徐吉林*,王巧,羅軍明,陸磊,鐘震晨,胡芳,代明江
(1.江西省科學(xué)院江西省鎢銅新材料重點(diǎn)實(shí)驗(yàn)室,江西 南昌 330029;2.南昌航空大學(xué)材料學(xué)院,江西 南昌 330063;3.江西理工大學(xué)稀土磁性材料及器件研究所,江西 贛州 341000;4.廣東省現(xiàn)代表面工程技術(shù)重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510651)
燒結(jié)NdFeB永磁體表面TiN薄膜的制備及耐蝕性研究
徐吉林1, 2,*,王巧2,羅軍明2,陸磊1,鐘震晨3,胡芳4,代明江4
(1.江西省科學(xué)院江西省鎢銅新材料重點(diǎn)實(shí)驗(yàn)室,江西 南昌 330029;2.南昌航空大學(xué)材料學(xué)院,江西 南昌 330063;3.江西理工大學(xué)稀土磁性材料及器件研究所,江西 贛州 341000;4.廣東省現(xiàn)代表面工程技術(shù)重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510651)
采用電弧離子鍍技術(shù)在燒結(jié)NdFeB永磁體表面制備了TiN薄膜??疾炝薚iN薄膜的相組成,表面及截面形貌,表面粗糙度,水接觸角和在3.5% NaCl溶液中的動(dòng)電位極化曲線。結(jié)果表明,所得TiN薄膜為單一相,與NdFeB基體結(jié)合良好,厚度大約為8 μm。TiN薄膜可有效地將酸洗后NdFeB基體的缺陷覆蓋,但粗糙度較基體有所增大。TiN薄膜使基體的親水表面轉(zhuǎn)變?yōu)槭杷砻妗8鶕?jù)極化曲線所得腐蝕電流密度進(jìn)行計(jì)算,TiN薄膜對(duì)NdFeB基體的保護(hù)效率高達(dá)92.7%。
燒結(jié)釹鐵硼永磁體;氮化鈦薄膜;電弧離子鍍;耐蝕性;粗糙度
First-author’s address: Jiangxi Key Laboratory of Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences,Nanchang 330029, China
燒結(jié)NdFeB永磁體自問世以來,以其優(yōu)異的磁性能而在微波技術(shù)、音像技術(shù)、電機(jī)工程、儀表技術(shù)、計(jì)算機(jī)技術(shù)、磁分離技術(shù)、生物技術(shù)、汽車工業(yè)等領(lǐng)域得到了廣泛的應(yīng)用[1-4]。但由于燒結(jié)制造工藝固有的多孔缺陷,含有化學(xué)活性高的Nd元素,以及組織結(jié)構(gòu)中含有多相組織,易發(fā)生原電池腐蝕,甚至出現(xiàn)“大陰極小陽(yáng)極”而加速腐蝕,導(dǎo)致NdFeB永磁體的耐腐蝕性差而限制了進(jìn)一步發(fā)展[5-8]。表面改性已經(jīng)成為燒結(jié)NdFeB永磁體產(chǎn)品的一道必不可少的生產(chǎn)工序。目前工業(yè)上主要是電鍍Ni、Ni-Cu-Ni、Zn等金屬鍍層,或是陰極電泳環(huán)氧樹脂涂層等。近年電機(jī)得到加速發(fā)展,內(nèi)部磁體常會(huì)在冷熱交變、高腐蝕等工作環(huán)境下長(zhǎng)期工作,對(duì)釹鐵硼材料的表面防護(hù)提出了更高的要求,傳統(tǒng)防護(hù)涂層已經(jīng)不能滿足要求。復(fù)合涂層和氣相沉積薄膜已經(jīng)成為燒結(jié) NdFeB永磁體表面防腐涂層的發(fā)展趨勢(shì)。西南大學(xué)的李青等人采用電鍍技術(shù)制備了Ni-TiO2[9]、Ni-Co[10]、Ni-Co-TiO2[11]等鍍層;寧波材料所宋振綸等采用磁控濺射技術(shù)發(fā)展了Al膜[12]、AlN/Al復(fù)合膜[13]、Al/Al2O3多層交替復(fù)合膜[14]和 Ti/Al多層交替復(fù)合膜[15];徐吉林等采用陰極電泳沉積制備了納米二氧化鈦增強(qiáng)的環(huán)氧樹脂[16]和丙烯酸復(fù)合涂層[17]。
本文采用電弧離子鍍?cè)跓Y(jié)NdFeB永磁體表面制備了TiN薄膜,并考察了TiN薄膜的表面形貌、粗糙度、潤(rùn)濕性和耐蝕性。
1.1 材料制備
規(guī)格為13 mm × 13 mm × 3 mm、邊緣倒角R為0.1 mm的商業(yè)燒結(jié)NdFeB永磁體(N35未沖磁狀態(tài),江西金力永磁科技有限公司)作為原材料。將燒結(jié)NdFeB永磁體置于丙酮中超聲波振蕩清洗5 min,然后用去離子水沖洗,再置于5%(質(zhì)量分?jǐn)?shù))硝酸溶液中酸洗40 s左右,取出后置于去離子水中超聲波振蕩清洗,最后用酒精沖洗并烘干,待電弧離子鍍處理。電弧離子鍍采用廣州有色金屬研究院的AS700DTX科研型多功能電弧離子鍍膜機(jī),爐壓0.8 Pa,靶電流80 A,靶電壓140 V,偏壓-250 V,試樣臺(tái)轉(zhuǎn)速3 r/min,工作時(shí)間5 h,N2流量10 sccm。
1.2 結(jié)構(gòu)分析與性能測(cè)試
采用 FEI公司的 QUANTA200型掃描電鏡(SEM)觀察試樣的表面和截面顯微形貌,并用其附帶的能譜儀(EDS)分析元素成分。采用日本 Mitutoyo的 SJ-301型粗糙度儀測(cè)試膜層的表面粗糙度 Ra。采用上海中晨的JC2000C型接觸角測(cè)量?jī)x對(duì)試樣的表面潤(rùn)濕角進(jìn)行測(cè)量。采用上海辰華CHI650D型電化學(xué)工作站測(cè)量處理前后的試樣在3.5% NaCl溶液中的動(dòng)電位極化曲線,以評(píng)價(jià)其耐腐蝕性能,采用典型的三電極體系,飽和甘汞電極(SCE)作為參比電極,鉑片為輔助電極,測(cè)試試樣為工作電極(暴露面積為1 cm2),掃描速率為1 mV/s。
圖1為燒結(jié)NdFeB永磁體表面電弧離子鍍TiN薄膜試樣的XRD譜圖。從中可見,試樣上除了NdFeB基體相外,只含有TiN相,并未出現(xiàn)Ti或Ti2N相[18],說明本工藝制備的TiN薄膜非常純凈,Ti和N2的反應(yīng)較為完全。此外,由于TiN薄膜的存在,與基體相比,覆膜試樣的基體衍射峰明顯減弱,說明TiN薄膜較為致密,能有效阻礙X射線的穿透。
圖1 鍍覆TiN薄膜前后NdFeB永磁體的XRD譜圖Figure 1 XRD patterns of TiN thin film-coated and uncoated NdFeB permanent magnet
圖2給出了燒結(jié)NdFeB永磁體酸洗后表面和TiN薄膜的表面及截面形貌。從圖2a中可以明顯看出,酸洗后的燒結(jié)NdFeB永磁體表面存在大量的孔隙和疏松缺陷,這些缺陷主要來自于燒結(jié)NdFeB永磁體自身的粉末冶金制造工藝和酸洗過程中晶界富Nd相的腐蝕溶解而形成的孔隙[6]。這些缺陷的存在將會(huì)進(jìn)一步加速燒結(jié)NdFeB在腐蝕介質(zhì)中的腐蝕。如圖2b所示,經(jīng)電弧離子鍍處理后,燒結(jié)NdFeB表面沉積了一層TiN薄膜,可有效地將上述缺陷覆蓋,這必將有助于提高NdFeB的耐蝕性。TiN薄膜表面幾乎不存在孔隙、裂縫等缺陷,但其表面呈現(xiàn)出凹凸不平和均勻分散著一些白色顆粒。經(jīng)EDS分析,這些白色顆粒只含有Ti和N,應(yīng)為未成膜的TiN液滴所形成。從圖2c可看出,TiN薄膜厚度較為均勻,大概為8 μm,貫穿整個(gè)截面,致密,無明顯缺陷。另外,薄膜與NdFeB基體結(jié)合的界面緊密、無缺陷,這必將有助于提高薄膜與基體的結(jié)合強(qiáng)度和NdFeB永磁體的耐蝕性。
圖2 酸洗NdFeB永磁體表面和TiN薄膜的表面及截面形貌Figure 2 Surface morphology of pickled NdFeB permanent magnet and surface and cross-sectional morphologies of TiN film
TiN薄膜改變了燒結(jié)NdFeB永磁體的表面形貌,勢(shì)必改變其表面粗糙度。試驗(yàn)發(fā)現(xiàn),電弧離子鍍TiN薄膜的粗糙度較酸洗基體有所增加,酸洗NdFeB的表面粗糙度為0.95 μm,而TiN薄膜的粗糙度增加到1.13 μm。從表面形貌上可知,雖然TiN薄膜有效地覆蓋了NdFeB的表面缺陷,但是TiN薄膜自身也存在凹凸不平和顆?,F(xiàn)象,因此不僅沒有降低基體的粗糙度,反而對(duì)基體起到粗化作用。表面粗糙度的增加會(huì)增加材料表面與腐蝕介質(zhì)的實(shí)際接觸面積,這將不利于材料的耐蝕。
圖3為水滴在NdFeB基體和TiN薄膜表面接觸角的光學(xué)顯微照片。從圖3可知,NdFeB試樣的接觸角明顯小于TiN薄膜試樣的接觸角,它們分別為52.24°和96.73°。一般認(rèn)為水接觸角>90°時(shí)為疏水表面,<90°時(shí)為親水表面。TiN薄膜使燒結(jié)NdFeB磁體表面接觸角極大地增大,由原來的親水表面轉(zhuǎn)變成為疏水表面,潤(rùn)濕性大大下降。疏水表面,尤其是超疏水表面,可減小試樣表面與腐蝕介質(zhì)的接觸而提高耐蝕性[19]。從水接觸角來看,TiN薄膜提高了燒結(jié)NdFeB磁體的耐蝕性。
Figure 3 水滴在NdFeB基體和TiN薄膜上接觸角的光學(xué)顯微照片F(xiàn)igure 3 Optical micrographs showing the contact angle of water drop to the surface of NdFeB substrate and TiN film
圖4給出了NdFeB基體和TiN薄膜試樣在3.5% NaCl溶液中的動(dòng)電位極化曲線。表1是從極化曲線中獲取的腐蝕電流密度jcorr和腐蝕電位φcorr。從圖4中可明顯看出,與NdFeB基體試樣相比,TiN薄膜試樣的極化曲線整體都向小電流、正電位方向移動(dòng),腐蝕電位較基體正移了438 mV,腐蝕電流密度下降近1個(gè)數(shù)量級(jí)。
圖4 NdFeB基體和TiN薄膜的動(dòng)電位極化曲線Figure 4 Potentiodynamic polarization curves for the NdFeB substrate and TiN film
表1 NdFeB基體和TiN薄膜的腐蝕電位和腐蝕電流密度Table 1 Corrosion potential and corrosion current density of NdFeB substrate and TiN film
在電化學(xué)腐蝕試驗(yàn)中,涂層的保護(hù)效率(PE)常用來評(píng)價(jià)涂層對(duì)基體的腐蝕防護(hù)能力。根據(jù)涂層極化曲線得到的腐蝕數(shù)據(jù),按式(1)[20-21]可以計(jì)算涂層的PE。
經(jīng)過計(jì)算,TiN薄膜的保護(hù)效率為92.7%。
(1) 采用電弧離子鍍成功地在燒結(jié)NdFeB永磁體表面制備了單一相的TiN薄膜,此薄膜與NdFeB基體有良好的結(jié)合界面,可覆蓋酸洗后基體的孔隙和疏松缺陷,使粗糙度有所增加,并且將基體的潤(rùn)濕性由親水性轉(zhuǎn)變?yōu)槭杷浴?/p>
(2) TiN薄膜可有效提高燒結(jié)NdFeB永磁體的耐蝕性,使腐蝕電位正移動(dòng)了438 mV,腐蝕電流密度降低近1個(gè)數(shù)量級(jí),保護(hù)效率高達(dá)92.7%。
[1] GUTFLEISCH O, WILLARD M A, BRüCK E, et al.Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient [J].Advanced Materials, 2011, 23 (7): 821-842.
[2] DAVIES B E, MOTTRAM R S, HARRIS I R.Recent developments in the sintering of NdFeB [J].Materials of Chemistry and Physics, 2001, 67 (1): 272-281.
[3] SAGAWA M, FUJIMURA S, YAMAMOTO H, et al.Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds [J].IEEE Transactions on Magnetics, 1984, 20 (5): 1584-1589.
[4] 羅陽(yáng).全球NdFeB磁體產(chǎn)業(yè)變化與發(fā)展的25年[J].磁性材料及器件, 2008, 39 (6): 9-18, 39.
[5] 宋振綸.NdFeB永磁材料腐蝕與防護(hù)研究進(jìn)展[J].磁性材料及器件, 2012, 43 (4): 1-6, 13.
[6] XU J L, HUANG Z X, LUO J M, ZHONG Z C.Corrosion behavior of sintered NdFeB magnets in different acidic solutions [J].Rare Metal Materials and Engineering, 2015, 44 (4): 786-790.
[7] YAN G L, MCGUINESS P J, FARR J P G, et al.Environmental degradation of NdFeB magnets [J].Journal of Alloys and Compounds, 2009, 478 (1/2): 188-192.
[8] 孔祥薇, 劉國(guó)征, 趙明靜, 等.燒結(jié)NdFeB永磁體的腐蝕性研究現(xiàn)狀[J].稀土, 2013, 34 (6): 69-76.
[9] LI Q, YANG X K, ZHANG L, et al.Corrosion resistance and mechanical properties of pulse electrodeposited Ni-TiO2composite coating for sintered NdFeB magnet [J].Journal of Alloys and Compounds, 2009, 482 (1/2): 339-344.
[10] YANG X K, LI Q, ZHANG S Y, et al.Electrochemical corrosion behaviors and corrosion protection properties of Ni-Co alloy coating prepared on sintered NdFeB permanent magnet [J].Journal of Solid State Electrochemistry, 2010, 14 (9): 1601-1608.
[11] YANG X K, LI Q, ZHANG S Y, et al.Electrochemical corrosion behaviors and protective properties of Ni-Co-TiO2composite coating prepared on sintered NdFeB magnet [J].Materials and Corrosion, 2010, 61 (7): 618-625.
[12] MAO S D, YANG H X, SONG Z L, et al.Corrosion behaviour of sintered NdFeB deposited with an aluminium coating [J].Corrosion Science, 2011, 53 (5): 1887-1894.
[13] LI J L, MAO S D, SUN K F, et al.AlN/Al dual protective coatings on NdFeB by DC magnetron sputtering[J].Journal of Magnetism and Magnetic Materials,2009, 321 (22): 3799-3803.
[14] MAO S D, YANG H X, HUANG F, et al.Corrosion behaviour of sintered NdFeB coated with Al/Al2O3multilayers by magnetron sputtering [J].Applied Surface Science, 2011, 257 (9): 3980-3984.
[15] XIE T T, MAO S D, YU C, et al.Structure, corrosion, and hardness properties of Ti/Al multilayers coated on NdFeB by magnetron sputtering [J].Vacuum, 2012,86 (10): 1583-1588.
[16] XU J L, HUANG Z X, LUO J M, et al.Effect of titania particles on the microstructure and properties of the epoxy resin coatings on sintered NdFeB permanent magnets [J].Journal of Magnetism and Magnetic Materials, 2014, 355: 31-36.
[17] XU J L, ZHONG Z C, HUANG Z X, et al.Corrosion resistance of the titania particles enhanced acrylic resin composite coatings on sintered NdFeB permanent magnets [J].Journal of Alloys and Compounds, 2013, 570: 28-33.
[18] ALI A, AHMAD A.Corrosion protection of sintered NdFeB magnets by CAPVD Ti2N coating [J].Materials and Corrosion, 2009, 60 (5): 372-375.
[19] MOHAMED A M A, ABDULLAH A M, YOUNAN N A.Corrosion behavior of superhydrophobic surfaces: a review [J].Arabian Journal of Chemistry, 2015, 8 (6): 749-765.
[20] FOULADI M, AMADEH A.Effect of phosphating time and temperature on microstructure and corrosion behavior of magnesium phosphate coating [J].Electrochimica Acta, 2013, 106: 1-12.
[21] ZHANG X, XIAO G Y, JIANG C C, et al.Influence of process parameters on microstructure and corrosion properties of hopeite coating on stainless steel [J].Corrosion Science, 2015, 94: 428-437.
[ 編輯:溫靖邦 ]
Preparation and corrosion resistance study of TiN thin film on sintered NdFeB permanent magnet //
XU Ji-lin*,WANG Qiao, LUO Jun-ming, LU Lei, ZHONG Zhen-chen, HU Fang, DAI Ming-jiang
A TiN film was prepared by arc ion plating on the surface of sintered NdFeB permanent magnet.The phase composition, surface and cross-sectional morphologies, surface roughness, water contact angle and potentiodynamic polarization curve in 3.5% NaCl solution of the TiN film were studied.The results showed that the TiN film is characterized by a single-phase structure and well adhered to the NdFeB substrate with a thickness of ca.8 μm.The TiN film effectively covers the defects of the pickled NdFeB substrate, while has a higher surface roughness as compared to the substrate.The wettability of NdFeB is changed from hydrophilicity into hydrophobicity due to the existence of TiN thin film.The corrosion protection efficiency of TiN thin film to NdFeB substrate is up to 92.7%, as calculated from the corrosion current densities obtained from polarization curves.
sintered NdFeB permanent magnet; titanium nitride film; arc ion plating; corrosion resistance; roughness
TG174.444
A
1004 - 227X (2016) 05 - 0238 - 04
2015-11-30
2016-02-25
國(guó)家科技支撐計(jì)劃項(xiàng)目(2012BAE02B01);江西省銅鎢新材料重點(diǎn)實(shí)驗(yàn)室開放基金(2013-KLP-01)。
徐吉林(1982-),男,江西寧都人,博士,副教授,主要研究方向?yàn)椴牧媳砻娓男浴?br/>作者聯(lián)系方式:(E-mail) jlxu@nchu.edu.cn。