李朝陽, 姜效典, 李德勇,宮 偉,秘叢永
(中國海洋大學(xué) 1.海洋地球科學(xué)學(xué)院;2.海底科學(xué)與探測技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室, 山東 青島 266100)
?
紅河斷裂帶中南段上新世以來構(gòu)造隆升及成因?
李朝陽1,2, 姜效典1,2, 李德勇1,2,宮偉1,2,秘叢永1,2
(中國海洋大學(xué) 1.海洋地球科學(xué)學(xué)院;2.海底科學(xué)與探測技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室, 山東 青島 266100)
摘要:在數(shù)字高程模型(DEM)數(shù)據(jù)處理和前人磷灰石裂變徑跡測年(AFT)數(shù)據(jù)的基礎(chǔ)上,分析和識(shí)別了紅河斷裂帶中南段(彌渡至河口段)夷平面和河流階地的展布特征,對(duì)斷裂帶兩盤的構(gòu)造地貌進(jìn)行了定量、半定量研究。研究表明,彌渡-元江段、紅河-河口段南西盤夷平面高于北東盤150~840m,元江-紅河段北東盤夷平面高于南西盤140~230m。紅河斷裂帶中南段經(jīng)歷了7.36~11.9、3.6~4.9、1.6~2.5Ma 3個(gè)主要構(gòu)造活動(dòng)期次。估算了元江-紅河段上新世晚期以來的隆升速率,南西盤為1.38~1.53mm/a,北東盤為1.46~1.59mm/a。紅河斷裂帶元江-紅河段北東盤處于小江斷裂帶和紅河斷裂帶交匯區(qū),其構(gòu)造隆升是后二者共同作用的結(jié)果。
關(guān)鍵詞:紅河斷裂帶;構(gòu)造地貌;數(shù)字高程模型;磷灰石裂變徑跡測年;隆升速率
引用格式:李朝陽, 姜效典, 李德勇, 等.紅河斷裂帶中南段上新世以來構(gòu)造隆升及成因[J].中國海洋大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016, 46(7): 90-98.
LI Chao-Yang, JIANG Xiao-Dian, LI De-Yong, et al. Tectonic uplift and its regime in the central southern segment of the Red River fault zone since Pliocene[J].Periodical of Ocean University of China, 2016, 46(7): 90-98.
紅河斷裂帶作為揚(yáng)子地塊與印支地塊的縫合線,長期以來備受國內(nèi)外眾多地質(zhì)學(xué)家的關(guān)注[1-4]。紅河斷裂帶中新世以來右旋走滑運(yùn)動(dòng)水平和垂直斷距的定量研究一直是困擾紅河斷裂帶運(yùn)動(dòng)學(xué)研究的難點(diǎn)問題[5-6]。前人對(duì)于紅河斷裂帶右旋走滑運(yùn)動(dòng)水平斷距的定量研究已經(jīng)做過大量工作,第四紀(jì)以來普遍存在5~6km水平斷距[4-5,7]。然而,對(duì)于紅河斷裂帶右旋走滑運(yùn)動(dòng)垂向斷距的定量研究較少,僅僅大致確定了斷裂帶兩盤200~800m的垂向斷距[8-9]。以往的研究大多采用傳統(tǒng)的構(gòu)造地貌學(xué)分析方法,數(shù)據(jù)來源于野外考察、低精度航片和地質(zhì)圖,數(shù)據(jù)質(zhì)量較低,其他相關(guān)地質(zhì)數(shù)據(jù)匱乏,尤其缺乏構(gòu)造地貌的定量研究[10]。本文采用傳統(tǒng)地貌分析與現(xiàn)代分析技術(shù)相結(jié)合的方法,利用DEM數(shù)據(jù)、相關(guān)AFT測年資料和野外地質(zhì)數(shù)據(jù),對(duì)研究區(qū)的構(gòu)造地貌進(jìn)行了定量、半定量研究,對(duì)紅河斷裂帶(元江-紅河段)兩盤的隆升速率以及北東盤的隆升機(jī)制進(jìn)行了初步的探討。
研究區(qū)包括三江褶皺帶、滇中高原、楚雄盆地、部分華南褶皺系等主要構(gòu)造單元,發(fā)育紅河斷裂帶和小江斷裂帶兩大斷裂系統(tǒng),并且控制了全區(qū)的構(gòu)造活動(dòng)。紅河斷裂帶北起青藏高原東部,穿越云南全境和越南北部向東南延入南海,全長超過1000km,是揚(yáng)子地塊和印支地塊的邊界斷裂[11-13]。55Ma以來,伴隨著印度板塊向歐亞板塊的斜向俯沖,印支地塊向東南逃逸,紅河斷裂帶緩慢左旋走滑;34~17Ma,紅河斷裂帶進(jìn)入了早期大型左旋走滑的主要活動(dòng)期;17~5Ma,青藏高原東部和部分揚(yáng)子地塊相對(duì)于印支地塊向東擠出,紅河斷裂帶由左旋走滑向右旋走滑轉(zhuǎn)化;5Ma左右,紅河斷裂帶強(qiáng)烈右旋走滑[7,14-19]。紅河斷裂帶全區(qū)具有長期性、多期性和差異性的活動(dòng)特點(diǎn),其越南-海上區(qū)段的活動(dòng)特征更為復(fù)雜[20]。小江斷裂帶的活動(dòng)性向南逐漸減弱,在元江-沙人寨段與紅河斷裂帶交匯[21](見圖1)。
本研究采用的DEM數(shù)據(jù)來源于中國科學(xué)院計(jì)算機(jī)網(wǎng)絡(luò)信息中心國際科學(xué)數(shù)據(jù)鏡像網(wǎng)站,空間分辨率為30m,而AFT測年和河流階地?cái)?shù)據(jù)則來源于前人資料的整理匯總。采用的研究方法主要包括兩個(gè)方面,一方面,利用ArcGIS軟件對(duì)DEM數(shù)據(jù)進(jìn)行分析處理,提取高程、坡度等主要地形地貌因子,識(shí)別夷平面展布特征,繪制條帶剖面曲線,定量分析斷裂帶兩盤的差異性隆升幅度。相比傳統(tǒng)的線狀剖面,條帶剖面分析方法排除了微地貌和個(gè)別小型斷裂的影響,對(duì)于客觀反映區(qū)域地形更具有代表性[6]。另一方面,綜合分析河流階地、AFT測年資料,劃分構(gòu)造活動(dòng)期次,建立高程-年齡曲線,計(jì)算構(gòu)造隆升速率。
(右上方數(shù)字高程模型地貌圖中黑色方框?yàn)檠芯繀^(qū)位置;圖中白色透明長方形為圖2中條帶剖面的位置。圖中數(shù)字標(biāo)號(hào)代表不同的斷裂:①綠汁江斷裂②易門斷裂③普渡河斷裂④西小江斷裂⑤東小江斷裂⑥楚雄-通海斷裂⑦曲江斷裂⑧建水?dāng)嗔癣岚⒛瓟嗔癣鉄o量山斷裂。Top right of the digital elevation model geomorphological map shows the study area position. White transparent rectangles show the position of the profile in Figure 2. The numbers represent different faults: ①Luzhijiang fault ②Yimen fault ③Puduhe fault ④West Xiaojiang fault ⑤East Xiaojiang fault ⑥Chuxiong-Tonghai fault ⑦Qujiang fault ⑧Jianshui fault ⑨Amojiang fault ⑩Wuliangshan fault.)
圖1紅河斷裂帶中南段及鄰區(qū)數(shù)字高程模型(DEM)地貌圖
Fig.1Topographic relief of DEM of the central southern segment of Red River fault zone with its adacent areas
地形地貌記錄和保存了構(gòu)造活動(dòng)的信息,在構(gòu)造活動(dòng)特征識(shí)別等方面具有重要的指示意義。對(duì)于構(gòu)造地貌的研究實(shí)際上就是要求把地貌學(xué)當(dāng)作一種工具來研究構(gòu)造運(yùn)動(dòng)的規(guī)模、歷史、速率等問題[22]。紅河斷裂帶在平面圖上表現(xiàn)為巨大的深切斷陷凹槽谷,斷裂兩側(cè)高程、坡度變化巨大(見圖1,2)。AFT數(shù)據(jù)反映了本區(qū)多期次的構(gòu)造隆升歷史,而河流階地、夷平面等構(gòu)造地貌則揭示了紅河斷裂帶元江-紅河段北東盤相對(duì)南西盤隆升的規(guī)模和隆升速率。
3.1 區(qū)域地貌特征
研究區(qū)內(nèi)地形起伏巨大,平均海拔1533m,介于1000和3500m之間的中海拔區(qū)域占84.5%。整體地勢西北高,東南低。高聳的哀牢山山脈和強(qiáng)烈凹陷的紅河河谷貫穿整個(gè)研究區(qū),在元江附近發(fā)生彎曲,略微向西南突出,延伸方向由300°~310°轉(zhuǎn)為280°~290°(見圖1)。紅河斷裂帶在地形上表現(xiàn)為哀牢山東側(cè)山前巨大的條帶狀深切斷陷凹槽谷,具有谷中谷的特點(diǎn),谷內(nèi)海拔從西北部的1500m向東南逐漸下降,河口附近下降到500m以下,與南西側(cè)高聳的哀牢山山脈形成1000m以上的高程差(見圖1,2)。
紅河斷裂帶南西盤為三江褶皺帶,發(fā)育多條高海拔條帶狀山脈,地形起伏大,無量山斷裂和阿墨江斷裂等均表現(xiàn)為強(qiáng)烈的負(fù)地形,在平面上表現(xiàn)為一系列由西北向東南發(fā)散的線狀山脈和凹槽相間分布(見圖1)。紅河斷裂帶北東盤,地勢較為平坦,平行紅河斷裂方向上發(fā)育楚雄斷裂、曲江斷裂和建水?dāng)嗔?。垂直方向上從西向東依次發(fā)育近NS向的綠汁江斷裂、易門斷裂、普渡河斷裂、西小江斷裂、東小江斷裂,共同組成小江斷裂系統(tǒng)。西北部楚雄盆地平均海拔2000m,地形平坦(見圖1)。
3.2 夷平面與構(gòu)造隆升分析
夷平面是指在地殼運(yùn)動(dòng)的相對(duì)穩(wěn)定時(shí)期,由廣泛的夷平作用形成的、以截?cái)嗝嫘问綑M切一切老地層和構(gòu)造的、接近侵蝕基準(zhǔn)面的、平緩的地表形態(tài),常遭受后期的抬升切割和埋藏[23-25]。研究區(qū)的夷平面形成于上新世晚期[26-27],現(xiàn)今基本上已經(jīng)被河流、斷裂切割肢解,大部分表現(xiàn)為高海拔平緩的山頂面[28-30]?;诘乩硇畔⑾到y(tǒng)(GIS)和數(shù)字高程模型(DEM)的地貌信息提取和定量分析,已成為大尺度夷平面的識(shí)別方面的重要手段[31]。本文借鑒前人的研究經(jīng)驗(yàn),將坡度7度作為夷平面識(shí)別分析的底界,圈定了山頂面的大致范圍[31](見圖3)。在排除高海拔湖泊和盆地對(duì)夷平面識(shí)別的干擾后,圖3較好的反映了山頂面的分布范圍,在南西盤主要集中在哀牢山山頂,表現(xiàn)出良好的線狀特征,北東盤則表現(xiàn)出塊狀分布的特征,與前人的研究結(jié)果基本一致[6,32]。結(jié)合夷平面分布特征(見圖3)和高程、坡度剖面曲線(見圖2),提取斷裂兩盤山頂面的高程值。彌渡-元江段(剖面A-A’、B-B’)、紅河-河口(剖面E-E’、F-F’)段南西盤夷平面高于北東盤150~840m,元江-紅河段(剖面C-C’、D-D’)北東盤夷平面高于南西盤140~230m,與前人的研究[6]稍有差異。由此可以得出,紅河斷裂帶彌渡-元江段、紅河-河口段南西盤相對(duì)隆升,元江-紅河段北東盤相對(duì)隆升,前人在該方面的研究雖有涉及,但細(xì)節(jié)上不夠詳盡(見圖1,2,3)。
夷平面研究不僅可以了解區(qū)域構(gòu)造變形的形式和位錯(cuò)量,而且可以評(píng)估一個(gè)地區(qū)的隆升幅度,這種方法在新構(gòu)造活動(dòng)區(qū)更為有效[30]。普遍認(rèn)為云南高原夷平面形成于上新世晚期,初始高程為800~1000m、剝蝕速率(0.94mm/a)[26,27,33]。在上述數(shù)據(jù)和現(xiàn)今夷平面高程特征的基礎(chǔ)上,估算了紅河斷裂帶上新世晚期元江-紅河段(剖面C-C’和D-D’)的隆升速率,南西盤為1.38~1.53mm/a,北東盤為1.46~1.59mm/a,二者隆升速率相近,北東盤稍快于南西盤。
(紅、藍(lán)、黃線代表最大、平均、最小高程,綠色線代表平均坡度,從上到下剖面依次為:剖面AA’、剖面BB’、剖面CC’、剖面DD’、剖面EE’、剖面FF’。剖面具體位置見圖1、圖3。Red, blue and yellow lines represent the maximum, average and minimum elevation, green lines represent the average slope. From top to bottom, profile AA’, profile BB’, profile CC’, profile DD’, profile EE’, profile FF’. The position of profiles is showed in Figure 1 and Figure 3.)
圖2紅河斷裂帶地形、坡度剖面
Fig.2Topographic profiles and slop profiles crossing the Red River fault zone
3.3 河流階地與隆升速率分析
在構(gòu)造抬升活躍的地區(qū),河流強(qiáng)烈的下切作用往往形成深切的高山峽谷以及多級(jí)河流階地。在區(qū)域構(gòu)造運(yùn)動(dòng)的控制下,研究區(qū)發(fā)育多級(jí)基座型河流階地[36]。從圖4看出,元江以北地段階地分布極不對(duì)稱,斷層南西盤較為廣泛地發(fā)育有1-5級(jí)階地,北東盤大部分地段無階地發(fā)育。元江以南地段,斷層的北東盤發(fā)育有1-4級(jí)階地,剖面4、剖面6兩側(cè)階地分布大致對(duì)稱。剖面5(紅河縣一帶)南西盤階地基本不發(fā)育,發(fā)育北東盤單側(cè)階地。元江以北,由于南西盤相對(duì)北東盤強(qiáng)烈抬升,使河床不斷向北東方向作橫向遷移。發(fā)育于哀牢山一側(cè)的沖、洪積相堆積物受到河床的再次沖刷與改造,形成多級(jí)階地[35]。元江以南,在剖面4(元江附近)和剖面6(沙人寨)附近北東盤與南西盤隆升速率相當(dāng),階地分布對(duì)稱。紅河縣附近,北東盤隆升速率稍稍超過了南西盤。綜合以上分析,基本確定了紅河縣附近北東盤相對(duì)隆升的事實(shí),相對(duì)隆升范圍向北延伸到元江附近,向南則界限較為模糊。
(右上方數(shù)字高程模型地貌圖中黑色方框?yàn)檠芯繀^(qū)位置。彩色區(qū)域坡度小于7°且高程大于1700m,為山頂夷平面的分布范圍,白色區(qū)域坡度大于7°且高程小于1700m。Top right of the digital elevation model geomorphological map shows the study area position. Color area show the distribution of planation surface, slope is less than 7°and elevation is larger than 1700 meters. White area slope is more than 7°and elevation is less than 1700 meters.)
圖3紅河斷裂帶中南段夷平面分布圖
Fig.3Distribution of planation surface of the central southern segment of Red River fault zone
圖4 紅河斷裂帶中南段河流階地剖面圖(據(jù)文獻(xiàn)[34-35]改)
對(duì)前人關(guān)于紅河斷裂帶(元江-沙人寨段)的AFT測年數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)分析[37-39],揭示了紅河斷裂帶7.36~11.9、3.6~4.9、1.6~2.5Ma 3個(gè)期次的構(gòu)造運(yùn)動(dòng),其中4.7Ma左右的構(gòu)造活動(dòng)得到了眾多學(xué)者的廣泛認(rèn)可[6,32,40]。前人通常運(yùn)用階地面之間或階地面與現(xiàn)代河床之間的相對(duì)高差以及階地的形成年代來計(jì)算河谷的下切速率,并用此下切速率來代表或衡量山地的隆升速率[41-43]。本文根據(jù)剖面4河流階地的堆積年齡(孢粉、14C、波速和地層分析)[34]、階地高程數(shù)據(jù)以及AFT測年信息[37]繪制了紅河斷裂帶南西盤(元江附近)高程-年齡曲線圖(見圖5)。限于階地年齡的不確定性,曲線的斜率只能半定量的反映了區(qū)域構(gòu)造隆升速率的變化。從曲線圖中可以發(fā)現(xiàn),2.3~2.6、~3.6Ma紅河斷裂帶南西盤(元江附近)發(fā)生了兩期快速隆升,以~3.6Ma的構(gòu)造隆升最為強(qiáng)烈;2.6~3.6Ma構(gòu)造活動(dòng)相對(duì)平靜,發(fā)生了廣泛的夷平作用;2.6Ma以來曲線斜率不斷增大,隆升速率不斷增大。前人對(duì)于盆地地層的研究也得到了類似的構(gòu)造活動(dòng)特征[34-35,44-46]。從元江附近第四紀(jì)以來基本對(duì)稱分布的河流階地來看,北東盤和南西盤擁有類似的隆升歷史。但是必須注意的是,由于資料的局限性,該曲線反映的2.6Ma以來隆升速率不斷增大的變化趨勢,忽略了多期隆升與多期夷平的具體細(xì)節(jié),還有待精細(xì)資料的進(jìn)一步研究。
(據(jù)文獻(xiàn)[34,37]改。 Revised from reference [34,37].)
關(guān)于紅河斷裂帶彎曲部分(元江-紅河段)北東盤的構(gòu)造隆升機(jī)制,從區(qū)域構(gòu)造環(huán)境來看,淺部的變形與走滑旋轉(zhuǎn)只是一種表殼“薄皮”構(gòu)造[48]。在青藏高原擠壓隆升下地殼物質(zhì)東流的背景下,9~13Ma下地殼流進(jìn)入本研究區(qū)[49],誘發(fā)區(qū)域地殼增厚,地表抬升[50]。上新世以來,隨著下地殼流向東遷移,小江斷裂帶開始發(fā)育并日趨活躍,紅河斷裂帶活動(dòng)則逐漸減弱[51],紅河斷裂帶(右旋)和小江斷裂帶(左旋)圍限的川滇地塊上地殼向SE方向逃逸的同時(shí)發(fā)生順時(shí)針旋轉(zhuǎn)[21],與下地殼解耦。川滇地塊在運(yùn)動(dòng)過程中受到東側(cè)揚(yáng)子地塊和南側(cè)三江褶皺帶的阻擋作用,紅河斷裂帶彎曲部分必然處于SN向和EW向的水平擠壓疊加狀態(tài),為區(qū)域擠壓隆升區(qū)(見圖6)。在上述構(gòu)造隆升機(jī)制過程中,川滇地塊向SE方向順時(shí)針旋轉(zhuǎn)逃逸過程中小江斷裂帶扮演了重要角色,4~2Ma以來其西側(cè)分支斷裂左旋走滑斷距高達(dá)60km,向東逐漸減少到17km[4](見圖6)。小江斷裂帶左旋走滑水平斷距在紅河斷裂帶北部逐漸消失殆盡,且其水平斷距以各種形式被逐漸吸收,相當(dāng)一部分轉(zhuǎn)化為紅河斷裂帶北東盤的局部垂向抬升,區(qū)域抬升幅度在元江附近達(dá)到最大,向北西和南東方向逐漸減小,與小江斷裂帶左旋走滑水平斷距存在空間上的對(duì)應(yīng)關(guān)系。
從局部構(gòu)造環(huán)境來看,走滑斷裂在彎曲處會(huì)發(fā)生一系列擠壓構(gòu)造吸收部分走滑位移量[47,52-53]。紅河斷裂帶在元江附近走向由300°~310°轉(zhuǎn)為280°~290°,夾角在150°左右。紅河斷裂帶北東盤300°~310°的走滑分量,除了一部分轉(zhuǎn)為280°~290°,另外一部分轉(zhuǎn)化為NNW-SSE方向的擠壓分量,導(dǎo)致了東北盤的局部擠壓隆起,吸收了右旋走滑的部分位移量(見圖6)。
(據(jù)文獻(xiàn)[4,21,47]改。Revised from reference[4,21,47].)
綜上,從深部構(gòu)造來說,下地殼流的東移以及紅河斷裂帶北東盤地殼的相對(duì)增厚,均對(duì)區(qū)域的差異性構(gòu)造隆升有一定貢獻(xiàn)。從淺部構(gòu)造來說,紅河斷裂帶彎曲部分(元江-紅河段)北東盤處于紅河斷裂帶和小江斷裂帶共同作用的擠壓隆升區(qū),4.7Ma以來,紅河斷裂帶的右旋走滑運(yùn)動(dòng)和小江斷裂帶4~2Ma以來的左旋走滑運(yùn)動(dòng)對(duì)該區(qū)域的淺部構(gòu)造變形起著重要的控制作用,兩大斷裂帶的水平走滑斷距均在該區(qū)域轉(zhuǎn)化為垂向抬升。但是,由于河流階地、夷平面、AFT資料的局限和不確定性,只能半定量的反演該區(qū)的構(gòu)造隆升歷史,兩大斷裂系統(tǒng)對(duì)該區(qū)構(gòu)造隆升的貢獻(xiàn)機(jī)制和定量化分析仍有待進(jìn)一步研究。
(1)紅河斷裂帶在地形上表現(xiàn)為哀牢山東側(cè)山前巨大的條帶狀深切斷陷凹槽谷。紅河斷裂帶彌渡-元江段、紅河-河口段南西盤夷平面高于北東盤150~840m,元江-紅河段北東盤夷平面高于南西盤140~230m,揭示了紅河斷裂帶彎曲部分(元江-紅河段)北東盤的相對(duì)隆升。
(2)紅河斷裂帶中南段經(jīng)歷了7.36~11.9、3.6~4.9、1.6~2.5Ma 3個(gè)主要構(gòu)造期次。紅河斷裂帶(元江附近)經(jīng)歷了~3.6、2.3~2.6Ma兩期快速隆升,2.6~3.6Ma構(gòu)造活動(dòng)平靜期,2.6Ma以來隆升速率不斷增大。元江-紅河段上新世晚期以來的隆升速率,南西盤為1.38~1.53mm/a,北東盤為1.46~1.59mm/a。
(3)紅河斷裂帶彎曲部分(元江-紅河段)北東盤處于紅河斷裂帶和小江斷裂帶共同作用的擠壓隆升區(qū),兩大斷裂系統(tǒng)水平走滑斷距部分轉(zhuǎn)化為該區(qū)垂向構(gòu)造隆升。
參考文獻(xiàn):
[1]Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau [J]. Science, 2001, 294(5547): 1671-1677.
[2]Xu Y, Liu J H, Liu F, et al. Crust and upper mantle structure of the Ailao Shan-Red River fault zone and adjacent regions [J]. Science in China, 2005, 48(2): 156-164.
[3]Jiang W L, Zhang J F, Tian T, et al. Crustal structure of Chuan-Dian region derived from gravity data and its tectonic implications [J]. Physics of the Earth and Planetary Interiors, 2012(4): 76-87.
[4]Wang E C, Burchfiel B C, Royden L H. Late cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China [J]. GSA Special Paper, 1998, 327: 1-108.
[5]Allen C R, Gillespie A R, Han Y, et al. Red River and associated faults, Yunnan province, China: Quaternary geology, slip rates, and seismic hazard [J]. Geological Society of America Bulletin, 1984, 95(6): 686-700.
[6]向宏發(fā), 韓竹軍, 虢順民, 等. 紅河斷裂帶大型右旋走滑運(yùn)動(dòng)與伴生構(gòu)造地貌變形 [J]. 地震地質(zhì), 2004, 26(4): 597-610.
Xiang H F, Han Z J, Guo S M, et al. Large scale dextral strike slip movement and associated tectonic deformation along the Red River fault zone [J]. Seismology and Geology, 2004, 26(4): 576-610.
[7]Burchfiel B C, Wang E C. Northwest-trending, middle Cenozoic, left-lateral faults in southern Yunnan, China, and their tectonic significance [J]. Journal of Structural Geology, 2003, 25(5): 781-792.
[8]Schoenbohm L M, Burchfiel B C, Chen L Z, et al. Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow [J]. Geological Society of America Bulletin, 2006, 118(5-6): 672-688.
[9]Schoenbohm L M, Whipple K X, Burchfiel B C. Geomorphic constranints on surface uplift, exhumation, and plateau growth in the red river region, Yunnan Province, China[J]. Bulletin of the Geological Society of America, 2004, 116(7): 895-909.
[10]江娃利. 紅河活動(dòng)斷裂中南段航片變位地形判讀及野外檢驗(yàn) [C]. [s.l.]: 地殼構(gòu)造與地殼應(yīng)力文集, 1997: 52-58.
Jiang W L. Terrain displacement with aerophotograph interpretation and field survey in the central southern segment of the Red River fault [C]. [s.l.]: Crustal Tectonics and Crustal Stress, 1997: 52-58.
[11]Replumaz A, Lacassin R, Tapponnier P, et al. Large river offsets and Plio-Quaternary dextral slip rate on the Red River fault(Yunnan, China) [J]. Journal of Geophysical Research, 2001, 106(B1): 819-836.
[12]朱俊江, 詹文歡, 唐誠, 等. 紅河斷裂帶活動(dòng)性研究 [J]. 華南地震, 2003, 23(2): 13-19.
Zhu J J, Zhan W H, Tang C, et al. Study on the activity of the Red River Fault Zone [J]. South China Journal of Seismology, 2003, 23(2): 13-19.
[13]劉俊來, 曹淑云, 翟云峰, 等. 用陸塊旋轉(zhuǎn)解釋藏東南漸新世-中新世伸展作用-來自點(diǎn)蒼山及鄰區(qū)變質(zhì)核雜巖的證據(jù) [J]. 地學(xué)前緣, 2007, 14(4): 40-48.
Liu J L, Cao S Y, Zhai Y F, et al. Rotation of crustal blocks as an explanation of Oligo -Miocene extension in Southeastern Tibet-evidenced by the Diancangshan and nearby metamorphic core complexes [J]. Earth Science Frontiers, 2007, 14(4): 40-48.
[14]Cao S Y, Liu J L, Leiss B, et al. Oligo-Miocene shearing along the Ailao Shan-Red River shear zone: Constraints from structural analysis and zircon U/Pb geochronology of magmatic rocks in the Diancang Shan massif, SE Tibet, China [J]. Gondwana Research, 2011, 19(4): 975-993.
[15]Harrison T M, Leloup P H, Ryerson F J, et al. Diachronous initiation of transtension along the Ailaoshan-Red River shear zone, Yunnan and Vietnam, the tectonic evolution of Asia [M].∥ Harrison T M, Yin A, eds. The Tectonics of Asian, New York: Cambridge University Press, 1996: 208-226.
[16]Leloup P H, Lacassin R, Tapponnier P, et al. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina [J]. Tectonophysics, 1995, 251(s1-4): 3-10.
[17]Searle M P. Role of the Red River Shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia [J]. Journal of Geological Society, London, 2006, 163(6): 1025-1036.
[18]張連生, 鐘大賚. 從紅河剪切帶走滑運(yùn)動(dòng)看東亞大陸新生代構(gòu)造 [J]. 地質(zhì)科學(xué), 1996, 31(4): 327-341.
Zhang L S, Zhong D L. The Red River strike-slip shear zone and Cenozoic tectonics of East Asia continent [J]. Chinese Journal of Geology, 1996, 31(4): 327-341.
[19]張進(jìn)江, 鐘大賚, 季建清, 等. 東喜馬拉雅構(gòu)造結(jié)大陸碰撞以來構(gòu)造年代學(xué)框架及其與哀牢山紅河構(gòu)造帶的對(duì)比 [J]. 礦物巖石地球化學(xué)通報(bào), 2001, 20(4): 243-244.
Zhang L S, Zhong D L, Ji J Q, et al. The structural-chronological frame of the Eastern Himalayan Syntaxis since the India-Asia collision and its correlation with the Ailaoshan-Red River structural belt [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4): 243-244.
[20]安慧婷, 李三忠, 索艷慧, 等. 南海西部新生代控盆斷裂及盆地群成因 [J]. 海洋地質(zhì)與第四紀(jì)地質(zhì), 2012, 32(6): 95-111.
An H T, Li S Z, Suo Y H, et al. Basin-controlling faults and formation mechanism of the Cenozoic basin groups in the western South China Sea [J]. Marine Geology & Quaternary Geology, 2012, 32(6), 95-111.
[21]王剛, 王二七. 擠壓造山帶中的伸展構(gòu)造及其成因-以滇中地區(qū)晚新生代構(gòu)造為例 [J]. 地震地質(zhì), 2005, 27(2): 188-199.
Wang G, Wang E C. Extensional structures with in the compressional orogenic belt and its mechanism: a case study for the late Cenozoic deformation in Central Yunnan [J]. Seismology and Geology, 2005, 27(2): 188-199.
[22]潘家偉, 李海兵, Jerome Van Der Woerd, 等. 西昆侖山前沖斷帶晚新生代構(gòu)造地貌特征 [J]. 地質(zhì)通報(bào), 2007, 26(10): 1368-1379.
Pan J W, Li H B, Jerome V D W, et al. Late Cenozoic morphotectonic features of the thrust belt in the front of the West Kunlun Mountains Geological Bulletin of China [J]. Geological Bulletin of China, 2007, 26(10): 1368-1379.
[23]田明中, 程捷. 第四紀(jì)地質(zhì)學(xué)與地貌學(xué) [M]. 北京: 地質(zhì)出版社, 2009.
Tian M Z, Cheng J. Quaternary Geology and Geomorphology [M]. Beijing: Geological Publishing House, 2009.
[24]董文杰, 湯懋蒼. 青藏高原隆升和夷平過程的數(shù)值模型研究 [J]. 中國科學(xué)(D輯: 地球科學(xué)), 1997, 27(1): 65-69.
Dong W J, Tang M C. Study on numerical model of the Tibet Plateau uplift and planation process [J]. Science in China (Series D), 1997, 27(1): 65-69.
[25]任雪梅, 陳忠, 羅麗霞, 等. 夷平面研究綜述 [J]. 地理科學(xué), 2003, 23(1): 107-111.
Ren X M, Chen Z, Luo L X, et al. Summary on the study of planation surface [J]. Scientia Geographica Sinica, 2003, 23(1): 107-111.
[26]王國芝, 初鳳友, 王成善. 中新世以來滇西高原內(nèi)紅河流域區(qū)的古高程反演 [J]. 成都理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2004, 31(2): 118-124.
Wang G Z, Chu F Y, Wang C S. Paleoelevation reconstruction of Red River drainage areas in Western Yunnan Plateau since Miocene [J]. Journal of Chengdu University of Technology, 2004, 31(2): 118-124.
[27]何科昭, 何浩生, 蔡紅飆. 滇西造山帶的形成與演化 [J]. 地質(zhì)論評(píng), 1996, 42(2): 97-106.
He K Z, He H S, Cai H P. Formation and evolution of the western Yunnan orogenic belt [J]. Geological Review, 1996, 42(2): 97-106.
[28]趙帥. 基于DEM的新構(gòu)造運(yùn)動(dòng)特征研究 [D]. 北京: 中國地質(zhì)大學(xué), 2012.
Zhao S. Research on neotectonic movement characteristics with DEM technique in Alxa Area, Inner Mongolian Autonomous Region [D]. Beijing: China University of Geosciences, 2012.
[29]程捷, 劉學(xué)清, 高振紀(jì), 等. 青藏高原隆升對(duì)云南高原環(huán)境的影響 [J]. 現(xiàn)代地質(zhì), 2001, 15(3): 290-296.
Cheng J, Liu X Q, Gao Z J, et al. Effect of the Tibetan Plateau uplifting on geological environment of theYunnan Plateau [J]. Geoscience, 2001, 15(3): 290-296.
[30]崔之久, 馮金良, 劉耕年, 等. 夷平面研究的再評(píng)述 [J]. 科學(xué)通報(bào), 2001, 46(21): 1761-1768.
Cui Z J, Feng J L, Liu G N, et al. A review on the study of planation surface [J]. Science Bulletin, 2001, 46(21): 1761-1768.
[31]馮金良, 崔之久. 云南拱王山風(fēng)化殼的發(fā)育特征及其構(gòu)造和環(huán)境意義 [J]. 地理學(xué)與國土研究, 2002, 18(2): 56-60.
Feng J L, Cui Z J. Weathering profiles and its environmental and tectonic significance in Gongwangshan Mountain, Yunnan Province [J]. Geography and Territorial Research, 2002, 18(2): 56-60.
[32]王二七, 樊春, 王剛, 等. 滇西哀牢山-點(diǎn)蒼山形成的構(gòu)造和地貌過程 [J]. 第四紀(jì)研究, 2006, 26(2): 220-227.
Wang E C, Fan C, Wang G, et al. Deformational and geomorphic processes in the formation of the Ailaoshan-Diancang range, west Yunnan [J]. Quaternary Sciences, 2006, 26(2): 220-227.
[33]王國芝, 王成善, 劉登忠, 等. 滇西高原第四紀(jì)以來的隆升和剝蝕 [J]. 海洋地質(zhì)與第四紀(jì)地質(zhì), 1999, 19(4): 67-74.
Wang G Z, Wang C S, Liu D Z, et al. Uplift and denudation of the western Yunnan plateau in Quaternary [J]. Marine Geology & Quaternary Geology, 1999, 19(4): 67-74.
[34]柴天俊, 楊繼武. 紅河斷裂帶新構(gòu)造活動(dòng)的地質(zhì)地貌特征 [J]. 云南地質(zhì), 1992, 11(3): 260-267.
Chai T J, Yang J W. Geological and geomorphological fault of neotectonic movement of Red River fault zone [J]. Yunnan Geology, 1992, 11(3): 260-267.
[35]何?;? 周瑞琦, 張雙林, 等. 紅河斷裂帶地震地質(zhì)特征 [J]. 云南地質(zhì), 1983, 2(2): 88-101.
He X H, Zhou R Q, Zhang S L, et al. Seismic geological characteristics of the Red River Fault Zone [J]. Yunnan Geology, 1983, 2(2): 88-101.
[36]常宏, 安芷生, 強(qiáng)小科, 等. 河流階地的形成及其對(duì)構(gòu)造與氣候的意義 [J]. 海洋地質(zhì)動(dòng)態(tài), 2005, 21(2): 8-11.
Chang H, An Z S, Qiang X K, et al. Formation of fluvial terrace and its tectonic and climate significance [J]. Marine Geology Letters, 2005, 21(2): 8-11.
[37]向宏發(fā), 萬景林, 韓竹軍, 等. 紅河斷裂帶大型右旋走滑運(yùn)動(dòng)發(fā)生時(shí)代的地質(zhì)分析與FT測年 [J]. 中國科學(xué)(D輯: 地球科學(xué)), 2006, 36(11): 977-987.
Xiang H F, Wang J L, Hang Z J, et al. Geological analysis and FT dating of the large scale right lateral strike slip movement of the Red River fault zone [J]. Science in China (Series D), 2006, 36(11): 977-987.
[38]萬景林, 李齊, 陳文寄. 哀牢山-紅河左旋走滑剪切帶構(gòu)造抬升時(shí)間序列的裂變徑跡證據(jù) [J]. 地震地質(zhì), 1997, 19(1): 88-91.
Wang J L, Li Q, Chen W J. Fission track evidence of diachronic uplift along the Ailao Shan-Red River left lateral strike-slip shear zone [J]. Seismology and Geology, 1997, 19(1): 88-91.
[39]張秉良, 劉瑞珣, 向宏發(fā), 等. 紅河斷裂帶中南段斷層活動(dòng)轉(zhuǎn)換構(gòu)造巖特征及應(yīng)力場演化 [J]. 巖石礦物學(xué)雜志, 2008, 27(6): 529-537.
Zhang B L, Liu R X, Xiang H F, et al. Tectonite features and stress field variations associated with fault motion transformation in the central southern part of the Red River fault zone [J]. Acta Petrologica et Mineralogica, 2008, 27(6): 529-537.
[40]李齊, 陳文寄, 萬景林, 等. 哀牢山-紅河剪切帶構(gòu)造抬升和運(yùn)動(dòng)形式轉(zhuǎn)換時(shí)間的新證據(jù) [J]. 中國科學(xué)(D輯: 地球科學(xué)), 2000, 30(6): 576-583.
Li Q, Chen W J, Wang J L, et al. New evidence of tectonic uplift and the conversion motion time of the Ailaoshan-Red River shear zone [J]. Science in China (Series D), 2000, 30(6): 576-583.
[41]Burbank D W, Leland J, Fielding E, et al. Bedrock incision, rock uplift and threshold hillslopes in the northwest Himalayas [J]. Nature, 1996, 379(6565): 505-510.
[42]Leland J, Reid M R, Burbank D W, et al. Incision and differential bedrock uplift along the Indus River near Nanga Parbat, Pakistan Himalaya, from 10Be and 26Al exposure age dating of bedrock straths [J]. Earth and Planetary Science Letters, 1998, 154(1): 93-107.
[43]Zuchiewicz W, Cuong N Q, Bluszcz A, et al. Quaternary sediments in the Dien Bien Phu fault zone, NW Vietnam: a record of young tectonic processes in the light of OSL-SAR dating results [J]. Geomorphology, 2004, 60(3-4): 269-302.
[44]王國芝, 王成善, 曾允孚, 等. 滇西高原的隆升與鶯歌海盆地的沉積響應(yīng) [J]. 沉積學(xué)報(bào), 2000, 18(2): 234-240.
Wang G Z, Wang C S, Zeng Y F, et al. The uplift of the Western Yunnan Plateau and the sedimentary response of the Yinggehai basin [J]. Acta Sedimentologica Sinica, 2000, 18(2): 234-240.
[45]向宏發(fā), 虢順民, 張晚霞, 等. 紅河斷裂帶南段中新世以來大型右旋位錯(cuò)量的定量研究 [J]. 地震地質(zhì), 2007, 29(1): 34-50.
Xiang H F, Guo S M, Zhang W X, et al. Quantitative study on the large scale dextral strike slip offset in the southern segment of the Red River fault since Miocene [J]. Seismology and Geology, 2007, 29(1): 34-50.
[46]王宇. 紅河斷裂南段活動(dòng)性分析 [J]. 地質(zhì)災(zāi)害與環(huán)境保護(hù), 1994, 5(2): 28-35.
Wang Y. Study on the activities of south segment of Honghe fault [J]. Geological Hazards and Environment Preservation, 1994, 5(2): 28-35.
[47]王二七, 陳良忠, 陳吉琛, 等. 滇中小江走滑剪切帶晚新生代擠壓變形研究 [J]. 地質(zhì)科學(xué), 1995, 30(3): 209-219.
Wang E C, Chen L Z, Chen J C, et al. Late Cenozoic compressional deformations and their origin along the Xiaojiang strike-slip fault system in central Yunnan China [J]. Scientia Geological Sinica, 1995, 30(3): 209-219.
[48]鐘大賚, 丁林, 劉福田, 等. 造山帶巖石層多向?qū)蛹軜?gòu)造及其對(duì)新生代巖漿活動(dòng)的制約-以三江及鄰區(qū)為例 [J]. 中國科學(xué)(D輯: 地球科學(xué)), 2000, 30 (增刊): 1-8.
Zhong D, Ding L, Liu F, et al. Mulit-oirented and laeyerd strucuters of lithosphere in orogenic belt and their effecst on Cenozoic magmaitsm [J]. Science in China (Series D), 2000, 30(Supplement): 1-8.
[49]Clark M K, House M A, Royden L H, et al. Late Cenozoic uplift of southeastern Tibet [J]. Geology, 2005, 33(6): 525-528.
[50]Clark M K, Royden L H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow [J]. Geology, 2000, 28(8): 703-706.
[51]Schoenbohm L M, Burchfiel B C, Liangzhong C. Propagation of surface uplift, lower crustal flow, and Cenozoic tectonics of the southeast margin of the Tibetan Plateau [J]. Geology, 2006, 34(10): 813-816.
[52]Mitra S, Paul D. Structural geometry and evolution of releasing and restraining bends: Insights from laser-scanned experimental models [J]. Aapg Bulletin, 2011, 95(7): 1147-1180.
[53]Mcclay K, Bonora M. Analog models of restraining stepovers in strike-slip fault systems [J]. Aapg Bulletin, 2001, 85(2): 233-260.
責(zé)任編輯徐環(huán)
基金項(xiàng)目:?國家自然科學(xué)基金項(xiàng)目“紅河斷裂帶海-陸巖石圈形變時(shí)空特征及演化機(jī)制”(41176038)資助
收稿日期:2015-03-20;
修訂日期:2015-05-12
作者簡介:李朝陽(1990-),男,碩士生。E-mail:1197705425@qq.com
中圖法分類號(hào):P542+.3
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-5174(2016)07-090-09
DOI:10.16441/j.cnki.hdxb.20150099
Tectonic Uplift and Its Regime in the Central Southern Segment of the Red River Fault Zone Since Pliocene
LI Chao-Yang1, 2, JIANG Xiao-Dian1, 2, LI De-Yong1, 2, GONG Wei1, 2, BI Cong-Yong1, 2
(Ocean University of China, 1.College of Marine Geo-Science; 2.Key Lab of Submarine Geosciences and Prospecting Techniques, Qingdao 266100, China)
Abstract:Based on processing of the DEM data and apatite fission track data, the authors analysed and identified the distribution characteristics of the river terraces and planation surfaces in the central southern segment of the Red River fault zone (from Midu to Hekou), and conducted quantitative and semi-quantitative studies of the morphotectonic features of two plates of the Red River fault zone. Researches show that Red River fault zone exhibits about 150~840 m vertical displacement with uplifting on its southwestern block and subsiding on the northeastern block, from Midu to Yuanjiang and Honghe to Hekou, and 140~230 m vertical displacement with uplifting on its northeastern block and subsiding on the southwestern block, from Yuanjiang to Honghe. The Red River fault zone has undergone three dislocations in 1.6~2.5、3.6~4.9and 7.36~11.9 Ma. Uplift rates of Red River fault zone (from Yuanjiang to Honghe) have been estimated based on AFT data and river terraces: the uplift rates of southwestern side since the late Pliocene was 1.38~1.53mm/a and northeastern side was 1.46~1.59 mm/a. The tectonic uplift at northeastern side of the Red River fault zone (from Yuanjiang to Honghe) is the result of the interaction between the Xiaojiang fault zone and the Red River fault zone.
Key words:Red River fault zone; Morphotectonic features; DEM; AFT dating; uplift rates
Supported by the National Natural Science Foundation of China“the Time-space Evolution and Mechanism of Lithospheric Deformation in Southern Red River Fault Zone”(41176038)