234-6240.
[10]Liu Z,Sun L,Yang W,et al.The synergic effects of Na and K co-doping on the crystal structure and electrochemical properties of Li4Ti5O12as anode material for lithium ion battery[J].Solid State Sciences,2015,44:39-44.
[11]Cheng C L,Qiu H L,Li B C,et al.A facile titanium glycolate precursor route to mesoporous Au/Li4Ti5O12spheres for high-rate lithium-ion batteries.[J].Acs Applied Materials & Interfaces,2012,4(3):1233-1238.
[12]Ji S,Zhang J,Wang W,et al.Preparation and effects of Mg-doping on the electrochemical properties of spinel Li4Ti5O12as anode material for lithium ion battery[J].Materials Chemistry & Physics,2010,123(2):510-515.
[13]Erdas A,Ozcan S,Nalci D,et al.Novel Ag/Li4Ti5O12Binary Composite Anode Electrodes for High Capacity Li-Ion Batteries[J].Surface & Coatings Technology,2015,271:136-140.
[14]Pan M,Zhang L,Gong L,et al.Investigation of carbon-coated lithiated Li4+xTi5O12/C for lithium-ion batteries[J].Materials Research Bulletin,2015,71:48-52.
[15]Zhang Q,Peng W,Wang Z,et al.Synthesis and characterization of Li4Ti5O12/graphene composite as anode material with enhanced electrochemical performance[J].Ionics,2013,19(5):717-723.
[16]Zhang H,Chen Y,Li J,et al.Li4Ti5O12/CNTs composite anode material for large capacity and high-rate lithium ion batteries[J].International Journal of HydrogenEnergy,2014,39(28):16096-16102.
[17]Yi T F,Yang S Y,Zhu Y R,et al.Li4Ti5O12-rutile TiO2nanosheet composite as a high performance anode material for lithium-ion battery[J].International Journal of HydrogenEnergy,2015,40(27):8571-8578.
[18]Liao J Y,Chabot V,Gu M,et al.Dual phase Li4Ti5O12nanowire arrays as integrated anodes for high-rate lithium-ion batteries[J].Nano Energy,2014,9:383-391.
[19]Wang J,Zhao H,Yang Q,et al.Li4Ti5O12-TiO2Composite AnodeMaterial For Lithium-IonBatteries[J].Journal of Power Sources,2013,222:196-201.
[20]Yang K M,Yun C K,Sang M J,et al.Electrochemical Properties of Spherical Hollow Composite Powders with Various Li4Ti5O12/SNO2Ratios Prepared by Spray Pyrolysis[J].International Journal of ElectrochemicalScience,2013,8(10):11972-11983.
[21]Chen M M,Sun X,Qiao Z J,et al.Anatase-TiO2nanocoating of Li4Ti5O12nanorod anode for lithium-ion batteries[J].Alloys Compd,2014,601:38-42.
[22]X Li,C Lai,C W Xiao,et al.Enhanced high rate capability of dual-phase Li4Ti5O12-TiO2induced by pseudocapacitive effect[J].Electrochimica Acta,2011,56:9152-9158.
[23]J Jamnik,J Maier.Nanocrystallinity effects in lithium battery materials[J].Phys.Chem.Chem.Phys.,2003,5:5215-5220.
[24]X Q Yu,J P Sun,K Tang,et al.Reversible lithium storage in LiF/Ti nanocomposites.Phys[J].Chem.Chem.Phys.,2009,11:9497-9503.
[25]M M Rahman,J Z Wang,M F Hassan,et al.Basic molten salt process-A new route for synthesis of nanocrystalline Li4Ti5O12-TiO2anode material for batteries using eutectic mixture of LiNO3-LiOH-Li2O2[J].Journal of Power Sources,2010,195:4297-4303.
[26]L Shen,C Yuan,H Luo,et al.In situ growth of Li4Ti5O12on multi-walled carbon nanotubes:novel coaxial nanocables for high rate lithium ion batteries[J].Journal of Materials Chemistry,2011,21:761-767.
Synthesis and Li-ion Battery Performance of Li4Ti5O12/TiO2Nanocomposites
QIN Wei,LIN Sheng-xuan,WEN Xiao-gang
(College of Materials Science and Engineering,Sichuan University,Sichuan Chengdu 610065,China)
Nanocomposites containing Li4Ti5O12nanosheets and TiO2nanoparticles were synthesized by a low temperature hydrothermal method using butyl Titanate and LiOH·H2O as the precursors,and PEG200 as the structure directing agent.The as-synthesized products were characterized using X-ray diffraction (XRD),scanning electron microscopy (SEM).By controlling the ratio of Li and Ti,pure sheet-like Li4Ti5O12and Li4Ti5O12/TiO2composite nanomaterials could be prepared respectively.The Li ion battery performance of synthesized nanomaterials was measured.The results indicated that the obtained Li4Ti5O12-TiO2nanocomposites had good Li ion battery performance.The initial discharge-charge capacities of Li4Ti5O12-TiO2nanocomposites at 0.2 C were 172 mAh·g-1and 170 mAh·g-1,respectively,in the window of 1.0 ~2.5 V at room temperture,the charge-discharge efficiency can reach 98.8%.
Li4Ti5O12-TiO2; nanosheets; nanoparticle; hydrothermal method; lithium-ion battery
秦巍(1987-),男,碩士研究生。
文曉剛(1972-),教授。
O61
A
1001-9677(2016)011-0111-04