王樂洋 陳漢清 林永達(dá) 吳華玲
1 東華理工大學(xué)測(cè)繪工程學(xué)院,南昌市廣蘭大道418號(hào),330013 2 流域生態(tài)與地理環(huán)境監(jiān)測(cè)國(guó)家測(cè)繪地理信息局重點(diǎn)實(shí)驗(yàn)室,南昌市廣蘭大道418號(hào),330013 3 江西省數(shù)字國(guó)土重點(diǎn)實(shí)驗(yàn)室,南昌市廣蘭大道418號(hào),330013
?
利用穩(wěn)健WTLS方法進(jìn)行三維激光掃描標(biāo)靶球定位
王樂洋1,2,3陳漢清1,2林永達(dá)1,2吳華玲1,2,3
1東華理工大學(xué)測(cè)繪工程學(xué)院,南昌市廣蘭大道418號(hào),3300132流域生態(tài)與地理環(huán)境監(jiān)測(cè)國(guó)家測(cè)繪地理信息局重點(diǎn)實(shí)驗(yàn)室,南昌市廣蘭大道418號(hào),3300133江西省數(shù)字國(guó)土重點(diǎn)實(shí)驗(yàn)室,南昌市廣蘭大道418號(hào),330013
摘要:針對(duì)標(biāo)靶球定位缺少有效的確定協(xié)因數(shù)陣方法的問題,顧及點(diǎn)到平面的距離反映了點(diǎn)與平面的相關(guān)性及入射角對(duì)點(diǎn)云數(shù)據(jù)點(diǎn)位精度的影響,將兩者推廣到三維激光掃描標(biāo)靶球定位中。以距離、先驗(yàn)入射角確定各點(diǎn)協(xié)因數(shù)值,并給出觀測(cè)向量協(xié)因數(shù)陣及系數(shù)矩陣協(xié)因數(shù)陣,利用穩(wěn)健加權(quán)總體最小二乘方法進(jìn)行標(biāo)靶球定位。實(shí)例表明,以距離確定協(xié)因數(shù)陣的穩(wěn)健加權(quán)總體最小二乘方法解算標(biāo)靶球參數(shù)估計(jì)比其他方法更精確。
關(guān)鍵詞:標(biāo)靶球定位; 穩(wěn)健加權(quán)總體最小二乘; 距離; 協(xié)因數(shù)陣; 異常點(diǎn)
三維激光掃描可快速獲取大量點(diǎn)的三維坐標(biāo)(點(diǎn)云數(shù)據(jù))[1]。一般情況下,獲取完整的研究對(duì)象數(shù)據(jù)需要從不同視點(diǎn)對(duì)物體進(jìn)行掃描。這其中存在兩個(gè)問題:一是如何將不同視點(diǎn)的坐標(biāo)系轉(zhuǎn)換至同一坐標(biāo)系,即配準(zhǔn)問題;二是如何將坐標(biāo)系轉(zhuǎn)換到常用的地面測(cè)量坐標(biāo)系,即地理參考問題[2]。解決這兩個(gè)問題的方法之一就是標(biāo)靶球法。文獻(xiàn)[3]提出M-估計(jì)的穩(wěn)健標(biāo)靶球定位方法,通過剔除或減弱球體數(shù)據(jù)中異常點(diǎn)對(duì)參數(shù)估計(jì)的影響,獲取穩(wěn)健的標(biāo)靶球球心坐標(biāo)。文獻(xiàn)[4]提出能同時(shí)顧及觀測(cè)向量誤差和系數(shù)矩陣誤差的總體最小二乘法(TLS)[5]。文獻(xiàn)[6]將穩(wěn)健總體最小二乘法(RTLS)應(yīng)用于標(biāo)靶球定位。文獻(xiàn)[7]考慮到獲取的點(diǎn)云數(shù)據(jù)是不等精度的,采用加權(quán)總體最小二乘方法(WTLS)[8-9]求解標(biāo)靶球定位問題。文獻(xiàn)[10]從點(diǎn)云坐標(biāo)(x,y,z)的數(shù)學(xué)表達(dá)式出發(fā),在假設(shè)水平角和豎直角相等(并作小角度處理)、標(biāo)靶球各點(diǎn)到儀器中心的距離相等、數(shù)據(jù)點(diǎn)間獨(dú)立等精度基礎(chǔ)上,得到系數(shù)矩陣協(xié)因數(shù)陣及觀測(cè)向量協(xié)因數(shù)陣,利用一種穩(wěn)健的加權(quán)總體最小二乘方法(RWTLS)進(jìn)行標(biāo)靶球定位解算。但是,得到的協(xié)因數(shù)陣僅僅是近似的。
針對(duì)上述標(biāo)靶球定位中協(xié)因數(shù)陣確定的問題,本文根據(jù)點(diǎn)到球面的距離反映了點(diǎn)與球面之間相關(guān)性的情況和先驗(yàn)入射角對(duì)點(diǎn)云數(shù)據(jù)點(diǎn)位精度的影響,以這兩種方法確定各點(diǎn)協(xié)因數(shù)值,利用穩(wěn)健加權(quán)總體最小二乘方法進(jìn)行標(biāo)靶球定位,并與傳統(tǒng)的方法進(jìn)行比較。
1.1RWTLS原理
空間球面方程為:
(1)
式中,r為標(biāo)靶球半徑,(a0,b0,c0)為標(biāo)靶球球心,(x,y,z)為標(biāo)靶球所有點(diǎn)觀測(cè)坐標(biāo)。式(1)可改寫為:
L=Ah
(2)
式中,
(3)
顧及觀測(cè)向量及系數(shù)矩陣均含誤差的情況,建立變量含誤差(errors-in-variables,EIV)模型:
(4)
(5)
1.2協(xié)因數(shù)陣的確定方法
1.2.1距離定權(quán)
點(diǎn)到球面的距離反映了點(diǎn)與球面之間的相關(guān)性[11]。距離越近,相關(guān)性就越強(qiáng),在擬合過程中點(diǎn)的權(quán)重也越大。因此,可以把距離作為點(diǎn)的協(xié)因數(shù)值。點(diǎn)到球面的距離為:
(6)
將各點(diǎn)協(xié)因數(shù)值控制在[0,1],并將其作為各點(diǎn)協(xié)因數(shù)的初始值。具體轉(zhuǎn)換公式為[11]:
(7)
式中,di為i點(diǎn)到擬合球面的距離,min(di)為點(diǎn)到擬合球面的距離最小值,max(di)為點(diǎn)到擬合球面的最大值,δ為預(yù)設(shè)的小值。
1.2.2入射角定權(quán)
入射角與點(diǎn)云數(shù)據(jù)的精度有關(guān)。入射角越小,其點(diǎn)位精度越高,即入射角越小,相對(duì)應(yīng)的余弦值越大,因此可把該點(diǎn)的余弦值作為其權(quán)值[12-13]。根據(jù)空間球面方程的特點(diǎn),每點(diǎn)協(xié)因數(shù)值的求解步驟如下。
1)改寫空間球面方程式:
F(x,y,z)=(x-a0)2+(y-b0)2+(z-c0)2-r2
(8)
對(duì)其求偏導(dǎo),得到第i點(diǎn)的法向量ni=(2(xi-a0),2(yi-b0),2(zi-c0))。
2)根據(jù)i點(diǎn)法向量與i點(diǎn)坐標(biāo)之間的關(guān)系,i點(diǎn)余弦值表達(dá)式為:
(9)
式中,(xi,yi,zi)為第i點(diǎn)坐標(biāo)。
1.2.3觀測(cè)向量及系數(shù)矩陣協(xié)因數(shù)陣的確定
由空間球面方程知,其系數(shù)矩陣A為固定形式。假設(shè)點(diǎn)云數(shù)據(jù)在3個(gè)方向?yàn)榈染扔^測(cè),即Qx=Qy=Qz,則根據(jù)系數(shù)矩陣的特點(diǎn),并結(jié)合文獻(xiàn)[14]提出的5條原則,構(gòu)造系數(shù)矩陣A的協(xié)因數(shù)陣:
(10)
式中,Qx、Qy和Qz分別表示x、y和z的協(xié)因數(shù)陣。
根據(jù)觀測(cè)向量的特點(diǎn),且考慮到各點(diǎn)精度不同,構(gòu)造觀測(cè)向量的協(xié)因數(shù)陣,具體步驟如下。
(11)
2)根據(jù)協(xié)方差傳播率,求觀測(cè)向量協(xié)因數(shù)陣:
(12)
1.3RWTLS迭代算法
利用文獻(xiàn)[15]的WTLS方法,并結(jié)合以3倍標(biāo)準(zhǔn)差為閾值剔除異常點(diǎn),組合成一種RWTLS方法,算法步驟如下。
1)將TLS解作為參數(shù)初始解,計(jì)算各點(diǎn)初始協(xié)因數(shù)值,并組合成系數(shù)矩陣協(xié)因數(shù)陣及觀測(cè)向量協(xié)因數(shù)陣。
2)計(jì)算相關(guān)值:
(14)
式中,n為觀測(cè)值個(gè)數(shù)。若di<3σ,則保留該點(diǎn),反之刪除。
(15)
(16)
式中,i=1,2,…,n,n為觀測(cè)點(diǎn)個(gè)數(shù)。
利用RIEGLVZ-400三維激光掃描儀同時(shí)對(duì)均質(zhì)性良好、表面較為平滑的3個(gè)半徑分別為5.3cm、7.1cm和10cm的地球儀模型進(jìn)行掃描。通過抽稀剔除冗余數(shù)據(jù),獲得3組原始點(diǎn)云數(shù)據(jù)(如圖1)。分別利用RWTLS、WTLS、TLS、LS方法對(duì)獲得的點(diǎn)云數(shù)據(jù)進(jìn)行標(biāo)靶球擬合,計(jì)算單位權(quán)中誤差、球面擬合精度,并作為評(píng)判平差方法優(yōu)劣的標(biāo)準(zhǔn)。
從表1可以看出,RWTLS方法與WTLS、TLS和LS方法擬合的球半徑與廠商設(shè)計(jì)半徑較為接近。以標(biāo)靶球1為例,RWLTS方法的單位權(quán)中誤差比WTLS、TLS和LS改善較為明顯;3種不同方式確定協(xié)因數(shù)陣的RWTLS方法中,以距離確定協(xié)因數(shù)陣的RWTLS方法擬合效果要好,且單位權(quán)中誤差分別比WTLS、TLS和LS方法提高了100%、99.8%和100%。在球面擬合精度方面,RWTLS方法同樣比WTLS、TLS和LS更優(yōu);3種RWTLS方法中,以距離確定協(xié)因數(shù)陣的RWTLS方法球面擬合精度比其他兩種RWTLS方法皆減少了一個(gè)數(shù)量級(jí),且比WTLS、TLS和LS減少了99.8%。TLS方法比WTLS方法的擬合效果好,原因是由于點(diǎn)云數(shù)據(jù)中存在異常點(diǎn),以先驗(yàn)信息確定的協(xié)因數(shù)陣與實(shí)際的協(xié)因數(shù)陣存在偏差,導(dǎo)致WTLS方法解算的參數(shù)解可信度降低。而RWTLS自適應(yīng)地調(diào)整協(xié)因數(shù)陣,使其更接近實(shí)際情況,從而獲得較為可靠的參數(shù)解。
圖1 原始標(biāo)靶球點(diǎn)云數(shù)據(jù)Fig.1 Point clouds data of tellurion
標(biāo)靶球算法a0b0c0r/mσ0/10-5mσp/10-4m1LS-11.77345-1.71268-1.594440.052873.31216.11TLS-11.77407-1.71337-1.594980.053640.116315.3WTLS-11.77363-1.71321-1.594430.053001.083015.82RWTLS1-11.77425-1.71338-1.594510.053300.02300.49RWTLS2-11.77235-1.71343-1.594580.052160.04080.28RWTLS3-11.77378-1.71321-1.594420.053120.00020.022LS-12.55139-1.28844-1.560380.070172.589915.29TLS-12.55307-1.28861-1.560100.071280.127314.36WTLS-12.55325-1.28855-1.559980.071340.957114.37RWTLS1-12.55306-1.28801-1.559750.071220.01180.20RWTLS2-12.55274-1.28810-1.559600.071070.02730.18RWTLS3-12.55339-1.28826-1.559760.071490.00100.063LS-13.44527-0.80098-1.508530.100242.632414.32TLS-13.44586-0.80076-1.508550.100600.154914.13WTLS-13.44668-0.80080-1.508670.100981.451414.26RWTLS1-13.44660-0.80063-1.508660.100820.00100.008RWTLS2-13.44595-0.80049-1.508200.100520.00210.010RWTLS3-13.44634-0.80078-1.508610.100870.00060.015
注:RWTLS1表示文獻(xiàn)[7]的穩(wěn)健加權(quán)總體最小二乘方法;RWTLS2表示以入射角確定協(xié)因數(shù)陣的穩(wěn)健加權(quán)總體最小二乘方法;RWTLS3表示以距離確定協(xié)因數(shù)陣的穩(wěn)健加權(quán)總體最小二乘方法。
1)由于獲取的點(diǎn)云數(shù)據(jù)是不等精度的,且?guī)в须S機(jī)誤差和存在異常點(diǎn),采用LS、TLS和WTLS方法得到的參數(shù)解并非最優(yōu)解。RWTLS方法同時(shí)顧及點(diǎn)云數(shù)據(jù)的這3種情況,解算過程中自適應(yīng)地調(diào)整協(xié)因數(shù)陣,使協(xié)因數(shù)陣更接近實(shí)際,獲得了較為精確的標(biāo)靶球參數(shù)解。
2)因?yàn)辄c(diǎn)到球面之間的距離反映了點(diǎn)與球面的相關(guān)性,以距離確定的協(xié)因數(shù)陣更接近實(shí)際,利用距離確定協(xié)因數(shù)陣的RWTLS方法比其他兩種確定協(xié)因數(shù)陣的RWTLS方法在標(biāo)靶球定位中能得到更好的效果。
3)針對(duì)點(diǎn)云數(shù)據(jù)存在異常點(diǎn)的問題,更為有效的剔除異常點(diǎn)的方法還需進(jìn)一步研究。
參考文獻(xiàn)
[1]陳漢清, 王樂洋. 點(diǎn)云數(shù)據(jù)平面擬合的加權(quán)總體最小二乘方法[J]. 工程勘察, 2015, 43(11): 59-63(Chen Hanqing, Wang Leyang. Plane Fitting of Poing Clouds Using Weighted Total Least Squares Method[J]. Geotechnical Investigation Surveying,2015, 43(11): 59-63)
[2]李清泉, 楊必勝, 史文中, 等. 三維空間數(shù)據(jù)的實(shí)時(shí)獲取、建模與可視化[M]. 武漢: 武漢大學(xué)出版社, 2003(Li Qingquan, Yang Bisheng, Shi Wenzhong, et al. Real Time Acquisition, Modeling and Visualization of 3D Spatial Data[M]. Wuhan: Wuhan University Press, 2003)
[3]官云蘭, 詹新武, 程效軍, 等. 一種穩(wěn)健的地面激光掃描標(biāo)靶球定位方法[J]. 工程勘察,2008(10): 42-45(Guan Yunlan, Zhan Xinwu, Cheng Xiaojun, et al. Spherical Target Positioning of 3D Laser Scanning Based on a Robust Method[J]. Geotechnical Investigation Surveying, 2008(10): 42-45)
[4]Golub G H, Loan C F. An Analysis of Total Least Squares Problem[J].SIAM Journal on Numerical Analysis, 1980, 17(6): 883-893
[5]王樂洋, 魯鐵定. 總體最小二乘平差法的誤差傳播定律[J]. 大地測(cè)量與地球動(dòng)力學(xué), 2014, 34(2): 55-59(Wang Leyang, Lu Tieding. Propagation Law of Errors in Total Least Squares Adjustment[J]. Journal of Geodesy and Geodynamics, 2014, 34(2): 55-59)
[6]魯鐵定, 周世健, 張立亭, 等. 基于整體最小二乘的地面激光掃描標(biāo)靶球定位方法[J]. 大地測(cè)量與地球動(dòng)力學(xué), 2009, 29(4): 102-105(Lu Tieding, Zhou Shijian, Zhang Liting, et al. Sphere Target Fixing of Point Cloud Data Based on TLS[J]. Journal of Geodesy and Geodynamics, 2009, 29(4): 102-105)
[7]陳瑋嫻, 陳義, 袁慶, 等. 加權(quán)總體最小二乘在三維激光標(biāo)靶擬合中的應(yīng)用[J]. 大地測(cè)量與地球動(dòng)力學(xué), 2010, 30(5): 90-96(Chen Weixian, Chen Yi, Yuan Qing, et al. Application of Weighted Total Least Squares to Target Fitting of Three-Dimensional Laser Scanning[J].Journal of Geodesy and Geodynamics, 2010, 30(5): 90-96)
[8]許光煜, 王樂洋. 加權(quán)總體最小二乘平差方法的比較與分析[J]. 工程勘察, 2014,42(6): 67-72(Xu Guangyu, Wang Leyang. The Comparison and Analysis of Three Weighted Total Least Squares Methods[J]. Geotechnical Investigation Surveying, 2014,42 (6): 67-72)
[9]王樂洋. 基于總體最小二乘的大地測(cè)量反演理論及應(yīng)用研究[J]. 測(cè)繪學(xué)報(bào), 2012, 41(4): 629(Wang Leyang. Research on Theory and Application of Total Least Squares in Geodetic Inversion[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4): 629)
[10] 袁豹, 岳東杰, 趙元憶, 等. 基于穩(wěn)健加權(quán)總體最小二乘法的地面三維激光掃描球型標(biāo)靶定位[J]. 勘察科學(xué)技術(shù), 2013(1): 19-22(Yuan Bao, Yue Dongjie, Zhao Yuanyi, et al. Spherical Target Positioning of Terrestrial 3D Laser Scanning Based on Robust Weighted Total Least Squares Method[J]. Site Investigation Science and Technology, 2013(1): 19-22)
[11] 李明峰, 歐江霞, 檀丁, 等. 加權(quán)總體最小二乘點(diǎn)云平面擬合定權(quán)方法探討[J]. 大地測(cè)量與地球動(dòng)力學(xué), 2015, 35(3): 428-432(Li Mingfeng, Ou Jiangxia, Tan Ding, et al. Study on Fixed Weighted Methods in Plane Fitting of Point Clouds Based on Weighted Total Least Squares[J]. Journal of Geodesy and Geodynamics, 2015, 35(3): 428-432)
[12] 蒼桂華, 李明峰, 岳建平. 以入射角定權(quán)的點(diǎn)云數(shù)據(jù)加權(quán)總體最小二乘平面擬合研究[J]. 大地測(cè)量與地球動(dòng)力學(xué), 2014, 34(3): 95-99(Cang Guihua, Li Mingfeng, Yue Jianping. Study on Point Clouds Plane Fitting with Weighted Total Least Squares Based on Incidence Angle Weighting[J]. Journal of Geodesy and Geodynamics, 2014, 34(3): 95-99)
[13] Soudarissanane S, Lindenbergh R, Menmenti M, et al. Scanning Geometry: Influencing Factor on the Quality of Terrestrial Laser Scanning Points[J]. ISPRS Journal of Photogrammertry and Remote Sensing, 2011, 66(4): 389-399[14] Mahboub V. On Weighted Total Least-squares for Geodetic Transformations[J]. Journal of Geodesy, 2012, 86(5): 359-367
[15] Jazaeri S, Amiri-Simkooei A R, Sharifi M A. Iterative Algorithm for Weighted Total Least Squares Adjustment[J]. Survey Review, 2014, 46(334): 19-27
Foundation support:National Natural Science Foundation of China, No. 41204003; Public Benefit Research Foundation (Surveying,Mapping and Geoinformation), No.201512026; Science and Technology Project of the Education Department of Jiangxi Province, No. GJJ150595, KJLD12077, KJLD14049; Fund of Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, NASMG,No.WE2015005; Fund of Key Laboratory of Mapping from Space, NASMG, No.K201502; Scientific Research Foundation of ECIT, No.DHBK201113; Innovation Fund Designated for Graduate Students of Jiangxi Province, No. YC2015-S266,YC2015-S267; Innovation Fund Designated for Graduate Students of ECIT, No. DHYC-2015005.
About the first author:WANG Leyang, PhD, associate professor, majors in geodetic inversion and geodetic data processing, E-mail: wleyang@163.com.
收稿日期:2015-11-19
第一作者簡(jiǎn)介:王樂洋,博士,副教授,主要研究方向?yàn)榇蟮販y(cè)量反演及大地測(cè)量數(shù)據(jù)處理,E-mail: wleyang@163.com。
DOI:10.14075/j.jgg.2016.08.020
文章編號(hào):1671-5942(2016)08-0745-05
中圖分類號(hào):P207
文獻(xiàn)標(biāo)識(shí)碼:A
Spherical Target Positioning of 3D Laser Scanning by Using Robust WTLS Method
WANGLeyang1,2,3CHENHanqing1,2LINYongda1,2WUHualing1,2,3
1Faculty of Geomatics, East China University of Technology,418 Guanglan Road, Nanchang 330013,China2Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, NASMG,418 Guanglan Road, Nanchang 330013, China3Jiangxi Province Key Laboratory for Digital Land, 418 Guanglan Road, Nanchang 330013, China
Abstract:We are concerned with the issue of lacking an effective method to determine the covariance matrix of coefficient matrix and observation vector in spherical target positioning. The distance from point to plane reflects the correlation of point and plane, and the incidence angle makes a difference to point clouds. We expand both of them to spherical target positioning. The covariance matrix of coefficient matrix and observation vector are provided. The robust weighted total least squares method is applied to spherical target positioning, which is based on weighted total least squares and setting certain criteria. Point clouds with outliers are conquered in this method. The experimental results show that robust weighted total least squares, which determined covariance by distance, is better than other methods in spherical target positioning.
Key words:spherical target positioning; robust WTLS; distance; covariance matrix; outliers
項(xiàng)目來源:國(guó)家自然科學(xué)基金(41204003);測(cè)繪地理信息公益性行業(yè)科研專項(xiàng)(201512026);江西省教育廳科技項(xiàng)目(GJJ150595,KJLD12077,KJLD14049);流域生態(tài)與地理環(huán)境監(jiān)測(cè)國(guó)家測(cè)繪地理信息局重點(diǎn)實(shí)驗(yàn)室基金(WE2015005);對(duì)地觀測(cè)技術(shù)國(guó)家測(cè)繪地理信息局重點(diǎn)實(shí)驗(yàn)室基金(K201502);東華理工大學(xué)博士科研啟動(dòng)基金(DHBK201113);江西省研究生創(chuàng)新專項(xiàng)基金(YC2015-S266,YC2015-S267);東華理工大學(xué)研究生創(chuàng)新專項(xiàng)基金(DHYC-2015005) 。