李 軍, 胡 亞, 叢龍騰, 周為浩, 于思淼
(南京理工大學(xué) 機(jī)械工程學(xué)院, 南京 210094)
?
能量因素對(duì)壓縮空氣彈射內(nèi)彈道性能影響研究
李軍, 胡亞, 叢龍騰, 周為浩, 于思淼
(南京理工大學(xué) 機(jī)械工程學(xué)院, 南京210094)
以大口徑火箭彈壓縮空氣發(fā)射裝置為研究對(duì)象,利用理論分析,確定影響內(nèi)彈道性能的能量因素,并建立了不同空氣壓力、不同體積以及有、無泄漏的壓縮空氣彈射內(nèi)彈道模型。通過對(duì)流固耦合數(shù)值仿真結(jié)果的分析,得到了彈藥速度與時(shí)間、彈藥速度與位移、彈藥加速度與時(shí)間等關(guān)系,從而分析出能量因素對(duì)壓縮空氣彈射內(nèi)彈道性能的影響。
壓縮空氣彈射;內(nèi)彈道性能;能量因素;有限元仿真
火箭武器的發(fā)射方式按照發(fā)射動(dòng)力可以分為冷發(fā)射和熱發(fā)射。冷發(fā)射是依靠外部動(dòng)力使火箭武器彈出發(fā)射裝置, 在主發(fā)動(dòng)機(jī)點(diǎn)火前獲得一定初速度的發(fā)射[1]。壓縮空氣彈射是冷發(fā)射的代表方式之一, 利用高壓空氣作用在火箭武器下部提供彈射外力, 從而將火箭武器推出發(fā)射裝置[2-3],具有爆發(fā)力強(qiáng)及溫度適應(yīng)性廣等優(yōu)勢(shì)[4]。針對(duì)壓縮空氣彈射內(nèi)彈道問題, 美蘇兩國(guó)利用各種試驗(yàn)充分研究了壓縮空氣系統(tǒng)的性能以對(duì)其利用[5]。隨著壓縮空氣彈射系統(tǒng)種類逐漸復(fù)雜多樣, 試驗(yàn)成本增加, 利用試驗(yàn)來研究不同壓縮空氣彈射系統(tǒng)內(nèi)彈道性能越來越困難。 近年來, 計(jì)算機(jī)性能的增加和有限元技術(shù)的發(fā)展, 使利用虛擬樣機(jī)技術(shù)研究壓縮空氣彈射成為可能[6]。 本文采用有限元仿真分析方法, 利用雙向流固耦合[7]技術(shù)研究能量因素對(duì)大口徑火箭彈壓縮空氣彈射內(nèi)彈道性能的影響。
壓縮空氣彈射簡(jiǎn)化模型如圖1所示。 整體戰(zhàn)術(shù)技術(shù)要求火箭彈在發(fā)射管管口的速度v0達(dá)到200 m/s, 發(fā)射裝置高壓室壓縮空氣壓強(qiáng)為25~35 MPa, 取中間值30 MPa為初始?jí)簭?qiáng)P0, 初始容積V0為0.2 m3, 整體發(fā)射裝置長(zhǎng)度L不得超過12 m。 由于在模型仿真中無法準(zhǔn)確判斷發(fā)射裝置的總長(zhǎng), 以火箭彈達(dá)到v0時(shí)的位移l與高壓室段長(zhǎng)度之和替代L, 以火箭彈彈底位于高壓室出口時(shí)刻為初始時(shí)刻t0。發(fā)射管管壁壁厚為30 mm, 火箭彈直徑為275 mm。
圖1壓縮空氣彈射示意圖
為了更好地達(dá)到戰(zhàn)術(shù)技術(shù)要求, 實(shí)現(xiàn)最佳的內(nèi)彈道性能, 需要分析影響內(nèi)彈道的因素, 并且將壓縮空氣能量最大利用, 如何確定壓縮空氣能量的影響因素是本文的重點(diǎn)。
按照熱力學(xué)定律描述, 流動(dòng)空氣的絕對(duì)能量由焓、 運(yùn)動(dòng)能和勢(shì)能組成, 起決定作用的是流動(dòng)空氣的焓, 其運(yùn)動(dòng)能和勢(shì)能基本可以忽略不計(jì)[8]。 焓又由流動(dòng)空氣的內(nèi)能和傳遞能組成。流動(dòng)空氣的能量組成可表示為
H=U+pV=mCpθ
(1)
式中:H為系統(tǒng)能量;U為內(nèi)能;p為目標(biāo)空氣壓強(qiáng);V為目標(biāo)空氣體積;m為空氣質(zhì)量;Cp為等壓比熱;θ為空氣絕對(duì)溫度。
參照式(1), 空氣的絕對(duì)能量取決于空氣的質(zhì)量和溫度, 與空氣壓力無關(guān)。 空氣質(zhì)量越大、 溫度越高, 能量越大。 因此, 即使是周圍的大氣也具有很大的能量。
但這與越壓縮空氣壓強(qiáng)越大, 能量就越大的觀點(diǎn)存在悖論, 究其原因, 是因?yàn)閴嚎s空氣能量體現(xiàn)形式是伴隨空氣體積的壓縮或者膨脹而增減, 是與絕對(duì)能量不同的性質(zhì)概念, 所以焓不能用來表示儲(chǔ)存于壓縮空氣中用于動(dòng)力傳動(dòng)的能量。
因此需要定義壓縮空氣對(duì)外的做功能力, 即壓縮空氣的有效能。 在該定義的基礎(chǔ)上, 有效能是一個(gè)相對(duì)于大氣狀態(tài)基準(zhǔn)量的相對(duì)量(亦可以相當(dāng)于其他壓強(qiáng)狀態(tài)), 是建立在壓縮空氣彈射系統(tǒng)工況相較于標(biāo)準(zhǔn)大氣系統(tǒng)基礎(chǔ)之上的。 壓縮空氣的有效能E可以表示為
(2)
式中:pa外界環(huán)境壓力。
可以看出影響內(nèi)彈道性能的能量因素主要包含高壓室壓縮空氣壓強(qiáng)和體積, 除此之外在實(shí)際發(fā)射裝置中, 火箭彈和發(fā)射管之間存在間隙, 所以在壓縮空氣彈射時(shí)作用在火箭彈彈底的高壓氣體必然存在由于泄漏造成的能量損失, 從而影響內(nèi)彈道性能[9]。下面逐一探討三個(gè)主要因素對(duì)內(nèi)彈道的影響。
3.1壓強(qiáng)對(duì)冷發(fā)射裝置內(nèi)彈道性能的影響
在有限元軟件中建立雙向流固耦合仿真模型, 在合理的壓強(qiáng)范圍內(nèi), 取P0(30 MPa)附近的四組壓強(qiáng)25 MPa, 28 MPa, 32 MPa, 35 MPa的壓縮空氣模型進(jìn)行比較, 彈底位移l和速度v對(duì)應(yīng)結(jié)果如圖2所示。
圖2不同壓強(qiáng)下模型彈底速度-位移曲線
由圖2可以看出, 隨著壓強(qiáng)的增加, 速度和位移都明顯增加, 并且在足夠長(zhǎng)的距離和相應(yīng)的時(shí)間都可以達(dá)到v0的戰(zhàn)術(shù)技術(shù)要求。此外, 隨著位移的增加, 不同壓強(qiáng)之間的速度差距逐漸增大。在相同的壓強(qiáng)下, 同一曲線的斜率逐漸減小, 即速度隨位移的增加量逐漸減小。不同壓強(qiáng)模型的發(fā)射裝置總長(zhǎng)L如表1所示。
表1 不同壓強(qiáng)模型發(fā)射裝置總長(zhǎng)
表1中, 最大的L數(shù)值對(duì)應(yīng)的是25 MPa模型, 發(fā)射裝置總長(zhǎng)約為11 m, 處于發(fā)射裝置總長(zhǎng)度的臨界點(diǎn), 符合戰(zhàn)術(shù)要求, 因此在總長(zhǎng)度上所有壓強(qiáng)模型均符合戰(zhàn)術(shù)技術(shù)要求。在合理的壓強(qiáng)范圍內(nèi)比較, 隨著壓強(qiáng)的增大, 壓強(qiáng)增加量分別為3 MPa, 2 MPa, 2 MPa, 3 MPa, 而位移減少量則為2 m, 0.86 m, 0.67 m, 0.75 m, 說明壓強(qiáng)對(duì)位移減少量的貢獻(xiàn)也逐漸減少, 進(jìn)而說明隨著壓強(qiáng)的逐漸增加, 壓縮空氣能量的損失也越大, 因此理論上壓強(qiáng)越小越好。綜合考慮發(fā)射裝置總長(zhǎng)度及能量損失, 確定最佳模型壓強(qiáng)為28 MPa。
3.2高壓室容積對(duì)冷發(fā)射裝置內(nèi)彈道性能的影響
高壓室容積同壓強(qiáng)一樣是決定壓縮空氣有效能的主要因素, 本文采用等差擴(kuò)大發(fā)射裝置體積的方法考慮容積因素對(duì)發(fā)射裝置內(nèi)彈道的影響, 擴(kuò)大體積采用保證高壓室長(zhǎng)度不變, 擴(kuò)大內(nèi)徑的方法, 在初始內(nèi)徑D0的基礎(chǔ)上逐漸增加, 分別達(dá)到1.1, 1.2, 1.3, 1.4, 1.5, 1.6倍的V0, 在對(duì)比模型中壓縮空氣壓強(qiáng)均為P0, 仿真后得到彈底的速度-時(shí)間曲線和位移-時(shí)間曲線如圖3(a)~(b)所示。
圖3不同容積模型下彈底速度-時(shí)間及位移-時(shí)間曲線
由圖3可以看出, 速度和位移隨著體積的增大而相應(yīng)增加, 但曲線間差異較小, 說明10%的體積增加量對(duì)動(dòng)力學(xué)結(jié)果并沒有產(chǎn)生很大影響。由于最小體積V0已達(dá)到戰(zhàn)術(shù)技術(shù)要求, 那么其他不同體積對(duì)比模型能在更短距離達(dá)到200 m/s, 相應(yīng)發(fā)射裝置總長(zhǎng)度更短。不同容積模型的發(fā)射裝置總長(zhǎng)如表2所示。
由表2可以看出, 體積以0.02 m3的等差增大。 隨著高壓室容積的增大, 位移的減少量依次為0.49 m, 0.33 m, 0.32 m, 0.24 m, 0.17 m, 0.15 m, 說明隨著容積的增大, 其對(duì)發(fā)射裝置總長(zhǎng)度的影響逐漸減小。
表2 不同高壓室容積模型發(fā)射裝置總長(zhǎng)
3.3泄漏面積對(duì)冷發(fā)射裝置內(nèi)彈道性能的影響
火箭彈的尾部橫截面積與發(fā)射管通氣面積之差稱為泄漏面積, 也就是環(huán)形的間隙面積, 取決于彈管間間隙。 根據(jù)文獻(xiàn)[10], 采用0.005 m2作為本次模型的泄漏面積。
在確定泄漏模型彈管間隙的條件下, 對(duì)無泄漏模型和泄漏模型進(jìn)行有限元仿真分析, 得出的對(duì)比結(jié)果如圖4(a)~(b)所示。
圖4有、 無泄漏模型彈底位移-時(shí)間及速度-時(shí)間曲線
由圖4可以看出, 在無泄漏模型速度達(dá)到v0時(shí)刻, 無泄漏模型的速度是泄漏模型的1.11倍, 位移為1.14倍, 泄漏使能量大量消耗。與其他能量因素相比, 泄漏對(duì)內(nèi)彈道性能影響較大。
為具體分析加速度情況, 得出的加速度-位移曲線如圖5所示。
由圖5可以看出, 隨著火箭彈前進(jìn), 其加速度
圖5有、 無泄漏模型彈底加速度-位移曲線
在不斷減小。 從曲線上下間隔的趨勢(shì)可以得出, 隨著位移的增加,兩模型的火箭彈加速度差異在減小。 這說明隨著壓縮空氣壓強(qiáng)的降低, 泄漏面積對(duì)內(nèi)彈道性能的影響也在減弱, 其造成的能量損失也相應(yīng)降低。
無泄漏模型與泄漏模型對(duì)比結(jié)果如表3所示。
表3 無泄漏模型與泄漏模型結(jié)果對(duì)比
為定量確定能量的損失情況, 從無泄漏模型達(dá)到v0時(shí)刻的兩者動(dòng)力學(xué)數(shù)值對(duì)比得出:從能量上來看, 無泄漏模型達(dá)到v0的火箭彈具有的動(dòng)能為4×106J, 而泄漏模型的火箭彈具有的動(dòng)能為3.17×106J, 能量損耗大約為1/4。
所以若按照泄漏面積0.005 m2來看, 壓縮空氣的能量會(huì)很大損耗, 由于發(fā)射裝置和火箭彈相對(duì)固定, 因此不能要求改變發(fā)射管結(jié)構(gòu)或者火箭彈尺寸來減小彈管間隙。為減小泄漏面積, 除了增加火箭彈彈體的加工精度外, 還可采用增加密封裝置來減小泄漏面積, 如在火箭彈彈體上增加密封圈, 或者在火箭彈彈底增加類似活塞的火箭彈托體, 以減少能量損耗。
本文通過有限元仿真得出壓縮空氣壓強(qiáng)、 高壓室容積及泄漏面積等能量因素對(duì)內(nèi)彈道性能的影響, 總結(jié)如下:
(1) 隨著壓縮空氣壓強(qiáng)增加, 壓強(qiáng)對(duì)內(nèi)彈道性能的影響減小。高壓室壓強(qiáng)在合理范圍內(nèi), 壓強(qiáng)越大, 能量利用率越低;
(2) 隨著高壓室容積的增加, 容積對(duì)內(nèi)彈道性能的影響減小。在滿足戰(zhàn)術(shù)要求條件下, 高壓室容積越小, 能量利用率越高;
(3) 泄漏會(huì)導(dǎo)致壓縮空氣能量大量損耗, 0.005 m2的泄漏面積會(huì)導(dǎo)致近1/4的能量損耗, 對(duì)內(nèi)彈道性能的影響較大, 可通過增加密封裝置減少因泄漏導(dǎo)致的能量損耗。
[1] 周子林. 戰(zhàn)略導(dǎo)彈的冷發(fā)射技術(shù)[J]. 國(guó)外導(dǎo)彈與宇航, 1980(10): 1-9.
[2] 芮守禎, 邢玉明. 幾種導(dǎo)彈彈射動(dòng)力系統(tǒng)內(nèi)彈道性能比較[J]. 北京航空航天大學(xué)學(xué)報(bào), 2009,35(6): 766-770.
[3] 李文盛. 舞劍向蒼穹——淺談防空導(dǎo)彈發(fā)射方式[J]. 兵器知識(shí), 2011(11): 42-45.
[4] 叢龍騰,姜超, 魯霄光,等. 基于AUTODYN的壓縮空氣彈射內(nèi)彈道研究[J]. 航空兵器, 2014(5): 46-49.
[5] 岳峰. 國(guó)外艦空導(dǎo)彈武器系統(tǒng)現(xiàn)狀及發(fā)展趨勢(shì)[J]. 飛航導(dǎo)彈, 2012(8): 57-61.
[6] Panciroli R. Water Entry of Flexible Wedges: Some Issues on the FSI Phenomena[J]. Applied Ocean Research, 2013, 39(1): 72-74.
[7] 劉玉磊. 燃?xì)舛媪鞴恬詈蟼鳠釘?shù)值分析[J]. 航空兵器, 2013(3): 41-43.
[8] 蔡茂林. 現(xiàn)代氣動(dòng)技術(shù)理論與實(shí)踐第四講:壓縮空氣的能量[J]. 液壓氣動(dòng)與密封, 2007, 27(5): 54-59.
[9] 方九如. 超近程防御系統(tǒng)壓縮空氣發(fā)射裝置分析[D]. 南京: 南京理工大學(xué), 2014.
[10] 喬汝椿. 輕型艦載魚雷發(fā)射裝置漏泄空氣能量計(jì)算[J]. 魚雷技術(shù), 1999(1): 33-35.
Study on the Influence of Energy Factors on the Interior Ballistic Performance of Compressed Air Ejection
Li Jun, Hu Ya, Cong Longteng, Zhou Weihao, Yu Simiao
(School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China)
For studying the compressed air ejection device of large-caliber rocket projectiles, the theoretical analysis is used to identify energy factors that influence the interior ballistic performance, and interior ballistic models of compressed air ejection are set up based on different air pressure, different volume, leakage and no leakage. Through analyzing the numerical simulation results of fluid-solid coupling, the relationships among ammunition velocity and time, ammunition velocity and displacement, ammunition acceleration and time are got, and the influences of energy factors on the interior ballistic performance of compressed air ejection are acquired.
compressed air ejection; interior ballistic performance; energy factors; finite element simulation
10.19297/j.cnki.41-1228/tj.2016.03.016
2015-09-30
李軍(1965-), 男, 河南平頂山人, 教授, 研究方向?yàn)榛鸺龑?dǎo)彈發(fā)射技術(shù)。
TJ768
A
1673-5048(2016)03-0071-04