王文鋒, 李春花, 黃紹文*, 高 偉, 唐繼偉
(1中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所/農(nóng)業(yè)部植物營(yíng)養(yǎng)與肥料重點(diǎn)實(shí)驗(yàn)室, 北京 100081;2天津市農(nóng)業(yè)資源與環(huán)境研究所, 天津 300192)
?
不同施肥模式對(duì)設(shè)施秋冬茬芹菜生育期間土壤酶活性的影響
王文鋒1, 李春花1, 黃紹文1*, 高 偉2*, 唐繼偉1
(1中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所/農(nóng)業(yè)部植物營(yíng)養(yǎng)與肥料重點(diǎn)實(shí)驗(yàn)室, 北京 100081;2天津市農(nóng)業(yè)資源與環(huán)境研究所, 天津 300192)
【目的】利用在天津的日光溫室蔬菜不同施肥模式定位試驗(yàn),研究了不同施肥模式對(duì)設(shè)施菜田土壤酶活性的影響,為設(shè)施蔬菜高效施肥和菜田土壤可持續(xù)利用提供依據(jù)。【方法】取樣調(diào)查在第9茬蔬菜(秋冬茬芹菜)進(jìn)行。定位試驗(yàn)設(shè)6個(gè)處理,在等氮磷鉀條件下,分別為1)全部施用化肥氮(4/4CN),2)3/4化肥氮+1/4豬糞氮(3/4CN+1/4PN),3)2/4化肥氮+2/4豬糞氮(2/4CN+2/4PN),4)1/4化肥氮+3/4豬糞氮(1/4CN+3/4PN),5)2/4化肥氮+1/4豬糞氮+1/4秸稈氮(2/4CN+1/4PN+1/4SN),6)2/4化肥氮+2/4秸稈氮(2/4CN+2/4SN)。在芹菜基肥施用前和定植后30、60、90、110天,采取0—20 cm土壤樣品,測(cè)定土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纖維二糖苷酶、幾丁質(zhì)酶、磷酸酶和脲酶的活性,分析其與土壤微生物量碳氮及土壤可溶性有機(jī)碳氮含量之間的關(guān)系。【結(jié)果】芹菜生育期間不同施肥模式土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纖維二糖苷酶、幾丁質(zhì)酶和磷酸酶的活性總體上先增后降,較高土壤酶活性均出現(xiàn)在芹菜定植后6090 d; 土壤脲酶活性總體上呈逐漸升高的趨勢(shì)。芹菜季有機(jī)無(wú)機(jī)肥料配施模式土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纖維二糖苷酶、幾丁質(zhì)酶、磷酸酶和脲酶的活性較4/4CN模式平均分別增加22.9%92.0%、20.1%152.4%、23.1%145.1%、28.7%273.8%、9.2%207.8%、13.7%86.8%和6.5%56.5%,其中以配施秸稈模式土壤酶活性相對(duì)較高,較4/4CN模式平均分別增加59.9%92.0%、98.9%152.4%、90.3%145.1%、171.6%273.8%、106.4%207.8%、68.8%86.8%和30.7%56.5%。土壤酶活性與土壤微生物量碳氮、可溶性有機(jī)碳氮含量及芹菜產(chǎn)量之間總體上呈顯著或極顯著正相關(guān)關(guān)系?!窘Y(jié)論】同等養(yǎng)分投入量下,設(shè)施菜田土壤酶活性表現(xiàn)為有機(jī)無(wú)機(jī)肥料配合顯著高于單施化肥,又以配施秸稈效果更佳; 土壤酶活性與土壤微生物量碳氮、可溶性有機(jī)碳氮含量和蔬菜產(chǎn)量之間密切相關(guān)。說(shuō)明有機(jī)無(wú)機(jī)肥配施,特別是配施一定的秸稈可有效提高土壤酶活性,維持較高的菜田土壤肥力,有利于設(shè)施蔬菜的可持續(xù)和高效生產(chǎn)。
施肥模式; 設(shè)施菜田; 土壤酶活性
我國(guó)設(shè)施蔬菜生產(chǎn)歷史悠久,發(fā)展快,經(jīng)濟(jì)效益好,已成為農(nóng)民增收的重要途徑之一。在經(jīng)濟(jì)利益的驅(qū)動(dòng)下,菜農(nóng)往往通過大量施肥來(lái)追求蔬菜高產(chǎn),因而設(shè)施蔬菜過量施肥現(xiàn)象非常普遍[1-2],導(dǎo)致土壤鹽分積累、養(yǎng)分失衡、重金屬污染等問題日益突出,已對(duì)設(shè)施蔬菜生產(chǎn)和設(shè)施內(nèi)生態(tài)環(huán)境構(gòu)成嚴(yán)重威脅。有機(jī)無(wú)機(jī)肥料配合施用既能協(xié)調(diào)養(yǎng)分平衡供應(yīng),滿足作物生育期內(nèi)對(duì)養(yǎng)分的需求,又可以減少化肥的用量[3],還能改善土壤理化性質(zhì)和微生物活性,提高土壤質(zhì)量[4-6],已成為設(shè)施菜田較為常見的施肥方式。但化肥肥效快而短促,有機(jī)肥分解緩慢而肥效持久,因而探究適合于設(shè)施菜田的合理配比的有機(jī)無(wú)機(jī)肥料配施模式已成為設(shè)施蔬菜安全高效生產(chǎn)的關(guān)鍵。
土壤酶是土壤有機(jī)質(zhì)分解與養(yǎng)分轉(zhuǎn)化和循環(huán)的驅(qū)動(dòng)力[7-8],其活性對(duì)土壤管理措施引起的土壤理化性質(zhì)的改變非常敏感[9],是土壤質(zhì)量和生態(tài)穩(wěn)定性的重要指標(biāo)[10-11]。關(guān)于栽培方式[12-13]、栽培制度[14-16]、種植年限[17-18]、作物殘茬[19-20]、氮肥用量[21]等對(duì)土壤酶活性的影響已有一些報(bào)道,而不同施肥模式對(duì)設(shè)施菜田土壤酶活性影響的研究較少。本文利用設(shè)在天津的日光溫室蔬菜不同施肥模式定位試驗(yàn),研究了蔬菜生育周期內(nèi)不同施肥模式土壤酶活性動(dòng)態(tài)變化特征及其與土壤微生物量碳氮和可溶性有機(jī)碳氮之間的關(guān)系,以期尋求經(jīng)濟(jì)節(jié)約、高效合理的施肥模式,為實(shí)現(xiàn)設(shè)施蔬菜生產(chǎn)的可持續(xù)發(fā)展提供依據(jù)。
1.1試驗(yàn)地概況
定位試驗(yàn)位于天津市西青區(qū)辛口鎮(zhèn)第六埠村,屬暖溫帶半濕潤(rùn)大陸性氣候,年平均溫度為11.6℃,全年日照總量為2810 h,無(wú)霜期為203 d,自然降水總量為586 mm。供試日光溫室東西走向,長(zhǎng)80 m,寬6.5 m(含0.5 m通道),前部有通風(fēng)口,白天適時(shí)敞開通風(fēng),夜間或降雨時(shí)關(guān)閉。供試土壤類型為中壤質(zhì)潮土,試驗(yàn)開始前0—20 cm土壤容重為1.38 g/cm3,pH 7.9, 有機(jī)質(zhì)含量25.4 g/kg,硝態(tài)氮、銨態(tài)氮、速效磷、速效鉀含量分別為186.2、5.5、144.6和404 mg/kg。地下水埋深為1 m。定位試驗(yàn)于2009年10月開始(定位試驗(yàn)開始時(shí)棚齡為7年),種植制度為春茬番茄-秋冬茬芹菜輪作。供試芹菜(Apiumgraveolens)品種為文圖拉,番茄(Lycopersiconesculentum)品種為朝研299。
1.2試驗(yàn)設(shè)計(jì)
定位試驗(yàn)共設(shè)6個(gè)處理,分別為: 1)全部施用化肥氮(4/4CN); 2)3/4化肥氮+1/4豬糞氮(3/4CN+1/4PN); 3)2/4化肥氮+2/4豬糞氮(2/4CN+2/4PN); 4)1/4化肥氮+3/4豬糞氮(1/4CN+3/4PN); 5)2/4化肥氮+1/4豬糞氮+1/4秸稈氮(2/4CN+1/4PN+ 1/4SN); 6)2/4化肥氮+2/4秸稈氮(2/4CN+2/4SN)。各處理等氮磷鉀,番茄茬施用的N、P2O5和K2O總量分別為450.0、225.0和600.0 kg/hm2,芹菜茬N、P2O5和K2O總量分別為450.0、300.0和600.0 kg/hm2。春茬番茄和秋冬茬芹菜各處理的具體氮和碳投入量見表1。每個(gè)處理3次重復(fù),隨機(jī)排列。試驗(yàn)小區(qū)面積14.4 m2(寬2.4 m×長(zhǎng)6.0 m),番茄株、行距分別為0.30 m和0.60 m,種植密度為25000株/hm2; 芹菜株、行距分別為0.20 m和0.15 m,種植密度為330570 株/hm2。小區(qū)間埋設(shè)PVC板(深度105 cm: 100 cm地下,5 cm地上; 厚度4 mm),防止小區(qū)之間養(yǎng)分和水分的橫向遷移。
番茄和芹菜有機(jī)、無(wú)機(jī)養(yǎng)分施用量見表1。有機(jī)肥全部基施,化肥除部分基施外,其余部分作追肥施用。番茄季處理1)6)所用化肥中20%的氮肥、70%的磷肥和20%的鉀肥基施,其余的氮肥和鉀肥分4次追施(分別在番茄開花期、第一穗果膨大期、第二穗果膨大期和第三穗果膨大期),其中氮肥的追施比例分別為30%、30%、10%和10%,鉀肥的追施比例分別為10%、30%、30%和10%,剩余的P2O5分別在第一次追肥和第二次追肥各施入15%。芹菜季處理1)6)所用化肥的20%的氮肥、70%的磷肥和20%的鉀肥基施,其余氮肥和鉀肥在芹菜56葉期、89葉期和1112葉期分3次追施,其中氮肥的追施比例分別為35%、35%和10%,鉀肥的追施比例分別為10%、35%和35%,剩余的磷肥在第一次追肥時(shí)全部施入。
表1 試驗(yàn)處理及其氮和碳投入量(kg/hm2)
注(Note): CN—化肥氮 Nitrogen in chemical fertilizer; PN—豬糞氮 Nitrogen in pig manure; SN—玉米秸桿氮 Nitrogen in corn straw.
定位試驗(yàn)所用化肥為尿素(N 46%)、過磷酸鈣(P2O512%)、磷酸二銨(N 18%,P2O546%)、氯化鉀(K2O 60%)、磷酸二氫鉀(P2O552%,K2O 34%)。所用商品豬糞含N (2.17±0.13)%、 P2O5(1.39±0.14)%、 K2O (1.63±0.19)%、 C 218.0±5.0 g/kg(干基)、 水分含量為(28.9±4.6)%; 所用秸稈為玉米秸稈,含N (1.04±0.10)%、P2O5(0.32±0.08)%、K2O (1.69±0.17)%、 C 426.9±8.2 g/kg(干基),水分含量為(64.9±6.4)%。
基施方式為肥料撒施后旋耕入土,追施方式為肥料溶于水后隨水沖施。處理1)6)是依據(jù)田間持水量進(jìn)行灌溉,當(dāng)田間持水量低于60%時(shí)進(jìn)行灌溉。為保證灌水量的準(zhǔn)確,每個(gè)小區(qū)均安裝有單獨(dú)的PVC進(jìn)水管,并用水表記錄灌水量。番茄季和芹菜季灌水總量分別為3889和3334 m3/hm2。
1.3土壤樣品采集及測(cè)定方法
在第9茬蔬菜(秋冬茬芹菜)生育期間,分別于2013年9月18日(芹菜基肥施用前)、10月20日(芹菜定植后30 d,56葉期)、11月20日(芹菜定植后60 d,89葉期)、12月20日(芹菜定植后90 d,1112葉期)及2014年1月9日(芹菜定植后110 d,收獲期)采集土壤樣品。取樣方法是在每個(gè)小區(qū)內(nèi)按S形布設(shè)10個(gè)點(diǎn),用不銹鋼土鉆采取0—20 cm土壤樣品,立即剔除石礫和植物殘根等雜物,混合均勻,過2 mm篩后,取一部分于-20℃冰箱內(nèi)保存,用于土壤酶活性的測(cè)定; 另取一部分于4℃冰箱內(nèi)保存,用于土壤微生物量碳、氮和可溶性有機(jī)碳、氮含量的測(cè)定。
土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纖維二糖苷酶、幾丁質(zhì)酶和磷酸酶活性采用熒光微型板檢測(cè)技術(shù)(microplate fluorimetric assay)測(cè)定[7,22-23]: 將微型板編號(hào),按順序擺放,將準(zhǔn)備好的緩沖液(調(diào)至土壤pH)依次加入微型板中,按順序加入待測(cè)液,然后加入配好的標(biāo)準(zhǔn)溶液,迅速加入配好的底物溶液,黑板在25℃培養(yǎng)4 h后,所有孔加入10 μL 1mol/L氫氧化鈉溶液,上機(jī)用酶標(biāo)儀測(cè)定(激發(fā)波長(zhǎng)為365 nm、 發(fā)射波長(zhǎng)為450 nm)。
土壤田間持水量采用室內(nèi)環(huán)刀法測(cè)定[27]。土壤基本化學(xué)性質(zhì)采用常規(guī)分析方法測(cè)定[28]: 土壤有機(jī)質(zhì)用重鉻酸鉀-濃硫酸氧化(外加熱法),硫酸亞鐵溶液滴定法測(cè)定; 土壤硝態(tài)氮采用2 mol/L氯化鉀溶液浸提,雙波長(zhǎng)紫外分光光度法測(cè)定; 土壤速效磷采用0.5 mol/L NaHCO3浸提,鉬銻抗比色法測(cè)定; 土壤速效鉀采用NH4OAc溶液浸提,原子吸收分光光度計(jì)測(cè)定; 土壤pH采用2.5 ∶1水土比,酸度計(jì)測(cè)定。
這個(gè)想法得到了各位班委的認(rèn)可,于是“先鋒車站”的籌備工作就此開始了。小劉給每個(gè)小組畫一輛不一樣的車型,并在車上標(biāo)出小組名字和組員名字;班級(jí)文化部著手畫車軌和站牌。在每周的評(píng)比中,優(yōu)秀小組被評(píng)為“先鋒列車”,向終點(diǎn)前進(jìn)一站,每個(gè)站都有相應(yīng)等級(jí)的獎(jiǎng)勵(lì),一個(gè)月總結(jié)一次。而小劉則是這個(gè)“車站”的管理員,為確保先鋒車站的每一輛車都是嶄新的,如果哪個(gè)小組的車有破損,或需要重新設(shè)計(jì),都可以找小劉幫忙。
1.4數(shù)據(jù)處理
數(shù)據(jù)采用Microsoft Excel 2010和SAS 8.0統(tǒng)計(jì)軟件進(jìn)行分析。
2.1芹菜生育期間不同施肥模式土壤酶活性動(dòng)態(tài)變化特征
圖1 芹菜生育期間不同施肥模式土壤酶活性動(dòng)態(tài)變化Fig.1 Change of soil enzyme activities under different fertilization patterns during different growth period of celery
隨著豬糞用量的增加,所測(cè)定的7種土壤酶活性總體上均呈增加的趨勢(shì)。與低量配施豬糞模式3/4CN+1/4PN相比,中量配施豬糞模式2/4CN+2/4PN和高量配施豬糞模式1/4CN+3/4PN土壤α-葡萄苷酶活性平均分別增加2.0%和14.2%,土壤β-木糖苷酶活性平均分別增加10.9%和29.9%,土壤β-葡萄苷酶活性平均分別增加5.6%和14.2%,土壤β-纖維二糖苷酶活性平均分別增加26.3%和50.0%,土壤幾丁質(zhì)酶活性平均分別增加19.4%和35.9%,土壤磷酸酶活性平均分別增加12.8%和27.4%,土壤脲酶活性平均分別增加3.1%和12.9%。
配施秸稈模式土壤7種酶活性均高于配施豬糞模式。與高量配施豬糞模式1/4CN+3/4PN相比,配施秸稈模式(2/4CN+1/4PN+1/4SN和2/4CN+2/4SN)土壤α-葡萄苷酶活性平均分別增加14.0%和36.9%,土壤β-木糖苷酶活性平均分別增加10.9%和29.9%,土壤β-葡萄苷酶活性平均分別增加35.3%和74.3%,土壤β-纖維二糖苷酶活性平均分別增加40.2%和93.0%,土壤幾丁質(zhì)酶活性平均分別增加38.8%和107.0%,土壤磷酸酶活性平均分別增加16.5%和28.8%,土壤脲酶活性平均分別增加14.5%和30.3%。
2.2土壤酶活性與微生物量碳氮及可溶性有機(jī)碳氮含量之間的關(guān)系
芹菜生育期間各取樣時(shí)間不同土壤酶活性與土壤可溶性有機(jī)碳氮含量之間總體上均呈顯著或極顯著正相關(guān)關(guān)系。其中,土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纖維二糖苷酶、幾丁質(zhì)酶、磷酸酶、 脲酶等酶活性與土壤可溶性有機(jī)碳含量之間的相關(guān)系數(shù)分別在0.720.90、0.740.93、0.750.92、0.730.96、0.750.95、0.730.91和0.650.92之間,與土壤可溶性有機(jī)氮含量之間的相關(guān)系數(shù)分別在0.450.82、0.420.84、0.430.84、0.440.84、0.410.80、0.500.77和0.400.77之間。
2.3土壤酶活性與芹菜產(chǎn)量之間的關(guān)系
由圖2可知,六種施肥模式(CN、3/4CN+1/4PN、2/4CN+2/4PN、1/4CN+3/4PN、2/4CN+1/4PN+1/4SN和2/4CN+2/4SN)第九茬蔬菜(設(shè)施秋冬茬芹菜)產(chǎn)量依次為103.5、106.5、107.5、109.7、114.0、114.9 t/hm2。與單施化肥模式相比,有機(jī)無(wú)機(jī)肥料配施模式芹菜產(chǎn)量提高2.9%11.0%,其中配施豬糞模式提高芹菜產(chǎn)量2.9%6.0%,配施秸稈模式提高芹菜產(chǎn)量10.1%11.0%。
經(jīng)相關(guān)性分析發(fā)現(xiàn),芹菜產(chǎn)量與七種土壤酶活性之間均呈極顯著正相關(guān)關(guān)系,相關(guān)系數(shù)在0.830.88之間(P<0.01)。表明土壤酶在促進(jìn)蔬菜產(chǎn)量提高方面具有重要作用。
3.1不同施肥模式對(duì)設(shè)施菜田土壤酶活性的影響
化肥與有機(jī)物料配合施用,尤其是配施秸稈模式,可以顯著提高設(shè)施菜田土壤酶活性。本研究中,芹菜生育期間,5個(gè)有機(jī)無(wú)機(jī)肥料配施模式土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纖維二糖苷酶、幾丁質(zhì)酶、磷酸酶和脲酶的活性均較全化肥模式有不同程度的增加,以配施秸稈模式土壤酶活性相對(duì)較高。因?yàn)橛袡C(jī)物料不僅本身含有大量的胞內(nèi)和胞外酶[8],施入土壤后可迅速增加土壤酶的數(shù)量,而且含有大量不同形態(tài)的活性有機(jī)碳氮[5, 29],是土壤微生物養(yǎng)分和能量的直接來(lái)源,促進(jìn)土壤酶的產(chǎn)生。大量研究表明,與單施化肥相比,施用有機(jī)物料(無(wú)論是單施有機(jī)肥還是有機(jī)無(wú)機(jī)肥料配施)能顯著提高土壤有機(jī)質(zhì)及其各組分的含量[5-6,30-32],而土壤有機(jī)質(zhì)作為土壤碳源、氮源及其他各種養(yǎng)分的儲(chǔ)存庫(kù),分解后能夠?yàn)橥寥牢⑸锷顒?dòng)提供各種各樣的基質(zhì),提高土壤微生物豐富度[33],增加土壤酶的分泌量和活性。同時(shí),土壤有機(jī)質(zhì)還是土壤水分的吸附劑和土壤pH的調(diào)節(jié)器[33],并能促進(jìn)土壤微團(tuán)聚體的形成[34],為土壤酶提供相對(duì)穩(wěn)定和適宜的外部環(huán)境。此外,有機(jī)無(wú)機(jī)肥料配施還能促進(jìn)作物生長(zhǎng),增加作物根系生物量,根系分泌物增多,促進(jìn)土壤微生物的生長(zhǎng)和酶活性的增強(qiáng)[6]。而施用無(wú)機(jī)肥,尤其是氮肥,則會(huì)導(dǎo)致土壤酸化[21, 35],長(zhǎng)期施用還可能導(dǎo)致土壤板結(jié)、容重增加和鹽漬化等土壤問題[36-38],使土壤酶活性降低。所以,有機(jī)無(wú)機(jī)肥料配施模式土壤酶活性顯著高于單施化肥模式。
表2 不同取樣時(shí)間土壤酶活性與土壤微生物量碳、氮及可溶性有機(jī)碳、氮含量之間的相關(guān)系數(shù)
注(Note): MBC—土壤微生物量碳 Soil microbial biomass carbon; MBN—土壤微生物量氮 Soil microbial biomass nitrogen; DOC—可溶性有機(jī)碳Dissolved organic carbon; DON—可溶性有機(jī)氮 Dissolved organic nitrogen; α-GLU—土壤α-葡萄苷酶 Soil α-glucosidase; β-XYL—土壤β-木糖苷酶 Soil β-xylosidase; β-GLU—土壤β-葡萄苷酶 Soil β-glucosidase; β-CEL—土壤β-纖維二糖苷酶 Soil β-cellobiosidase; CHI—土壤幾丁質(zhì)酶 Soil chitinase; PHOS—土壤磷酸酶 Soil phosphatase; URE—土壤脲酶 Soil urease. *和**分別表示P<0.05和P<0.01水平顯著Indicate significance at theP<0.05 andP<0.01 levels, respectively (n=18,r0.01=0.59,r0.05=0.47)
圖2 不同施肥模式下芹菜產(chǎn)量Fig.2 Celery yield under different fertilization patterns
本研究中,化肥配施秸稈模式較化肥配施豬糞模式對(duì)設(shè)施菜田土壤酶活性的提高作用更顯著??赡苁怯捎谂涫┙斩捘J教纪度肓窟h(yuǎn)高于配施豬糞模式(表1),較高的碳投入使土壤中碳含量迅速提升,而土壤酶活性與土壤碳含量顯著正相關(guān)[39-41],因此,配施秸稈模式土壤酶活性相對(duì)較高。本試驗(yàn)中,五種有機(jī)無(wú)機(jī)肥料配施模式土壤酶活性由低到高的變化順序總體上與碳投入量由小到大變化順序一致(3/4CN+1/4PN<2/4CN+2/4PN<1/4CN+3/4PN <2/4CN+1/4PN+1/4SN<2/4CN +2/4SN),說(shuō)明土壤酶活性與土壤碳投入量密切相關(guān)。
3.2設(shè)施蔬菜不同生育期土壤酶活性的差異
植物可以通過改變根系殘?bào)w和分泌物的數(shù)量和質(zhì)量以及土壤pH、濕度、溫度等影響土壤酶活性[33],植物不同生育期土壤酶活性往往不同。本研究中,芹菜生育期間不同施肥模式土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纖維二糖苷酶、幾丁質(zhì)酶和磷酸酶活性的活性總體上均呈先增后降的趨勢(shì),且較高土壤酶活性均出現(xiàn)在芹菜長(zhǎng)勢(shì)旺盛時(shí)(芹菜定植后6090 d,812葉期)。這可能是由于作物不同生育階段,其根系分泌物的數(shù)量和種類不同所致[42]。當(dāng)作物生長(zhǎng)旺盛時(shí),根系代謝活動(dòng)較快,分泌增多,而根系分泌物中不僅包含大量的土壤酶類[43-44],還含有土壤微生物生長(zhǎng)所需要的糖類、氨基酸等養(yǎng)料,促進(jìn)了土壤微生物的生長(zhǎng)繁殖,從而間接增強(qiáng)了土壤酶的活性[45]。同時(shí),作物生長(zhǎng)旺盛時(shí),對(duì)養(yǎng)分需求強(qiáng)烈,導(dǎo)致土壤養(yǎng)分減少,會(huì)刺激土壤生物產(chǎn)生更多的土壤酶類來(lái)保證土壤養(yǎng)分的供應(yīng)[46],因而此時(shí)土壤酶活性較高。此外,作物生育期間,土壤溫度、水分、空氣、團(tuán)聚體、礦質(zhì)元素、pH等土壤理化性質(zhì)的變化也會(huì)影響土壤酶活性[47],或通過影響土壤微生物區(qū)系而對(duì)土壤酶活性產(chǎn)生間接影響[44,47,49]。本試驗(yàn)中,芹菜生育期間不同施肥模式土壤脲酶活性總體上呈逐漸升高的趨勢(shì),與其他土壤酶和芹菜長(zhǎng)勢(shì)均不一致,可能是由于不同土壤酶對(duì)作物生育期間理化和生物學(xué)性質(zhì)變化的反應(yīng)不同引起的??梢?,設(shè)施蔬菜生育期間土壤酶活性動(dòng)態(tài)變化是作物、土壤微生物、土壤理化性質(zhì)等綜合作用的結(jié)果,但關(guān)于設(shè)施蔬菜作物、土壤理化性質(zhì)和微生物區(qū)系對(duì)不同酶活性的影響程度還有待進(jìn)一步研究。
3.3土壤酶活性與土壤微生物量碳氮、可溶性有機(jī)碳氮含量及蔬菜產(chǎn)量之間的關(guān)系
不同土壤酶活性在蔬菜生育期間變化不盡一致,土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纖維二糖苷酶、幾丁質(zhì)酶和磷酸酶活性的活性均呈先增后降的趨勢(shì),土壤脲酶活性呈逐漸升高的趨勢(shì)。土壤酶活性與土壤微生物量碳氮、可溶性有機(jī)碳氮含量及蔬菜產(chǎn)量之間密切相關(guān)。同等養(yǎng)分投入量下,有機(jī)無(wú)機(jī)肥料配施模式,尤其是配施秸稈模式,較單施化肥模式能顯著提高設(shè)施菜田土壤酶活性,是維持設(shè)施菜田較高土壤肥力及促進(jìn)設(shè)施菜田土壤可持續(xù)利用的高效施肥模式。
[1]Ju X T, Kou C L, Christie P,etal. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain[J]. Environmental Pollution, 2007, 145(2): 497-506.
[2]黃紹文, 王玉軍, 金繼運(yùn), 等. 我國(guó)主要菜區(qū)土壤鹽分,酸堿性和肥力狀況[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2011, 17(4): 906-918.
Huang S W, Wang Y J, Jin J Y,etal., Status of salinity, pH and nutrients in soils in main vegetable production regions in China[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 906-918.
[3]郝小雨, 高偉, 王玉軍, 等. 有機(jī)無(wú)機(jī)肥料配合施用對(duì)設(shè)施菜田土壤 N2O 排放的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2012, 18(5): 1075-1088.
Hao X Y, Gao W, Wang Y J,etal. Effects of combined application of organic manure and chemical fertilizers on N2O emission from greenhouse vegetable soil[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1075-1088.
[4]Eivazi F, Bayan M R, Schmidt K. Select soil enzyme activities in the historic Sanborn Field as affected by long-term cropping systems[J]. Communications in Soil Science and Plant Analysis, 2003, 34(15-16): 2259-2275.
[5]Gong W, Yan X, Wang J,etal. Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China[J]. Geoderma, 2009, 149(3): 318-324.
[6]Liu E, Yan C, Mei X,etal. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China[J]. Geoderma, 2010, 158(3): 173-180.
[7]DeForest J L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA[J]. Soil Biology and Biochemistry, 2009, 41(6): 1180-1186.
[8]Tejada M, Gonzalez J L, García-Martínez A M,etal. Effects of different green manures on soil biological properties and maize yield[J]. Bioresource Technology, 2008, 99(6): 1758-1767.
[9]Tian L, Dell E, Shi W. Chemical composition of dissolved organic matter in agroecosystems: correlations with soil enzyme activity and carbon and nitrogen mineralization[J]. Applied Soil Ecology, 2010, 46(3): 426-435.
[10]Roldán A, Salinas-García J R, Alguacil M M,etal. Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions[J]. Geoderma, 2005, 129(3): 178-185.
[11]Lagomarsino A, Moscatelli M C, Di Tizio A,etal. Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment[J]. Ecological Indicators, 2009, 9(3): 518-527.
[12]孫彩菊, 程智慧, 孟煥文, 等. 大棚番茄連續(xù)定位套蒜第3年度土壤微生物數(shù)量和酶活性的變化[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào) (自然科學(xué)版), 2012, 40(12): 97-105.
Sun C J, Cheng Z H, Meng H W,etal. Variation of soil microorganism quantities and enzyme activities at the third year cultivation of continuous positional intercropping of tomato with garlic under plastic tunnel[J]. Journal of Northwest A & F University (Natural Science Edition), 2012, 40(12): 97-105.
[13]李敏, 吳鳳芝. 不同填閑模式對(duì)黃瓜根際土壤酶活性及細(xì)菌群落的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2014, 25(12): 3556-3562.
Li M, Wu F Z. Effects of different catch modes on soil enzyme activities and bacterial community in the rhizosphere of cucumber[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3556-3562.
[14]賀麗娜, 梁銀麗, 高靜, 等. 連作對(duì)設(shè)施黃瓜產(chǎn)量和品質(zhì)及土壤酶活性的影響[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào) (自然科學(xué)版), 2008, 36(5): 155-159.
He L N, Liang Y L, Gao J,etal. The effect of continuous cropping on yield, quality of cucumber and soil enzymes activities in solar greenhouse[J]. Journal of Northwest A & F University (Natural Science Edition), 2008, 36(5): 155-159.
[15]賀麗娜, 梁銀麗, 熊亞梅, 等. 不同前茬對(duì)設(shè)施黃瓜產(chǎn)量和品質(zhì)及土壤酶活性的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2009, 17(1): 24-28.
He L N, Liang Y L, Xiong Y M,etal. Effect of different proceeding crops on yield, quality of cucumber and soil enzyme activity in solar greenhouse[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 24-28
[16]馬彥霞, 郁繼華, 張晶, 等. 設(shè)施蔬菜栽培茬口對(duì)生態(tài)型無(wú)土栽培基質(zhì)性狀變化的影響[J]. 生態(tài)學(xué)報(bào), 2014, 34(14): 4071-4079.
Ma Y X, Yu J H, Zhang J,etal. Effect of different rotation systems on the characteristic change of ecotype soilless culture media for vegetables in greenhouse environments[J]. Acta Ecologica Sinica, 2014, 34(14): 4071-4079.
[17]吳忠紅, 杜新民, 張永清, 等. 晉南日光溫室土壤微生物及土壤酶活性變化規(guī)律研究[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2007, 23(1): 296-298.
Wu Z H, Du X M, Zhang Y Q,etal. The microbe amount and enzymes activities of soil in greenhouse in Jinnan area[J]. Chinese Agricultural Science Bulletin, 2007, 23(1): 296 -298.
[18]趙秋, 高賢彪, 寧曉光, 等. 天津地區(qū)不同年限設(shè)施土壤 pH 及酶活性變化[J]. 華北農(nóng)學(xué)報(bào), 2012, 27(1): 215-217.
Zhao Q, Gao X B, Ning X G,etal. Changes of pH and enzyme activities in greenhouse soils of different planting years in Tianjin[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(1): 215-217.
[19]孫藝文, 吳鳳芝. 小麥, 燕麥殘茬對(duì)連作黃瓜生長(zhǎng)及土壤酶活性的影響[J]. 中國(guó)蔬菜, 2013, 4: 12.
Sun Y W, Wu F Z. Effects of wheat and oat residues on growth of continuous cucumber cropping and soil enzymatic activity[J]. China Vegetables, 2013, 4: 12.
[20]張浩, 趙九洲, 張麗, 等. 不同大豆根茬比對(duì)連作番茄生長(zhǎng)發(fā)育及根際土壤環(huán)境的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào), 2014, 7: 025.
Zhang H, Zhao J Z, Zhang L,etal. Effects of different proportion of soybean stubble and continuous cropping soil on tomato grow development and rhizosphere soil environment[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 7: 025.
[21]Shen W, Lin X, Shi W,etal. Higher rates of nitrogen fertilization decrease soil enzyme activities, microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land[J]. Plant and Soil, 2010, 337(1-2): 137-150.
[22]Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils[J]. Soil Biology and Biochemistry, 2001, 33(12): 1633-1640.
[23]Stemmer M. Multiple-substrate enzyme assays: a useful approach for profiling enzyme activity in soils[J]. Soil Biology and Biochemistry, 2004, 36(3): 519-527.
[24]林先貴. 土壤微生物研究原理與方法[M]. 北京: 高等教育出版社, 2010.
Lin X G. Principles and methods of soil microbiology research[M]. Beijing: Higher Education Press, 2010.
[25]吳金水, 林啟美, 黃巧云, 肖和艾. 土壤微生物生物量測(cè)定方法及其應(yīng)用[M]. 北京: 氣象出版社, 2006.
Wu J S, Lin Q M, Huang Q Y, Xiao H A. Soil microbial biomass determination methods and application[M]. Beijing: China Meteorological Press, 2006.
[26]Zhong Z, Makeschin F. Soluble organic nitrogen in temperate forest soils[J]. Soil Biology and Biochemistry, 2003, 35(2): 333-338.
[27]袁娜娜. 室內(nèi)環(huán)刀法測(cè)定土壤田間含水量[J]. 中國(guó)新技術(shù)新產(chǎn)品, 2014, (5): 184.
Yuan N N. Indoor cutting-ring method to determine field capacity[J]. China New Technologies and Products, 2014, (5): 184.
[28]魯如坤. 土壤農(nóng)業(yè)化學(xué)分析法[M]. 北京: 中國(guó)農(nóng)業(yè)科技出版社, 1999.
Lu R K. Soil and agro-chemistry analysis[M]. Beijing: China Agricultural Science and Technology Press, 1999.
[29]Sleutel S, De Neve S, Németh T,etal. Effect of manure and fertilizer application on the distribution of organic carbon in different soil fractions in long-term field experiments[J]. European Journal of Agronomy, 2006, 25(3): 280-288.
[30]Rudrappa L, Purakayastha T J, Singh D,etal. Long-term manuring and fertilization effects on soil organic carbon pools in a Typic Haplustept of semi-arid sub-tropical India[J]. Soil and Tillage Research, 2006, 88(1): 180-192.
[31]Purakayastha T J, Rudrappa L, Singh D,etal. Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize-wheat-cowpea cropping system[J]. Geoderma, 2008, 144(1): 370-378.
[32]Banger K, Kukal S S, Toor G,etal. Impact of long-term additions of chemical fertilizers and farm yard manure on carbon and nitrogen sequestration under rice-cowpea cropping system in semi-arid tropics[J]. Plant and Soil, 2009, 318(1-2): 27-35.
[33]Wallenius K, Rita H, Mikkonen A,etal. Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities[J]. Soil Biology and Biochemistry, 2011, 43(7): 1464-1473.
[34]Aoyama M, Angers D A, N'Dayegamiye A. Particulate and mineral-associated organic matter in water-stable aggregates as affected by mineral fertilizer and manure applications[J]. Canadian Journal of Soil Science, 1999, 79(2): 295-302.
[35]Liu Y, Dell E, Yao H,etal. Microbial and soil properties in bentgrass putting greens: Impacts of nitrogen fertilization rates[J]. Geoderma, 2011, 162(1): 215-221.
[36]Shen W, Lin X, Gao N,etal. Land use intensification affects soil microbial populations, functional diversity and related suppressiveness of cucumber Fusarium wilt in China’s Yangtze River Delta[J]. Plant and Soil, 2008, 306(1-2): 117-127.
[37]孫建, 劉苗, 李立軍, 等. 不同施肥處理對(duì)土壤理化性質(zhì)的影響[J]. 華北農(nóng)學(xué)報(bào), 2010, 25(4): 221-225.
Sun J, Liu M, Li L J,etal. The effect of different fertilization treatments on soil physical and chemical property[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(4): 221-225.
[38]張北贏, 陳天林, 王兵. 長(zhǎng)期施用化肥對(duì)土壤質(zhì)量的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2010, 26(11): 182-187.
Zhang B Y, Chen T L, Wang B. Effects of long-term uses of chemical fertilizers on soil quality[J]. Chinese Agricultural Science Bulletin, 2010, 26(11): 182-187.
[39]Marx M C, Kandeler E, Wood M,etal. Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions[J]. Soil Biology and Biochemistry, 2005, 37(1): 35-48.
[40]Allison S D, Jastrow J D. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils[J]. Soil Biology and Biochemistry, 2006, 38(11): 3245-3256.
[41]Saha S, Prakash V, Kundu S,etal. Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean-wheat system in NW Himalaya[J]. European Journal of Soil Biology, 2008, 44(3): 309-315.
[42]Wichern F, Mayer J, Joergensen R G,etal. Release of C and N from roots of peas and oats and their availability to soil microorganisms[J]. Soil Biology and Biochemistry, 2007, 39(11): 2829-2839.
[43]張?jiān)伱? 周國(guó)逸, 吳寧. 土壤酶學(xué)的研究進(jìn)展[J]. 熱帶亞熱帶植物學(xué)報(bào), 2004, 12(1): 83-90.
Zhang Y M, Zhou G Y, Wu N. A review of studies on soil enzymology[J]. Journal of Tropical and Subtropical Botany, 2004, 12(1): 83-90.
[44]萬(wàn)忠梅, 吳景貴. 土壤酶活性影響因子研究進(jìn)展[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào) (自然科學(xué)版), 2005, 33(6): 87-92.
Wan Z M, Wu J G. Study progress on factors affecting soil enzyme activity[J]. Journal of Northwest A & F University (Natural Science Edition), 2005, 33(6): 87-92.
[45]Garcia-Gil J C, Plaza C, Soler-Rovira P,etal. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass[J]. Soil Biology and Biochemistry, 2000, 32(13): 1907-1913.
[46]Olander L P, Vitousek P M. Regulation of soil phosphatase and chitinase activity by N and P availability[J]. Biogeochemistry, 2000, 49(2): 175-191.
[47]Aon M A, Colaneri A C. II. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil[J]. Applied Soil Ecology, 2001, 18(3): 255-270.
[48]Aon M A, Sarena D E, Burgos J L,etal. Microbiological, chemical and physical properties of soils subjected to conventional or no-till management: an assessment of their quality status[J]. Soil and Tillage Research, 2001, 60(3): 173-186.
[49]曹慧, 孫輝, 楊浩, 等. 土壤酶活性及其對(duì)土壤質(zhì)量的指示研究進(jìn)展[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2003, 9(1): 105-109.
Cao H, Sun H, Yang H,etal. A review: soil enzyme activity and its indication for soil quality[J]. Chinese Journal of Applied & Environmental Biology, 2003, 9(1): 105-109.
[50]Ajwa H A, Dell C J, Rice C W. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization[J]. Soil Biology and Biochemistry, 1999, 31(5): 769-777.
[51]Caldwell B A. Enzyme activities as a component of soil biodiversity: a review[J]. Pedobiologia, 2005, 49(6): 637-644.
[52]梁斌, 周建斌, 楊學(xué)云, 等. 栽培和施肥模式對(duì)黃土區(qū)旱地土壤微生物量及可溶性有機(jī)碳、 氮的影響[J]. 水土保持學(xué)報(bào), 2009, 23(2): 132-137.
Liang B, Zhou J B, Yang X Y,etal. Effects of different cultivation and fertilization models on soil microbial biomass and soluble organic carbon and nitrogen in dryland farming[J]. Journal of Soil and Water Conservation, 2009, 23(2): 132-137.
[53]韓琳, 張玉龍, 金爍, 等. 灌溉模式對(duì)保護(hù)地土壤可溶性有機(jī)碳與微生物量碳的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(8): 1625-1633.
Han L, Zhang Y L, Jin S,etal. Effect of different irrigation patterns on soil dissolved organic carbon and microbial biomass carbon in protected field[J]. Scientia Agricultura Sinica, 2010, 43(8): 1625-1633.
Effects of different fertilization patterns on soil enzyme activities during growing period of autumn-winter season celery in greenhouse
WANG Wen-feng1, LI Chun-hua1, HUANG Shao-wen1*, GAO Wei2*, TANG Ji-wei1
(1KeyLaboratoryofPlantNutritionandFertilizer,MinistryofAgriculture/InstituteofAgriculturalResourcesandRegionalPlanning,ChineseAcademyofAgriculturalSciences,Beijing100081,China;2TianjinInstituteofAgriculturalResourcesandEnvironment,Tianjin300192,China)
【Objectives】 The fixed-site greenhouse vegetable fertilization experiment is in Tianjin, where the rotation of tomato in spring season and celery in autumn-winter season has been set up. The effect of different fertilization patterns on soil enzymes activities was investigated to provide a scientific fertilization basis for sustainable and high-efficient vegetable production in greenhouse. 【Methods】 The experiment was carried out on celery in autumn-winter season, including 6 treatments depending on the proportion of nitrogen from different types of fertilizers: 1) Complete chemical nitrogen fertilizer (4/4CN); 2) 3/4 N from chemical fertilizer, 1/4 from pig manure (3/4CN+1/4PN); 3) 2/4 N from chemical fertilizer, 2/4 from pig manure (2/4CN+2/4PN); 4) 1/4 N from chemical fertilizer, 3/4 from pig manure (1/4CN+3/4PN); 5) 2/4 N from chemical fertilizer, 1/4 from pig manure and 1/4 from straw (2/4CN+1/4PN+1/4SN); 6) 2/4 N from chemical fertilizer, 2/4 from straw (2/4CN+2/4SN). This investigation was conducted in the ninth harvest of celery. All the treatments were applied with the same amounts of N, P2O5and K2O nutrients. 0-20 cm surface soil samples were collected. Soil enzyme activities, includiung soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase, phosphatase and urease were measured at different growing stages of celery, and their correlations with contents of MBC, MBN, DOC and DON were calculated.【Results】 Activities of soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase and phosphatase in different treatments all increased initially and then decreased, with relatively higher activity at 60-90 days after transplanting of celery. Soil urease activities increased gradually during the celery growing season. Compared with the 4/4CN treatment, activities of soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase, phosphatase and urease were increased by 22.9%-92.0%, 20.1%-152.4%, 23.1%-145.1%, 28.7%-273.8%, 9.2%-207.8%, 13.7%-86.8% and 6.5%-56.5%, respectively in treatments with combined application of manure and straw with chemical fertilizers, and by 59.9%-92.0%, 98.9%-152.4%, 90.3%-145.1%, 171.6%-273.8%, 106.4%-207.8%, 68.8%-86.8% and 30.7%-56.5%, respectively in straw-amended treatments. Significant positive correlation relationships were found between enzymes activities and contents of MBC, MBN, DOC and DON and celery yield. 【Conclusions】 Compared with the 4/4CN, combined application of chemical fertilizers with organic materials, especially corn straw, can greatly enhance soil enzymes activities in greenhouse vegetable field. Soil enzymes activities are significantly correlated with MBC, MBN, DOC and DON contents and vegetable yield. Therefore, the combined utilization of organic and inorganic fertilizers can significantly increase soil enzymes activities, and maintain soil fertility in greenhouse vegetable production.
fertilization patterns; greenhouse vegetable soil; soil enzyme activities
2015-05-05接受日期: 2015-11-22
現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-25-C-11); 公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201203095)資助。
王文鋒(1988—),男,山東日照人,碩士研究生,主要從事肥料資源利用研究。
Tel: 010-82108662, E-mail: huangshaowen@caas.cn; Tel: 022-27950893, E-mail: vivigao2002@163.com
S636.3; S606+.2
A
1008-505X(2016)03-0676-11