李 亮,庹 鑫,李思博,佘 瀟
武漢工程大學(xué)材料科學(xué)與工程學(xué)院,湖北 武漢 430074
無酶過氧化氫電化學(xué)傳感器材料的研究進(jìn)展
李亮,庹鑫,李思博,佘瀟
武漢工程大學(xué)材料科學(xué)與工程學(xué)院,湖北 武漢 430074
綜述了當(dāng)前無酶過氧化氫電化學(xué)傳感器的研究進(jìn)展,重點(diǎn)介紹了各種無酶過氧化氫電化學(xué)傳感器所使用的電極材料,主要包括:鉑、銀等貴金屬納米材料;銅、錳、鈷及其氧化物等過渡金屬納米材料;各類合金基納米材料;碳納米管、石墨烯、氧化石墨烯等碳基納米材料.分析了各類材料所構(gòu)建的無酶過氧化氫電化學(xué)傳感器檢測(cè)性能,如測(cè)試電位、靈敏度、檢測(cè)限、選擇性等,總結(jié)了近5年來各類新型材料在此類傳感器上的應(yīng)用和各自特點(diǎn),分析了各類傳感器的檢測(cè)原理,對(duì)這類傳感器的進(jìn)一步發(fā)展提出了相應(yīng)的建議,指出發(fā)展具有更大比表面積、形貌特殊的納米及其復(fù)合材料是提高檢測(cè)性能的重要方向,同時(shí),也對(duì)無酶過氧化氫傳感器在商業(yè)化上應(yīng)用可能性進(jìn)行了展望.
過氧化氫;無酶;電化學(xué)傳感器;納米材料
過氧化氫(hydrogen peroxide,H2O2),水溶液俗稱為雙氧水,是一種應(yīng)用廣泛的傳統(tǒng)無機(jī)化工產(chǎn)品.1818年,由法國(guó)化學(xué)家Thenard[1]通過稀硫酸與過氧化鋇反應(yīng),在實(shí)驗(yàn)室中首次制備出H2O2.在輕工業(yè)[2],電子技術(shù)[3],醫(yī)療衛(wèi)生[4],環(huán)境工程[5]等諸多領(lǐng)域都有重要應(yīng)用,對(duì)H2O2的精確、快速檢測(cè)在科學(xué)實(shí)踐中具有著重要意義.因此,各類H2O2傳感器的研究一直是傳感器領(lǐng)域的熱門.目前已經(jīng)有多種方法被應(yīng)用于H2O2的定量檢測(cè),如分光光度法[6],滴定分析法[7],熒光分析法[8],化學(xué)發(fā)光法[9]等.但是這些方法耗時(shí)耗力,且試劑成本較高.而電化學(xué)法[10]檢測(cè)H2O2則相對(duì)簡(jiǎn)便,快捷,且可重復(fù)性高,結(jié)果可靠.按照有無使用酶修飾電極用于構(gòu)建電化學(xué)傳感器,可將H2O2電化學(xué)傳感器分為基于辣根過氧化物酶(Horseradish Peroxidase,HRP)的電化學(xué)傳感器[11]和無酶H2O2(Nonenzymatic Hydrogen Peroxide,NHP)電化學(xué)傳感器[12]兩類.其中基于HRP的電化學(xué)傳感器具有選擇性好、精度高等特點(diǎn),但是容易受到如pH[13]、溫度[14]、濕度[15]等環(huán)境因素影響,在實(shí)際使用中受到諸多限制.因此各類NHP電化學(xué)傳感器的研制日益成為該領(lǐng)域研究熱點(diǎn).NHP傳感器是一種基于H2O2分子的電催化還原反應(yīng),是在相關(guān)催化材料表面直接發(fā)生[16].若采用普通電極直接檢測(cè)H2O2,由于H2O2過電位相對(duì)較高,很容易受到尿酸、抗壞血酸等干擾物影響[17].研究表明,以電子媒介體來構(gòu)筑NHP傳感器,由于電子在電極和媒介體中傳遞過程加快,可有效降低過電位,提高傳感器抗干擾能力[18].因而不同的修飾電極材料對(duì)NHP電化學(xué)傳感器性能影響很大,依據(jù)文獻(xiàn)報(bào)道,本文按照構(gòu)筑NHP傳感器電極材料類型不同,將NHP傳感器分為金屬及金屬化合物基、碳基、其他材料三大類,并分別予以詳細(xì)論述.
2.1Pt、Ag等貴金屬
Pt、Ag等貴金屬具有優(yōu)越的催化活性和導(dǎo)電性,是最早應(yīng)用于NHP電化學(xué)傳感器的電極材料.這類材料修飾電極構(gòu)建的NHP電化學(xué)傳感器機(jī)理研究也最為成熟.通常采用貴金屬電極材料檢測(cè)H2O2,檢測(cè)電位都比較高(>+0.6 V,Ag/AgCl),非常容易受到其他干擾物質(zhì)影響,因而降低檢測(cè)H2O2電位就顯得非常重要.
2012年,Wan等[19]采用溶劑熱法在低溫條件下制備了形貌可控的花狀Pt納米粒子,并修飾在金盤電極上,在濃度為0.1 mol/L的磷酸鹽緩沖液(PBS,pH=7.0)溶液中對(duì)H2O2進(jìn)行了電化學(xué)檢測(cè). 圖1為Pt修飾電極在磷酸鹽緩沖液(PBS,pH=7.0)中添加不同量H2O2后的循環(huán)伏安(Cyclic Voltammetry,CV)曲線圖[19],從圖中可以明顯看出,在不加H2O2時(shí),CV曲線沒有明顯的氧化還原峰,增加H2O2的濃度,CV曲線出現(xiàn)明顯的氧化還原峰且峰值增大,但氧化還原峰并不對(duì)稱,表明H2O2在納米Pt上催化反應(yīng)是準(zhǔn)可逆的過程.而峰電流值與掃描速率的平方根呈線性關(guān)系,因而電極的速度控制機(jī)理是H2O2的擴(kuò)散控制.該傳感器穩(wěn)定性良好,在長(zhǎng)達(dá)兩個(gè)月檢測(cè)中,終值仍能保持初始響應(yīng)電流值的90%.其檢測(cè)電位為-0.2 V,線性范圍為0.1 mmol/L~0.9 mmol/L,檢測(cè)限為60 μmol/L.
圖1 Pt修飾電極在pH 7.0磷酸鹽緩沖液中添加不同濃度的H2O2后循環(huán)伏安曲線圖Fig.1 CV curves of Pt in pH 7.0 phosphate buffer solution at different concentrations of H2O2
同年,Hsiao等[20]首次報(bào)道了采用凝膠法成功制備了海膽狀的納米銀粒子,以玻碳電極(glassy carbon electrode,GCE)為傳感器基底在濃度為0.1 mol/L的磷酸鹽緩沖液(PBS,pH=7.4)溶液中對(duì)H2O2進(jìn)行檢測(cè),檢測(cè)電位為-0.28 V,線性范圍為0.05 mmol/L~10.35 mmol/L,最低檢測(cè)限可達(dá)10 μmol/L,靈敏度為4 705 μAmmol·L-1cm-2.該傳感器檢測(cè)范圍寬,且選擇性優(yōu)良,對(duì)抗壞血酸和尿酸均具有良好的抗干擾性.
但是,貴金屬材料制備的NHP電化學(xué)傳感器依然存在一些缺點(diǎn).首先H2O2還原高度依賴于可利用的電極表面積,單體的Pt、Ag等貴金屬活性面積依然有限,而當(dāng)離子濃度過大時(shí)就容易引發(fā)電極表面飽和,使得傳感器性能驟降[21];其次,有研究發(fā)現(xiàn),Pt修飾電極在高濃度Cl-中存在失效現(xiàn)象[22];最后,價(jià)格也是個(gè)重要因素,在目前條件下,貴金屬修飾電極材料的回收再利用還存在許多問題,因此開發(fā)使用廉價(jià)材料制備NHP電化學(xué)傳感器就成為一個(gè)新的熱點(diǎn).
2.2Cu、Mn、Co等過渡金屬化合物
Cu、Mn、Co等過渡金屬化合物是常見的能源儲(chǔ)存材料[23],在燃料電池催化劑方面也有廣泛應(yīng)用[24],因此很自然被用于H2O2電化學(xué)傳感器的制備研究.相比Pt、Ag等材料,Cu、Mn、Co類材料價(jià)格較為低廉,容易獲取,對(duì)環(huán)境影響也較小.目前公認(rèn)的觀點(diǎn)是,材料的比表面積越大,越有利于電子轉(zhuǎn)移速率的提高,從而提升材料的電催化效果[25],因此制備出各種具有較大比表面積形貌的材料就成為該領(lǐng)域的一個(gè)熱點(diǎn),而目前圍繞過渡金屬化合物已經(jīng)開發(fā)出各種形貌的納米粒子.
CuO是一種重要的P型半導(dǎo)體,較窄的帶隙(1.2 eV~1.9 eV)使其在半導(dǎo)體[26]、催化[27]、太陽能電池[28]、電化學(xué)傳感器[29]等領(lǐng)域都有廣泛的應(yīng)用.但是納米CuO材料在空氣和水溶液中穩(wěn)定性較差,容易被氧化[30],因此有必要開發(fā)出更穩(wěn)定的納米CuO材料用于NHP電化學(xué)傳感器.通常認(rèn)為H2O2在CuO修飾的電極上的催化反應(yīng)是Cu(II)/ Cu(I)參與的過程,而H2O2也隨著催化劑的作用轉(zhuǎn)變?yōu)镺H-.2012年,Wang等[31]在不添加任何表面活性劑的條件下,通過微波輔助法制備出了具有內(nèi)核的球狀CuO納米顆粒,直徑在2.5 μm~4 μm之間.將CuO納米顆粒修飾在GCE電極上,在0.1 mol/L NaOH溶液中對(duì)H2O2進(jìn)行檢測(cè),檢測(cè)電位為0.7 V,線性范圍為0.01 mmol/L~0.2 mmol/L,檢測(cè)限為0.125μmol/L,靈敏度為139.2μAmmol·L-1cm-2,該傳感器穩(wěn)定性良好,在計(jì)時(shí)電流法檢測(cè)中連續(xù)4 000 s后電流值相比初始電流只下降了5%,具有良好的催化效果.
膠粘帶采用透明的壓敏膠帶。粘著力應(yīng)在(10±1)N/25 mm,粘膠帶寬度至少為50 mm。[1]粘著力是指用適當(dāng)壓力和時(shí)間使粘膠和被粘物表面接觸后表現(xiàn)出來的界面分離的抵抗力。透明的壓敏膠帶粘著力可制作好試件后,用電子定速拉力試驗(yàn)機(jī)驗(yàn)證,符合要求后再使用。
MnO2和Co3O4也都是常用的H2O2檢測(cè)材料.其中,MnO2毒性較低,但是在酸性或強(qiáng)堿體系不穩(wěn)定,因此常在中性溶液進(jìn)行檢測(cè),通常認(rèn)為H2O2在MnO2上催化機(jī)理是Mn(IV)/Mn(III),Mn(IV)/ Mn(II),H2O2/O2轉(zhuǎn)變的過程.2014年,Zhang等[32]采用一步水熱法制備了超薄MnO2納米片,并以GCE為工作電極,在濃度為0.1 mol/L的PBS(pH= 7.4)溶液中對(duì)H2O2進(jìn)行了檢測(cè),在0.7 V檢測(cè)電位下,該傳感器對(duì)H2O2檢測(cè)范圍為0.01 mmol/L~3.5 mmol/L,檢測(cè)限為 1.5 μmol/L,靈敏度為130.56 μAmmol·L-1cm-2.
Co3O4是動(dòng)力電池領(lǐng)域常見材料,很早就被用于催化研究,且具有很好的適應(yīng)性,可以被制備成多種納米形態(tài),如納米棒[33]、納米花瓣[34]、納米微球[35]、納米針[36]等.2015年,Wang等[37]采用直接熱解法制備了中空形狀的Co3O4納米微球(見圖2),并將其修飾在GCE上用于H2O2的檢測(cè),檢測(cè)液為0.1 mol/L的NaOH溶液,檢測(cè)電位為0.7 V,檢測(cè)范圍為0.004 mmol/L~2.2 mmol/L,檢測(cè)限為 0.105 μmol/L,靈敏度為959.79 μAmmol·L-1cm-2.該傳感器特點(diǎn)是響應(yīng)速度快,穩(wěn)定性好.在電流-時(shí)間測(cè)試中,添加一定量H2O2后,可以在2 s內(nèi)出現(xiàn)響應(yīng)電流,而使用CV法測(cè)試時(shí),連續(xù)掃描200圈,曲線圖也沒有出現(xiàn)太大的偏移.
圖2 中空狀四氧化三鈷納米微球HRTEM圖Fig.2 HRTEM image of Co3O4hollow nanosphere
總的來說,過渡金屬化合物是一類比較優(yōu)良的H2O2檢測(cè)材料,在制備NHP電化學(xué)傳感器具備很多得天獨(dú)厚的優(yōu)勢(shì),但也仍舊存在一些挑戰(zhàn). Cu、Mn類化合物在酸性條件下穩(wěn)定性較差,在一定程度上限制了傳感器的使用范圍.此外,Cu類化合物檢測(cè)H2O2時(shí),沒有明顯的氧化還原峰,這使得在判定H2O2在該類材料制備的NHP電化學(xué)傳感器的控制反應(yīng)機(jī)理存在一定的爭(zhēng)議.但是出于減少對(duì)貴金屬材料依賴的考慮,過渡金屬化合物依舊是NHP電化學(xué)傳感器領(lǐng)域研究的熱點(diǎn).
2.3金屬?gòu)?fù)合材料
最近幾年,有越來越多的研究團(tuán)隊(duì)開始使用合金作為NHP電化學(xué)傳感器的電極材料,由于這種材料綜合了各構(gòu)成金屬的優(yōu)點(diǎn),使得不同金屬間的協(xié)同作用能有效提高傳感器對(duì)H2O2檢測(cè)的靈敏度和選擇性.而且材料選擇也較為寬泛,常見的有金屬/金屬基材料如Pt/Rh[38],Au/Ag[39]等;金屬/金屬氧化物,如Cu/CuO[40]、Co/ZnO[41]等;金屬氧化物/金屬氧化物,如ZnO/SnO2[42],TiO2/CuO[43]等.
2013年,Janyasupab等[44]采用組合法研究了基于Pt-M(M=Cu,Ni,Pd,Rh)幾種金屬合金化合物對(duì)H2O2的電催化性能.經(jīng)比較,發(fā)現(xiàn)Pt/Rh合金對(duì)H2O2電催化性能最好,檢測(cè)靈敏度為839.9 μAmmol·L-1cm-2,即使在待檢測(cè)液含有質(zhì)量濃度為15 mg/L和85 mg/L的抗壞血酸和尿酸的情況下,依然對(duì)H2O2具有良好的選擇性.2014年,Yang等[45]采用水熱法將CuO鍍?cè)贑u箔上,制備了Cu/CuO納米復(fù)合物,并對(duì)H2O2進(jìn)行檢測(cè),檢測(cè)限為11 μmol/L,該傳感器一大特點(diǎn)是可同時(shí)在0.1 mol/L的PBS(pH=7.4)溶液和0.1 mol/L NaOH溶液中對(duì)H2O2進(jìn)行檢測(cè).An等[46]在2014年采用靜電紡絲法制備了ZnO/SnO2納米棒,對(duì)H2O2也具有良好的催化效果.
可以看到,金屬?gòu)?fù)合材料極大的拓展了催化H2O2類物質(zhì)的選擇范圍,通過不同方法的結(jié)合,更好的發(fā)揮彼此的優(yōu)勢(shì).此外,合金基材料制備的NHP電化學(xué)傳感器一個(gè)有力的優(yōu)勢(shì)是可以在不增加檢測(cè)電位的情況下提高電極材料催化能力,從而減少其他物質(zhì)對(duì)檢測(cè)過程的干擾.同時(shí),金屬?gòu)?fù)合材料也可以在降低貴金屬使用比例的條件下加強(qiáng)傳感器整體的檢測(cè)性能.由此,將為NHP電化學(xué)傳感器的發(fā)展提供更廣闊的平臺(tái).
碳基材料擁有很好的導(dǎo)電率,很早就被用于各種電化學(xué)傳感器中.但并非所有的碳基材料都具有優(yōu)良的電化學(xué)性質(zhì),隨著納米技術(shù)的發(fā)展,各種新型碳材料不斷被開發(fā)出來,如碳納米管,碳納米纖維,富勒烯,石墨烯等.碳基材料的蓬勃發(fā)展為NHP電化學(xué)傳感器材料的制備提供了豐富的選擇.
3.1碳納米管
碳納米管具有較大的比表面積和顯著地機(jī)械強(qiáng)度以及優(yōu)良的導(dǎo)電導(dǎo)熱性[47].因此在近些年被廣泛應(yīng)用于各種電化學(xué)傳感器研制中.由于其獨(dú)特的一維中空管狀形貌,使得碳納米管能有效促進(jìn)被分析物在電極表面的電子轉(zhuǎn)移速率,提高電化學(xué)活性.通常,碳納米管會(huì)和金屬或者金屬氧化物進(jìn)行復(fù)合以得到納米結(jié)構(gòu)的復(fù)合物并應(yīng)用于NHP電化學(xué)傳感器中.
2012年,Qiang等[48]采用原位生長(zhǎng)法使Cu納米粒子均勻的生長(zhǎng)于碳納米管側(cè)壁,并將其修飾在GCE上用于H2O2的檢測(cè),其檢測(cè)范圍為0.019 mmol/L~8 mmol/L,檢測(cè)限為0.63 μmol/L.2015年,Lin等[49]采用水熱法制備了碳納米管/二硫化鉬納米復(fù)合物,以GCE為修飾電極,對(duì)H2O2檢測(cè)限可達(dá)5 nmol/L,即使在溶液中大量存在Cl-或者其他干擾物質(zhì)時(shí),仍具備良好的選擇性和較高的靈敏度.由于二硫化鉬本身也是一種性質(zhì)優(yōu)良的二維材料,因此和碳納米管的結(jié)合能有效提高二者協(xié)同作用,提升催化能力.
3.2石墨烯和氧化石墨烯
石墨烯(Graphene)是由碳原子組成的只有單層原子厚度的二維晶體.于2004年由英國(guó)曼徹斯特大學(xué)物理學(xué)家Andre Geim和Konstantin Novoselov成功從石墨中分離出,革新了以往二維材料不能在自然界單獨(dú)存在的觀念,兩人也因此被授予2010年度諾貝爾物理學(xué)獎(jiǎng)[50].石墨烯一經(jīng)出世,便引起科學(xué)界廣泛關(guān)注.石墨烯是自然界已知最薄,強(qiáng)度最高,導(dǎo)電導(dǎo)熱性能最強(qiáng)大的材料[51],這使得其在傳感器領(lǐng)域應(yīng)用潛力十分巨大.
2014年,Wang等[52]利用一步水熱法成功制備出α-Fe2O3摻雜還原氧化石墨烯復(fù)合水凝膠,并應(yīng)用于H2O2檢測(cè)中,該傳感器具有了較寬的檢測(cè)范圍0.005mmol/L~4.495mmol/L,檢測(cè)限為1.0 μmol/L,檢測(cè)靈敏度為126.9 μAmmol·L-1cm-2.由于石墨烯本身具有極大的比表面積,因此負(fù)載α-Fe2O3后,其電子轉(zhuǎn)移速率會(huì)有很大提升,電極表面催化活性也進(jìn)一步增強(qiáng).2016年,Devasenathipathy等[53]首先采用恒電勢(shì)法在GCE上沉積一層直徑約為(70±20)nm的Cu納米粒子,再以組氨酸為穩(wěn)定劑,覆上一層還原氧化石墨烯,從而提高該電極活性面積和催化活性,并將該電極用于H2O2的檢測(cè).其檢測(cè)范圍為0.001 mmol/L~5 mmol/L,最低檢測(cè)限為0.075 μmol/L,即使在多巴胺,抗壞血酸,尿酸,對(duì)乙酰氨基酚,葡萄糖和L-半胱氨酸多種干擾物存在的情形下,依然對(duì)H2O2具有很高的選擇性.
3.3其他碳基材料
其他類型碳基材料也是采用摻雜具備催化活性的納米粒子以達(dá)到提升材料整體電催化能力的目的.常用材料如炭黑(Carbon black),氮摻雜碳材料(N-doped carbon)等.
2014年,Cinti等[54]通過在絲網(wǎng)印刷電極上沉積納米級(jí)普魯士藍(lán)顆粒和炭黑復(fù)合物用來檢測(cè)H2O2,通過改變炭黑與普魯士藍(lán)的配比,得出當(dāng)炭黑占比為50%時(shí),檢測(cè)效果最好,此時(shí)檢測(cè)限為0.3 μmol/L.而此前普魯士藍(lán)就已經(jīng)被廣泛應(yīng)用于H2O2的檢測(cè),隨著納米技術(shù)的飛速發(fā)展,納米普魯士藍(lán)的制備使得這種材料性能更加出眾.有研究表明,將氮原子摻雜進(jìn)入碳材料后,由于其獨(dú)特共軛作用,可有效提高材料電學(xué)性質(zhì)[55].例如2016年,Zhang等[56]采用電紡技術(shù)制備了氮摻雜的碳材料也證實(shí)了這種說法,將該材料制備的NHP電化學(xué)傳感器應(yīng)用于H2O2檢測(cè)中,對(duì)比不摻雜氮的對(duì)照組發(fā)現(xiàn).摻雜氮原子的組檢測(cè)H2O2的電流響應(yīng)時(shí)間更短,在2 s內(nèi)即有響應(yīng),而未摻雜組則至少需要6 s.
除了常見金屬基和碳材料類,還有許多材料如導(dǎo)電高分子和多種有機(jī)無機(jī)物被用于H2O2的電化學(xué)檢測(cè).通常也是和其他類型材料復(fù)合得到納米結(jié)構(gòu)的復(fù)合物以提高催化能力.由于導(dǎo)電高分子具有獨(dú)特的π-共軛結(jié)構(gòu),而且摻雜脫摻雜容易[57],非常適合應(yīng)用于傳感器領(lǐng)域.常見導(dǎo)電高分子,如聚吡咯、聚苯胺、聚乙炔等都是在傳感器領(lǐng)域應(yīng)用廣泛的材料.
聚苯胺儲(chǔ)存電荷能力強(qiáng),對(duì)水和氧穩(wěn)定性好,導(dǎo)電性能出色.但苯胺聚合過程反應(yīng)快,得到產(chǎn)物均一性差,為解決這個(gè)問題,2016年,Yang等[58]以金/鈦復(fù)合材料為基底,先后采用真空濺射和電鍍法制備出了高度有序的多金屬氧酸鹽和聚苯胺復(fù)合的納米柱膜層電極,并將其用于H2O2的檢測(cè).這兩種方法制備的聚苯胺復(fù)合物,形貌致密且高度有序,摻雜金屬氧酸鹽后,所制備的NHP傳感器對(duì)H2O2檢測(cè)具有極高的靈敏度,其工作電位為0.02 V,檢測(cè)限為8.1 μmol/L.同年,Li等[59]采用原位聚合法制備了石墨烯/納米銀/PVA膜電極,將其用于H2O2的檢測(cè),其獨(dú)特的納米棒結(jié)構(gòu)具有很高的活性表面積,極大了增強(qiáng)了其催化效果,可有效的對(duì)H2O2進(jìn)行選擇性的檢測(cè).而PVA膜的應(yīng)用,不僅可以使離子自由穿透,還能提高傳感器穩(wěn)定性,防止材料在使用過程中脫落[60].
通過對(duì)近5年NHP電化學(xué)傳感器的研究進(jìn)行總結(jié)可以看出,各類傳感器對(duì)H2O2都能實(shí)現(xiàn)一定的檢測(cè),但不同材料制備的NHP傳感器差異很大.可以預(yù)見,在一定基底材料不變情況下,制備形貌特殊,比表面積大,催化性能強(qiáng)的納米材料將是未來NHP電化學(xué)傳感器的研究熱點(diǎn).納米復(fù)合材料相比單一物質(zhì),能顯著改善材料的電化學(xué)性能,將是構(gòu)建NHP電化學(xué)傳感器的重要方向.此外,各種新型傳感器的發(fā)展也是日新月異,更加輕薄、便攜、靈敏的傳感器日益引起廣泛關(guān)注,從普遍的以GCE和ITO導(dǎo)電玻璃為基底的電化學(xué)傳感器到新興微流控傳感器,以及新工藝的不斷應(yīng)用,發(fā)展快速的傳感器學(xué)科依舊面臨一些挑戰(zhàn).諸如產(chǎn)品商業(yè)化的可能性,以及納米材料的生物相容性等.因此探索具有更低檢測(cè)限、更寬檢測(cè)范圍、更高靈敏度、強(qiáng)選擇性、科研和產(chǎn)業(yè)化完美兼容的產(chǎn)品就有了更多實(shí)踐意義.也為未來NHP電化學(xué)傳感器的發(fā)展目標(biāo)和方向提供了明晰的指引.
[1] ALBERS R E,NYSTROM M,SIVERSTROM M,et al. Development of a monolith-based process for H2O2production:from idea to large scale implementation[J]. Catalysis today,2001,69:247-252.
[2] SOHRABNEZHANS,POORAHMADA,SALAVATIYAN T.CuO-MMT nanocomposite:effective photocatalyst for the discoloration of methylene blue in the absence of H2O2[J].Applied physics A,2016,122:1-12.
[3]SENTHAMIZHAN A,BALUSAMY B,AYTAC Z,et al.Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2[J].Analytical and bioanalytical chemistry,2016,408:1-9.
[4]SEGAWA S,OKARMU K.The use of hydrogen peroxide in clinical chemistry:application of H2O2,POD as an oxidizing reagent in modified method of Kind-King for serum[J].Rinsho byori the Japanese journal of clinical pathology,1978,26:365-368.
[5]TAN F,CHEN H,WU D,et al.Optimization of removal of 2-methylisoborneol from drinking water using UV/ H2O2[J].Journal of advanced oxidation technologies,2016,19:98-104.
[6]BROWN D S,JENKE D R.Determination of sulphite and hydrogen peroxide in pharmaceutical matrices via classical spectrophotometryandflowinjection[J]. Analyst,1987,112:899-902.
[7]SANTIMONE M.Titration study of guaiacol oxidation by horseradish peroxidase[J].Canadian journal of biochemistry,1975,53:649-657.
[8]WANG P,WANG K,GU Y.A highly selective fluorescent turn-on NIR probe for the bioimaging of hydrogen peroxide in vitro and in vivo[J].Sensors&actuators bchemical,2016,228:174-179.
[9]CHEN Z,YUET,XU K,et al.Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination[J].Biosensors& bioelectronics,2016,75:8-14.
[10] ZHANGR,CHENW.Recentadvancesingraphene-basednanomaterialsforfabricatingelectrochemical hydrogen peroxide sensors[J].Biosensors& bioelectronics,2016,80:611-616.
[11]WANG F,LIU X,LU C H.Cysteine-mediated aggre-gation of Au nanoparticles:the development of a H2O2sensor and oxidase-based biosensors[J].ACS nano,2013,220:7278-7286.
[12] KANYON G P,RAWLINSON S,DAVIS J.A non-enzymatic sensor based on the redox of ferrocene carboxylic acid on ionic liquid film-modified screen-printed graphite electrode for the analysis of hydrogen peroxide residues in milk[J].Journal of electroanalytical chemistry,2016,766:147-151.
[13]TATSUMA T,OKAWA Y,WATANABE T.Enzyme monolayer-and bilayer-modified tin oxide electrodes for the determination of hydrogen peroxide and glucose [J].Analytical chemistry,2002,61:2352-2355.
[14]TANG N,ZHENG J,SHENG Q,et al.A novel H2O2sensor based on the enzymatically induced deposition of polyaniline at a horseradish peroxide/aligned single-wall carbon nanotubes modified Au electrode[J]. Analyst,2011,136:781-786.
[15]LEI C,DENG J.Hydrogen peroxide sensor based on coimmobilized methylene green and horseradish peroxidase in the same montmorillonite-modified bovine serum albumin-glutaraldehyde matrix on a glassy carbon electrode surface[J].Analytical chemistry,1996,68:3344-3349.
[16] NGUYEN T T,NUYEN V H,DAVID R K,et al.Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications[J].Solid state sciences,2016,53:71-77.
[17]KIVRAK H,ALALO,ATBAS D.Efficient rapid microwave-assisted route to synthesize Pt-MnOx hydrogen peroxide sensor[J].Electrochimica acta,2015,176:497-503.
[18]HSU C C,LO Y R,LIN Y C,et al.A spectrometric method for hydrogen peroxide concentration measurement with a reusable and cost-efficient sensor[J].Sensors,2014,15:25716-25729.
[19] WAN J,WANG W,YIN G,et al.Nonenzymatic H2O2sensor based on Pt nanoflower electrode[J].Journal of cluster science,2012,23:1061-1068.
[20]HSIAO W H,CHEN H Y,CHENG T M,et al. Urchin-like Ag nanowires as non-enzymatic hydrogen peroxide sensor[J].Journal of the Chinese chemical society,2012,59:500-506.
[21]MUKOUYAMA Y,NAKANISHI S,CHIBA T,et al. Mechanisms of two electrochemical oscillations of different types,observed for H2O2reduction on a Pt electrode in the presence of a small amount of halide ions [J].Journal of physical chemistry B,2010,105:7246-7253.
[22]YOU J M,KIM D,JEON S.Electrocatalytic reduction of H2O2by Pt nanoparticles covalently bonded to thiolated carbon nanostructures[J].Electrochimica acta,2012,65:288-293.
[23]BHUJUN B,ANANDAN S,TAN M T.Study of ternary metal oxides as supercapacitor electrodes[J].Wit transactions on ecology&the environment,2014,186:386-342.
[24]RAMZAN M,LEBEGUE S,AHUJA R.Transition metal doped MgH2:a material to potentially combine fuel-cell and battery technologies[J].International journal of hydrogen energy,2010,35:10373-10376.
[25] SCHIMID T J,GASTEIGER H A,STAEB G D,et al. Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration[J].Journal of the electrochemical society,1998,145:2354-2358.
[26]NERLE U.Thermal oxidation of copper for favorable formation of cupric oxide(CuO)semiconductor[J]. Iosr journal of applied physics,2013,5:1-7.
[27]GUO Y.Urchin-like Pd@CuO-Pd yolk-shell nanostructures:synthesis,characterization and electrocatalysis [J].Journal of materials chemistry A,2015,3:13653-13661.
[28]SIDDIQUI H,QURESHI M S,HQQUE F Z.Valuation of copper oxide(CuO)nanoflakes for its suitability as an absorbing material in solar cells fabrication[J]. International journal for light and electron optics,2016,77:305-314.
[29]ASANO K,MATSUBARA S.Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection[J].Talanta,2010,80:1648-1652.
[30]WANG P,NG Y H,AMAL R.Embedment of anodized p-type CuO thin films with CuO nanowires for improvementinphotoelectrochemicalstability[J]. Nanoscale,2013,5:2952-2958.
[31] WANG F,KALAM A,CHANG L,et al.Rapid microwave assisted synthesis of ball-in-ball CuO microspheres and its application as a H2O2sensor[J].Materials Letters,2013,92:96-99.
[32]ZHANG P,GUO D,LI Q.Manganese oxide ultrathin nanosheets sensors for non-enzymatic detection of H2O2[J].Materials letters,2014,125:202-205.
[33]SCAVETTA E,BALLARIN B,TONELLI D.A cheap amperometric and optical sensor for glucose determination[J].Electroanalysis,2010,22:427-432.
[34]QING X X,YU K,WANG X F,et al.Synthesis and characterization of Co3O4nanoflowers for lithium ion batteries[J].Advanced materials research,2013,849:147-150.
[35]KIM M.Introduction of Co3O4into activated honey-comb-like carbon for the fabrication of high performance electrode materials for supercapacitors[J]. Physicalchemistrychemicalphysics,2016,18:9124-9132.
[36]XUE X Y,YUAN S,XIANG L L,et al.Porous Co3O4nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes[J].Chemical communications,2011,47:4718-4720.
[37]WANG M,JIANG X,LIU J,et al.Highly sensitive H2O2sensor based on Co3O4hollow sphere prepared via a template free method[J].Electrochimica acta,2015,182:613-620.
[38]INOUE H,HAZE A,CHIKU M,et al.Ethanol oxidation reaction on tandem-type Pt/Rh/SnOx electrocatalysts[J].Proceedings of the national academy of sciences of the United States of America,1986,83:7731-7735.
[39] TSUKAMOTO D,SHIRO A,SHIRRAI Y,et al.Photocatalytic H2O2Production from ethanol/O2system using TiO2loaded with Au-Ag bimetallic alloy nanoparticles[J].Acs catalysis,2012,2:599-603.
[40]SONG H,NI Y,KOKOT S.A novel electrochemical sensor based on the copper-doped copper oxide nano-particles for the analysis of hydrogen peroxide[J]. Colloids&surfaces a physicochemical&engineering aspects,2015,465:153-158.
[41] KHAN S B,RAHMAN M M,ASIRI A M,et al.Fabrication of non-enzymatic sensor using Co doped ZnO nanoparticles as a marker of H2O2[J].Physica E:low-dimensional systems and nanostructures,2014,62:21-27.
[42]BAITHA P K,PAL P P,MANAM J.Dosimetric sensing and optical properties of ZnO-SnO2nanocomposites synthesized by co-precipitation method[J].Nuclear instruments&methods in physics research,2014,74:91-98.
[43]ZHANG G,PAN X,WANG L.Doped TiO2and TiO2nanotubes:synthesis and applications[J].International journal of impact engineering,2013,7:77-86.
[44] JANYASUPAB M,LIUC W,ZHANG Y,et al.Bimetallic Pt-M(M=Cu,Ni,Pd,and Rh)nanoporous for H2O2based amperometric biosensors[J].Sensors&actuators b chemical,2013,179:209-214.
[45]YANG Z,ZHANG L,ZHANGY,et al.Rational design of CuO@Cu nanostructure with tuneable morphology and electrochemical properties[J].Rsc advances, 2014,4:8121-8124.
[46]AN X,TENG F,ZHANG P,et al.Enhanced photo electrochemical sensor based on ZnO-SnO2composite nanotubes[J].Journal of alloys&compounds,2014,614:373-378.
[47] BAUGHMAN R H,ZAKHIiDOVA A,HEERW A D. Carbon nanotubes-the route toward applications[J]. Science,2002,297:787-792.
[48]QIANG X L,WANG Z H,XIA J F,et al.In situ growth of copper nanoparticles on carbon nanotubes and its application for electrocatalysis of hydrogen peroxide[J].Journal of analysis laboratory,2012,31:13-18.
[49]LIN Y,CHEN X,LIN Y,et al.Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide[J].Microchimica acta,2015,182:1803-1809.
[50]GEIM A K.Random walk to graphene[J].Angewandte chemie international edition,2011,50:6966-6985.
[51]GEIM A K,NOVOSELOV K S.The rise of graphene [J].Nature materials,2007,6:183-191.
[52] WANG M Y,SHEN T,WANG M,et al.One-pot synthesis of alpha-Fe2O3nanoparticles-decorated reduced graphene oxide for efficient nonenzymatic H2O2biosensor[J].Sensors&actuators b chemical,2014,190:645-650.
[53] DEVASENATHIPATHY R,KOHILARENI K,CHENB S M,et al.Electrochemical preparation of biomolecule stabilized copper nanoparticles decorated reduced graphene oxide for the sensitive and selective determination of hydrogen peroxide[J].Electrochimica acta,2016,191:55-61.
[54]CINTI S,ARDUINI F,VELLUCCI G,et al.Carbon black assisted tailoring of prussian blue nanoparticles to tune sensitivity and detection limit towards H2O2by using screen printed electrode[J].Electrochimica acta,2014,47:63-66.
[55] YOO E,NAKAMURA J,ZHOU H S.N-doped graphene nanosheets for li-air fuel cells under acidic conditions [J].Energy&environmental science,2012,5:6928-6932.
[56]ZHANG X P,LIU D,YU B,et al.A novel nonenzymatic hydrogen peroxide sensor based on electrospun nitrogen-dopedcarbonnanoparticles-embeddedcarbon nanofibers film[J].Sensors&actuators b chemical,
2016,224:103-109.
[57] REICHA F M,SOLIMAN M A,SHABAN A M,et al. Conducting polymers[J].Journal of materials science,1990,26(4):1051-1055.
[58]YANG M,KIM D S,YOON J H,et al.Nanopillar films with polyoxometalate doped polyaniline for electrochemical detection of hydrogen peroxide[J].Analyst,2016,141(4):1319-1324.
[59]LI Y,ZHANG P,OUYANY Z,et al.Nanoscale graphene doped with highly dispersed silver nanoparticles:quick synthesis,facile fabrication of 3D membrane-modified electrode,and super performance for electrochemical sensing[J].Advanced functional materials,2015,8(2):133-142.
[60]LIANG H G,ZHENG L P,LIAO S J.Self-humidifying membrane electrode assembly prepared by adding PVA as hygroscopic agent in anode catalyst layer[J]. International journal of hydrogen energy,2012,37(17):12860-12867.
本文編輯:龔曉寧
Development of Materials for Non-Enzymatic Hydrogen Peroxide Electrochemical Sensors
LI Liang,TUO Xin,LI Sibo,SHE Xiao
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430074,China
Different kinds of electrode materials for the non-enzymatic hydrogen peroxide electrochemical sensors were focused,mainly including nobel metal nanomaterials(Pt and Ag),transition metal and its oxide nanomaterials(Cu,Mn and Co),alloy-based nanomaterials,carbon nanotubes,grapheme and graphene oxide-based nanomaterials.The performances(such as test potential,sensibility,linear range,selectivity)of the non-enzymatic hydrogen peroxide electrochemical sensors were analyzed.The applications of the above electrode materials in non-enzymatic hydrogen peroxide electrochemical sensors in recent five years were discussed and their characteristics were included.The detection principles of the various sensors were analyzed and some suggestions for the further development of non-enzymatic hydrogen peroxide electrochemical sensors were given.It indicated that the nanomaterials with larger surface area and special morphologies are the key for improving the detection performance of the non-enzymatic hydrogen peroxide electrochemical sensors.Meanwhile,the possible commercial application of non-enzymatic hydrogen peroxide electrochemical sensors was forecasted.
hydrogen peroxide;non-enzymatic;electrochemical sensor;nanomaterials
1674-2869(2016)04-0357-07
O657.1
A
10.3969/j.issn.1674-2869.2016.04.007
1674-2869(2016)04-0343-07
2016-02-29
武漢工程大學(xué)第七屆研究生教育創(chuàng)新基金(CX2015001)
李亮,博士,教授.E-mail:msell08@163.com