汪 龍,劉春明, 2,胡召齊,江來(lái)利,黃德志
(1. 中南大學(xué) 地球科學(xué)與信息物理學(xué)院,長(zhǎng)沙 410083;2. 中南大學(xué) 有色資源與地質(zhì)災(zāi)害探查湖南省重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410083;3. 安徽省地質(zhì)調(diào)查院,合肥 230001)
皖南鶴城科馬提質(zhì)變玄武巖地球化學(xué)特征及大地構(gòu)造意義
汪 龍1,劉春明1, 2,胡召齊3,江來(lái)利3,黃德志1
(1. 中南大學(xué) 地球科學(xué)與信息物理學(xué)院,長(zhǎng)沙 410083;2. 中南大學(xué) 有色資源與地質(zhì)災(zāi)害探查湖南省重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410083;3. 安徽省地質(zhì)調(diào)查院,合肥 230001)
江南造山帶新元古變基性巖為區(qū)域構(gòu)造事件和演化模型的建立提供地質(zhì)依據(jù)。對(duì)江南造山帶東段皖南鶴城地區(qū)變玄武質(zhì)巖的地球化學(xué)及巖石成因進(jìn)行研究。鶴城變玄武巖呈北東—南西向沿瑤里—鶴城—江潭一帶分布。元素地球化學(xué)的研究表明:休寧鶴城變玄武巖同科馬提質(zhì)玄武巖及島弧玄武巖相類似;富集Rb、Ba、Th、U等強(qiáng)不相容元素,虧損高場(chǎng)強(qiáng)元素Nb和Ta,指示其成因可能與富集地幔的部分熔融有關(guān),同時(shí)有地殼物質(zhì)的混染,其可能屬于皖南伏川蛇綠巖西延組成部分,與伏川蛇綠巖組成一個(gè)弧后雜巖帶,形成于與俯沖有關(guān)的弧后小洋盆環(huán)境。結(jié)合區(qū)域資料,表明新元古代板塊俯沖、島弧巖漿活動(dòng)以及拼合是江南造山帶形成的比較合理的構(gòu)造演化過(guò)程。
江南造山帶東段;鶴城;變玄武巖;科馬提質(zhì)玄武巖;島弧玄武巖
“江南造山帶”出露于揚(yáng)子板塊與華夏板塊之間,主要由一套淺變質(zhì)、強(qiáng)變形的(中)新元古代巨厚沉積?火山巖系及同時(shí)代的侵入體組成的地質(zhì)構(gòu)造單元,呈北東東?南西西方向延伸,向北西弧形突出[1],跨越了桂北、黔東、湘西、湘北、贛北、皖南和浙北的廣大區(qū)域,制約著我國(guó)南方顯生宙以來(lái)地質(zhì)構(gòu)造的演化。對(duì)于造山時(shí)間,目前多數(shù)學(xué)者認(rèn)為發(fā)生于古生代[2?3],但有研究認(rèn)為[4?5],江南造山帶是格林威爾期形成的弧?陸碰撞造山帶,屬于失敗的裂谷,在Rodinia超大陸裂解時(shí),并沒有完全裂解開來(lái)。而周金城等[6]則認(rèn)為,江南造山帶無(wú)論是從造山作用發(fā)生的年限還是構(gòu)造演化等方面都無(wú)法確定它是否屬于格林威爾造山帶。也有學(xué)者認(rèn)為[7],在新元古代中期,揚(yáng)子古陸存在一個(gè)(超級(jí))地幔柱,它沿?fù)P子板塊周邊形成的新元古代雙峰式火山巖,是超級(jí)地幔柱巖漿作用的產(chǎn)物,隨著該超級(jí)地幔柱的作用最終導(dǎo)致了 Rodinia超大陸裂解。另外,朱光等[8]則認(rèn)為皖南地區(qū)的江南隆起帶為印支?早燕山期的陸內(nèi)造山帶,形成于北部華北與揚(yáng)子板塊發(fā)生陸?陸碰撞、華南板塊向北推擠區(qū)域動(dòng)力學(xué)背景下。馬慧英等[9]對(duì)江南造山帶中段湘黔桂地區(qū)的新元古代“南華紀(jì)”沉積盆地基底火山巖研究認(rèn)為“南華紀(jì)”盆地由擠壓造山—初始裂解—全面伸展的體制轉(zhuǎn)換,盆地進(jìn)入穩(wěn)定發(fā)展階段,直至震旦紀(jì)初的廣泛海侵,淹沒碳酸鹽臺(tái)地形成。隨著贛東北蛇綠混雜巖、皖南伏川蛇綠混雜巖以及江紹斷裂帶東端蛇綠混雜巖的不斷被確定,以及多條與這些縫合帶有關(guān)、具有島弧性質(zhì)的火山巖帶的確定,暗示江南造山帶具有多島弧拼貼、多縫合的特點(diǎn)。近幾年,新的同位素年齡資料揭示,不同縫合帶閉合的時(shí)間可能存在著明顯的差異。YAO等[10]通過(guò)江南造山帶西段元寶山地區(qū)的鎂鐵質(zhì)巖和花崗巖的鋯石LA-ICP-MS U-Pb年齡,認(rèn)為揚(yáng)子板塊和華夏板塊縫合時(shí)間為850~800 Ma。很多學(xué)者在伏川蛇綠巖輝長(zhǎng)巖中獲得(822±3) Ma、(819±3) Ma和(827±3) Ma的鋯石U-Pb年齡,認(rèn)為伏川蛇綠巖就位于840~820 Ma[11?13]。WANG等[14]測(cè)得雙橋山群和溪口群的碎屑鋯石U-Pb年齡分別為831~815 Ma和833~817 Ma,集中分布于 830~850 Ma,說(shuō)明在980~860 Ma形成了新生地殼,在860~810 Ma 新生地殼和循環(huán)物質(zhì)一起發(fā)生巖漿作用,然后在 805~750 Ma,古老地殼重熔,這3個(gè)階段分別對(duì)應(yīng)了江南造山帶東段的島弧作用,大陸巖漿弧和后碰撞裂谷期。侵位于贛東北蛇綠巖套中、具有大洋性質(zhì)的埃達(dá)克質(zhì)巖脈的SHRIMP 鋯石U-Pb年齡為(968±23) Ma[15],暗示發(fā)生在該縫合帶上的俯沖作用可能早達(dá)新元古代早期。
相對(duì)于整個(gè)江南造山帶而言,其東段受后期(這里主要是指加里東期和印支期?早印支期)造山作用改造的程度明顯低于西南段的桂北和湘南地區(qū),是研究江南造山帶新元古造山作用過(guò)程相對(duì)理想的區(qū)域[1]。近年來(lái),本文作者在安徽休寧鶴城一帶溪口巖群地層中發(fā)現(xiàn)了一套枕狀變玄武巖。江南造山帶東段這套具有洋殼性質(zhì)的玄武巖的發(fā)現(xiàn),不僅意味著該時(shí)期造山帶東段的洋盆尚未完全閉合,而且暗示皖南伏川縫合帶有可能呈近東西向,經(jīng)休寧、鶴城一直延伸到贛北的廬山地區(qū),而非以前認(rèn)為的接贛東北縫合帶。本文作者通過(guò)野外詳細(xì)調(diào)查,采取江南造山帶東段皖南休寧鶴城的枕狀變玄武巖樣品,并對(duì)該巖體進(jìn)行了系統(tǒng)的主量、微量和稀土元素分析,結(jié)合區(qū)域上的最新地質(zhì)資料和數(shù)據(jù),示蹤了巖漿來(lái)源,探討了巖漿作用的構(gòu)造環(huán)境,以期建立該區(qū)的構(gòu)造演化模型。
圖1 江南造山帶東段地質(zhì)簡(jiǎn)圖[16]:1—古元古系列;2—中新元古基底;3—新元古蓋層;4—南華?震旦系統(tǒng);5—元古代蛇綠巖;6—新元古火山沉積地層;7—新元古花崗質(zhì)巖;8—顯生宙地層和巖漿巖Fig. 1 Geological map of eastern part of Jiangnan orogen[16]: 1—Paleoproterozoic; 2—Meso-to Neoproterozoic basement sequences; 3—Neoproterozoic cover; 4—Nanhua-Sinian system; 5—Proterozoic ophiolites; 6—Neoproterozoic volcano-sedimentary strata; 7—Neoproterozoic granitoids; 8—Phanerozoic strata & magmatic rocks
研究區(qū)位于揚(yáng)子板塊東南部、江南造山帶東段(見圖1)。區(qū)域上主要發(fā)育新元古界青白口系、南華系、震旦系及少量寒武系、奧陶系、偶見石炭系、二疊系零星露頭,另在祁門縣城、休寧—屯溪一帶發(fā)育侏羅—白堊系紅色盆地沉積。以祁門—潛口斷裂為界,南區(qū)(包括本區(qū))基底由溪口群漳前組(Pt3z)、木坑組(Pt3m)和板橋組(Pt3b)片巖、千枚巖、板巖、千枚巖化砂巖組成,部分地區(qū)岀露變質(zhì)流紋巖(井潭組,Qnj)。南華系及其上地層構(gòu)成了該地區(qū)的第一蓋層。區(qū)內(nèi)主要斷裂構(gòu)造有近東西向的祁門—潛口斷裂,以及加里東—燕山期形成的NE、NW向斷裂。祁門斷裂走向近東西,是區(qū)域上一條較大規(guī)模的斷裂,屬皖浙贛斷裂帶體系,控制區(qū)內(nèi)巖漿巖、礦產(chǎn)和中生代紅色盆地的展布,是一條重要的控巖控礦斷裂[16]。區(qū)內(nèi)主要發(fā)育晉寧期和燕山期巖漿巖[17?19]。
研究區(qū)位于皖南休寧縣南部鶴城鄉(xiāng),處于黃山市西南部,西北與祁門縣祁紅鄉(xiāng)搭界,西、西南與江西婺源、浮梁兩縣相鄰,東接流口鎮(zhèn)、汪村鎮(zhèn),距休寧縣城67 km。研究區(qū)岀露的前寒武紀(jì)基底巖系為中元古代溪口群(見圖2)。溪口群分布在皖南地區(qū)歷口群之下的一套淺變質(zhì)巖系,自下而上為樟前(巖)組、板橋(巖)組、木坑(巖)組、牛屋組。巖性主要是一套淺變質(zhì)的板巖和千枚巖,局部夾薄層灰?guī)r條帶或灰?guī)r透鏡體。巖石的粒度以砂?粉砂級(jí)和粘土級(jí)占優(yōu)勢(shì),碎屑成分復(fù)雜,其中樟前組、板橋組和木坑組富含火山碎屑成分。該套巖石中發(fā)育復(fù)理石層和舌狀、長(zhǎng)條狀印模及微細(xì)層理,發(fā)育較完整的鮑馬序列。復(fù)理石特征以板橋組及牛屋組最為清楚,反映海槽(盆)相環(huán)境[1]。
圖2 鶴城地區(qū)地質(zhì)構(gòu)造略圖[20?21]:1—中、新生界;2—石炭?三疊系;3—震旦系?早古生界;4—懷玉島弧新元古代火山巖;5—九嶺陸緣青白口紀(jì)晚期火山?沉積建造;6—新元古代雙橋山群火山?沉積復(fù)理石;7—新元古代溪口巖群淺變質(zhì)復(fù)理石;8—新元古代基性?超基性巖碎塊;9—混雜巖帶剪切基質(zhì);10—燕山期花崗巖;11—晉寧期花崗閃長(zhǎng)巖;12—晉寧期花崗巖;13—推測(cè)俯沖斷裂帶 (Ⅰ—皖浙贛島弧褶帶;Ⅱ—鄣公山陸緣弧后盆地沖褶帶;Ⅲ—九嶺陸緣褶帶. ① 江?紹復(fù)合斷裂帶;② 皖浙贛復(fù)合斷裂帶;③ 樂(lè)安江斷裂;④ 景德鎮(zhèn)?伏川復(fù)合斷裂帶;⑤ 祁門復(fù)合斷裂帶)Fig. 2 A sketch showing geological structures of Hecheng area in South Anhui, China[20?21]: 1—Meso-Cenozoic; 2—Carboniferous-Triassic; 3—Sinian-Early Palaeozoic; 4—Neoproterozoic volcanic rocks of Huaiyu island arc; 5—Late Qingbaikou volcanic-sedimentary formation of Jiuling continental margin; 6—Neoproterozoic volcanic-sedimentary flysch of Shungqiaoshan Group; 7—Neoproterozoic epimetamorphic flysch of Xikou Group-complex; 8—Neoproterozoic basic-ultrabasic rock fragments; 9 —Shearing matrix of the mélange zone; 10—Yanshanian granite; 11—Jinningian granodiorite; 12—Jinningian granite; 13—Speculative subduction fault belt, Northern margin of Jiangnan orogen (Ⅰ—Anhui-Zhejiang-Jiangxi island arc fold belt; Ⅱ—Thrust-fold belt of the back arc basin along Zhanggongshan continental margin; Ⅲ—Jiuling continental margin fold belt. ①Jiangshan-Shaoxing fault belt; ② Anhui-Zhejiang-Jiangxi fault belt; ③ Le'anjiang fault; ④ Jingdezhen-Fuchuan fault belt; ⑤Qimen fault belt)
對(duì)于溪口群的形成時(shí)代,高林志等[22]測(cè)得上部牛屋組中英安巖的 SHRIMP鋯石 U-Pb年齡為(866±9)Ma。江西省地質(zhì)調(diào)查院在從事賦春幅1:50000地質(zhì)調(diào)查中,用稀釋法測(cè)得木坑巖組變斑狀石英角斑巖中單顆粒鋯石的 U-Pb年齡為(1113±118) Ma。在涌山幅1:50000地質(zhì)調(diào)查中,分別在木坑巖組、鄭家塢巖組所夾變角斑巖、變石英角斑巖中獲得(1334±10) Ma和(1308±9) Ma的鋯石U-Pb年齡[23]。溪口群火山巖較為發(fā)育,出露有變細(xì)碧巖、變角斑巖等,推測(cè)其形成環(huán)境應(yīng)為火山弧?弧后盆地[1, 24]。
圖3 鶴城變玄武巖帶剖面圖:1—千枚狀變砂巖;2—千枚狀變粉砂巖;3—千枚狀變含砂粉砂巖;4—細(xì)砂質(zhì)絹云石英千枚巖;5—玄武巖;6—花崗巖;7—板巖;8—韌性剪切帶;9—脆性剪切帶;10—實(shí)測(cè)平移斷層Fig. 3 A section of the Hecheng meta-basalt belt: 1—Phyllited meta-sandstone; 2—Phyllited meta-siltstone; 3—Phyllited meta-sandy siltstone; 4—Fine sandy sericite quartz phyllite; 5—Basalt; 6—Granite; 7—Slate; 8—Ductile shear zone; 9—Brittle shear zone; 10—Measured translation fault
圖4 鶴城變玄武巖枕狀構(gòu)造、手標(biāo)本照片及正交偏光及單偏光鏡下顯微照片(Ol—橄欖石;Srp—蛇紋石)Fig. 4 Pillow structure of Hecheng meta-basalts(a), field photographs(b) and micrographs with crossed polars and single polar(c)?(f)) (Ol—Peridot; Srp—Serpentine)
鶴城變玄武巖呈北東?南西向沿瑤里?鶴城?江潭一線以構(gòu)造碎塊或碎片形式產(chǎn)于溪口巖群火山?陸緣細(xì)碎屑巖組成的復(fù)理石基質(zhì)中,總體顯示構(gòu)造混雜巖帶特征[24?25]。其向北東延伸跨過(guò)休寧中生代陸相紅盆后可與伏川蛇綠巖帶相接,南西向經(jīng)贛東北瑤里鎮(zhèn)可與景德鎮(zhèn)—宜豐深斷裂帶相連,是一條多期活動(dòng)的中深層為主、中淺層構(gòu)造摻雜的區(qū)域性超殼構(gòu)造變形帶,構(gòu)造變形主要顯示自北而南多層次多期疊瓦狀復(fù)合逆沖運(yùn)動(dòng)學(xué)特征。鶴城玄武巖具枕狀構(gòu)造(見圖4(a)),普遍具有脫?;牟Y|(zhì)外殼(見圖 4(b)),有輕微的原生“鬣刺結(jié)構(gòu)”殘余(見圖4(c)~(f)),鬣次結(jié)構(gòu)呈樹枝狀(見圖4(d))和叉狀結(jié)構(gòu)(見圖4(f)),其中樹枝狀的蛇紋石鬣中有橄欖石殘留。而長(zhǎng)板狀的的橄欖石與侵入巖中的形態(tài)差異很大,推測(cè)其為火成的淬火結(jié)構(gòu),為殘留的鬣刺結(jié)構(gòu),基質(zhì)中的透閃石等礦物為科馬提巖形成時(shí)的火山玻璃轉(zhuǎn)變而成。枕間由基性玻璃碎塊和硅質(zhì)巖充填;巖石蝕變程度較高,為透閃石、絹云母、滑石和綠簾石等礦物交代,透閃石長(zhǎng)0.5~1.0 mm,寬0.025~0.05 mm,呈放射狀,束狀嵌布于蝕變基質(zhì)中。鶴城變玄武巖的枕狀構(gòu)造表明其具有典型的水下噴發(fā)熔巖特點(diǎn)。
研究樣品采自E117°45′05″,N29°38′27″(見圖3),岀露巖石為灰綠色變玄武巖,與溪口群呈斷層接觸。樣品的采集是沿著公路進(jìn)行的,共采集樣品9件。樣品大多新鮮無(wú)風(fēng)化,呈灰色出露,少部分樣品表面有輕微風(fēng)化。樣品薄片在安徽省地質(zhì)研究院磨制,樣品地球化學(xué)數(shù)據(jù)分析均在國(guó)土資源部中南礦產(chǎn)資源監(jiān)督測(cè)試中心(武漢)完成,測(cè)試方法及步驟如下:
主量元素分析結(jié)果如下:全分析主量元素采用熔片?X熒光光譜法,方法是取烘干樣品于Pt-Au坩堝中,用Li2B4O7與LiBO2(體積比2:1)混合熔劑于1100~1200 ℃熔融制得玻璃片,由計(jì)算機(jī)全程自動(dòng)控制分析過(guò)程,通過(guò)測(cè)定特征譜線的強(qiáng)度來(lái)進(jìn)行分析物質(zhì)中元素含量的定量。所用儀器為荷蘭帕拉科公司生產(chǎn)的AXIOS型X?熒光光譜儀,端窗銠靶X光管;4 kW,SuperQ分析軟件,分析精度1%。
微量及稀土元素分析結(jié)果如下:微量及稀土元素分析采用ICP-MS法,方法是酸溶樣品制成溶液上機(jī)進(jìn)行測(cè)定,所用儀器為美國(guó)熱電公司生產(chǎn)的XⅡ Series型等離子體質(zhì)譜儀,工作參數(shù)如下:功率1350 W;冷卻氣流量 13 mL/min,輔助氣流量 0.8 mL/min;霧化器流量0.8 L/min;樣品提升量1.0 mL;采樣錐孔徑1.0 mm;截取錐孔徑0.7 mm;分辨率0.7 aum;測(cè)量方式為跳峰;分析方式為脈沖計(jì)數(shù);采樣深度135 mm;掃描次數(shù)15;停留時(shí)間10 ms;每個(gè)質(zhì)量通道數(shù)3;校正方式,外標(biāo)法;內(nèi)標(biāo)元素Rh,分析精度優(yōu)于5%。
表1 皖南鶴城變玄武巖主要元素組成Table 1 Major element contents of Hecheng meta-basalts from South Anhui, China
3.1 主量元素
休寧鶴城變玄武巖的主量元素?cái)?shù)據(jù)見表1。
本區(qū)變玄武巖SiO2含量在49.99%~53.38%(質(zhì)量分?jǐn)?shù),下同)之間,具有富鐵(FeO=8.49%~10.16%)、偏堿(NaO2+K2O含量為0.4%~4.64%,平均為2.03%)、高鎂(MgO含量為7.38%~9.01%)的特征,CaO含量介于6.3%~12.51%之間,Al2O3含量介于12.87%~15.9%之間。TiO2豐度較低,介于0.63%~0.79%之間,平均為0.69%,與島弧區(qū)火山巖的TiO2含量(0.58%~0.85%)相當(dāng)。FeOT/(FeOT+MgO)為0.51~0.54,鶴城變玄武巖巖石化學(xué)成分與伏川蛇綠巖基性火山巖成分較相近,二者 FeOT/(FeOT+MgO)值基本一致(伏川為 0.47~0.63)[26];與贛東北蛇綠巖變基性火山熔巖相比,鶴城變玄武巖 TiO2,P2O5明顯偏低(贛東北樟樹墩蛇綠巖的TiO2含量為0.64%~3.3%,平均為1.37%;P2O5為0.1%~0.62%,平均為0.35%)[24],CaO,MgO含量略高,可能說(shuō)明伏川、鶴城變玄武巖與贛東北蛇綠巖形成環(huán)境的差異。在 TAS圖解(見圖 5(a))、Zr/Ti02-Nb/Y(見圖5(b))以及SiO2-FeO*/MgO圖解(見圖6)中,本區(qū)變玄武巖屬鈣堿性玄武巖類。
圖5 鶴城變玄武巖TAS圖解[27]與Zr/Ti02-Nb/Y圖解[28]Fig. 5 TAS classification diagram[27]and Zr/TiO2vs Nb/Y plot[28]for meta-basalts from Hecheng
圖6 鶴城變玄武巖SiO2-FeOT/MgO圖解[29]Fig. 6 SiO2-FeOT/MgO diagram of meta-basalts in Hecheng area, South Anhui, China[30]
3.2 稀土元素
鶴城變玄武巖微量元素含量列于表2。
休寧鶴城變玄武巖稀土總量為(47.79~57.92)× 10?6,平均為51.73×10?6,(La/Yb)N=3.01~3.89,輕重稀土分異不明顯,總體為輕稀土元素略富集的右傾模式(見圖7(a)),其重稀土元素曲線較平坦,Eu無(wú)明顯異常
3.3 微量元素
鶴城變玄武巖 N-MORB標(biāo)準(zhǔn)化曲線上(見圖7(b))Th相對(duì)富集(2.61~3.91),略富集U、LREE等不相容元素,具有顯著的Nb、Ti谷(Nb/Nb*=0.31~0.56,Ti/Ti*=0.68~0.80),Zr、Hf略虧損,非常類似于島弧玄武巖(IAB)。根據(jù)CONDIE等[32]提出的形成于島弧環(huán)境的前寒武紀(jì)玄武巖的判別標(biāo)準(zhǔn)(有關(guān)數(shù)據(jù)列于括號(hào)中),鶴城變玄武巖 Na/La=0.005~0.15(<8),Hf/Ta=5.94~6.76(>5),La/Ta=15.58~27.31(>15),Ti/Y=202.19~245.57(<350),Tb/Yb=1.31~2.16(>0.1),Th/Nb=0.54~0.63(>0.07),Hf/Th=0.76~0.98(<9),明顯屬島弧玄武巖,表現(xiàn)出島弧火山巖的巖石地球化學(xué)特征。
4.1 巖石成因
地球化學(xué)特征及 Al2O3-MgO-(Fe2O3+FeO+TiO2)三角圖解(見圖 8)表明鶴城變玄武巖具有科馬提質(zhì)玄武巖特征。前人認(rèn)為江南造山帶玄武巖具有較高的MgO含量(10.85%~14.3%),來(lái)自弧下地幔的原始巖漿,是地幔柱的產(chǎn)物[34?35]。通過(guò)巖石學(xué)實(shí)驗(yàn)表明,江南造山帶出露的科馬提質(zhì)玄武巖并非地幔柱的作用,而應(yīng)該是形成于島弧環(huán)境的高M(jìn)gO玄武巖[6]。ZHENG等[36]則認(rèn)為江南造山帶中這種高M(jìn)gO玄武巖是俯沖帶成因。鶴城變玄武巖在 Ti-Zr(見圖 9(a))以及Ta/Yb-Th/Yb(見圖9(b))圖解中,位于弧火山巖區(qū),但是其又具有島弧玄武巖的特征,表明形成于島弧構(gòu)造環(huán)境,但它的科馬提質(zhì)玄武巖的成分特性又與俯沖帶的高M(jìn)gO玄武巖有明顯區(qū)別。對(duì)于島弧地區(qū)高M(jìn)gO玄武巖漿來(lái)說(shuō),在其形成后如果是在相對(duì)干的條件下從地幔源區(qū)分離的,就能保持高 MgO的原始巖漿成分,如果源區(qū)含水量較高,則到達(dá)地表的殘留玄武巖漿的MgO就會(huì)降低。因此,如果島弧地區(qū)高M(jìn)gO玄武巖漿或科馬提質(zhì)玄武巖漿能噴到地表,就說(shuō)明他們?cè)谳^干的條件下從地幔源分離的,不是地幔柱巖漿作用的產(chǎn)物而是俯沖帶成因[38]。本區(qū)變玄武巖MgO含量只達(dá)8%~9%,因此并不是地幔柱成因而更可能是俯沖成因造成的。
表2 皖南鶴城變玄武巖微量元素及稀土元素組成Table 2 Trace and rare earth elements analyses of Hecheng meta-basalts from South Anhui
圖7 鶴城變玄武巖稀土元素球粒隕石標(biāo)準(zhǔn)化圖解和微量元素N-MORB標(biāo)準(zhǔn)化圖解(標(biāo)準(zhǔn)數(shù)據(jù)值據(jù)Sun and Mcdonough[30];島弧火山巖數(shù)據(jù)據(jù)Luhr and Haldar[31])Fig. 7 Chondrite-normalized REE patterns(a) and N-MORB-normalized trace elements pattern(b) for meta-basalts in Hecheng area,South Anhui, China (Normalized values after Sun and McDonough[30]; Arc volcanic rocks values after Luhr and Haldar[31])
微量元素中Nb是不相容程度高的元素,在部分熔融中易進(jìn)入熔體,且在巖漿演化中基本上不隨分離結(jié)晶而改變,故若無(wú)同化混染,巖漿中Nb基本保持不變,在Nb-Y圖(見圖10)中,鶴城玄武巖樣品中的Nb呈弱的傾斜線狀,反映巖漿演化遭受弱的同化混染作用。在TREUIL等[40]提出的(Ce/Yb)N-CeN(見圖11)及Ce/Cr-Ce、Ce/Ni-Ce、Eu-Ce(圖略)等圖解中反映本區(qū)玄武巖成分變化受地幔部分熔融程度的制約。由此說(shuō)明,鶴城變玄武巖巖漿上升過(guò)程中伴有弱的同化混染。
鶴城變玄武巖貧不相容元素、稀土元素總量較低、輕重稀土元素分異不明顯,Nb、Ti虧損,與島弧玄武巖類似,MgO含量高,說(shuō)明巖漿形成深度較大,部分熔融程度較高,主要來(lái)源于富集地幔巖漿。其中 Eu略具虧損,暗示巖漿經(jīng)歷了結(jié)晶分離作用。
圖10 鶴城變玄武巖Nb-Y關(guān)系圖[39]Fig. 10 Nb-Y diagram of Hecheng meta-basalts[39]
4.2 構(gòu)造環(huán)境及構(gòu)造意義
鶴城地區(qū)巖漿巖的成因和形成的構(gòu)造背景與江南造山帶及揚(yáng)子板塊有著密切關(guān)系。揚(yáng)子克拉通內(nèi)新元古代巖漿巖成因,主要存在3種不同認(rèn)識(shí):1) 地幔柱模式,認(rèn)為新元古代早期(≥880 Ma)的巖漿巖形成于Rodinia超大陸聚合有關(guān)的四堡期造山運(yùn)動(dòng),而新元古代中期(850~740 Ma)的巖漿巖為板內(nèi)非造山成因,其中830~795 Ma和780~750 Ma兩個(gè)主要時(shí)期的巖漿活動(dòng)很可能與導(dǎo)致Rodinia超大陸裂解的地幔柱?超級(jí)地幔柱活動(dòng)有關(guān)[7, 15];2) 島弧模式,認(rèn)為揚(yáng)子克拉通周邊新元古代(特別是≥800 Ma)的巖漿活動(dòng)與洋殼俯沖消減于揚(yáng)子地塊之下的俯沖造山運(yùn)動(dòng)有關(guān),屬大陸邊緣巖漿島弧,揚(yáng)子地塊周緣的俯沖造山運(yùn)動(dòng)可能持續(xù)到820 Ma或更晚[41?43];3) 板塊?裂谷模式,認(rèn)為揚(yáng)子地塊周緣新元古代巖漿活動(dòng)是早期弧?陸碰撞、晚期伸展垮塌和大陸裂谷再造產(chǎn)物[5, 36],認(rèn)為揚(yáng)子和華夏地塊之間的造山運(yùn)動(dòng)持續(xù)到約 820 Ma,大規(guī)模的820~830 Ma花崗巖形成于造山帶垮塌階段,而隨后的巖漿活動(dòng)形成于巖石圈伸展?裂谷階段。
在 La/Nb-La圖(見圖12(a))中本區(qū)玄武巖落在島弧玄武巖區(qū)域內(nèi);在 2Nb-Zr/4-Y圖(見圖 12(b))及Th-Nb/16-Hf/3圖(見圖12(c))以及Ta/Hf-Th/Hf圖(見圖12(d))中,本區(qū)變玄武巖顯示火山弧玄武巖及裂谷玄武巖特征,說(shuō)明鶴城變玄武巖可能形成于板塊俯沖有關(guān)的擴(kuò)張弧后盆地環(huán)境。鶴城變玄武巖LREE略富集以及Eu略負(fù)異常,富集Rb、Ba、Th、U等強(qiáng)不相容元素,虧損高場(chǎng)強(qiáng)元素Nb和Ta,明顯不同于洋脊玄武巖,指示其成因可能與富集型地幔的部分熔融有關(guān),同時(shí)有地殼物質(zhì)的混染,形成于與俯沖有關(guān)的弧后小洋盆環(huán)境。盡管目前在鶴城附近未發(fā)現(xiàn)超鐵鎂質(zhì)巖,但據(jù)其與伏川蛇綠巖基性巖類似的地球化學(xué)特征及相近的產(chǎn)出地質(zhì)特征、空間位置和形態(tài)等,推斷鶴城變玄武巖可能為伏川蛇綠巖西延組成部分,與伏川蛇綠巖組成了一個(gè)弧后雜巖帶。前人認(rèn)為伏川蛇綠巖形成于弧后盆地或陸緣小洋盆[48]。鶴城變玄武巖及伏川蛇綠巖基性巖墻群不發(fā)育,且含有較多深海?半深海沉積,這些特征與張旗等提出的“僅出現(xiàn)鎂鐵質(zhì)的噴出巖和侵入巖,缺少席狀巖墻群和堆晶超鎂鐵巖或堆晶巖不發(fā)育的洋殼厚度較小的蛇綠巖”組合相似[49]。因此,認(rèn)為鶴城變玄武巖形成于低速擴(kuò)張的陸緣小洋盆擴(kuò)張脊環(huán)境。
中元古代末期?晚元古代早期(約1 Ga),在揚(yáng)子和華南兩大塊體之間存在一多島弧共存的洋盆,這些島弧應(yīng)包括原始大洋島弧和大陸邊緣島弧兩類。其實(shí)原始大洋島弧是由華南塊體以北的洋殼對(duì)(揚(yáng)子塊體以南的)洋殼俯沖形成的。洋殼在俯沖過(guò)程中由于溫度和壓力增加而釋放出流體和大離子親石元素等活潑元素,并交代了俯沖帶的軟流圈地幔契。該俯沖作用導(dǎo)致了弧后盆地?cái)U(kuò)張和洋殼的形成(以贛東北蛇綠巖為代表)?;『笈璧?cái)U(kuò)張?jiān)缙谛纬傻膸r漿在化學(xué)組成上有許多島弧的特征(類似于本區(qū)變玄武巖以及一些具島弧特征的火山巖),隨著弧后盆地?cái)U(kuò)張發(fā)展演化至晚期,洋?弧俯沖帶離盆地?cái)U(kuò)張中心越來(lái)越遠(yuǎn),而巖漿的島弧特征則越來(lái)越不明顯,但越來(lái)多地表現(xiàn)出MORB的特征[48]。
張彥杰等[50]測(cè)得伏川蛇綠巖偉晶輝長(zhǎng)巖及其上覆巖系英安質(zhì)凝灰?guī)r鋯石 SHRIMP U-Pb年齡為(844±11) Ma。丁炳華等[26]獲得的皖南伏川蛇綠巖套中方輝橄欖巖堆晶巖的 SHRIMP鋯石 U-Pb年齡僅為(827±9) Ma,侵入到其中的輝長(zhǎng)巖脈的SHRIMP鋯石U-Pb年齡為(848±12) Ma。董樹文等[51]在江西廬山地區(qū)雙橋山群地層中發(fā)現(xiàn)了一套具枕狀構(gòu)造的細(xì)碧巖?角斑巖?石英角斑巖組合,并測(cè)得與其共生的英安巖的SHRIMP鋯石U-Pb年齡為(840±7) Ma。江南造山帶東段彰源枕狀玄武巖 SHRIMP鋯石 U-Pb年齡為(832±19) Ma,與廬山地區(qū)枕狀玄武巖形成時(shí)代一致,為新元古代中期弧后洋盆的產(chǎn)物[52]。江南造山帶西南段梵凈山地區(qū)出露的枕狀熔巖SHRIMP鋯石U-Pb年齡為(821±4) Ma[53]。結(jié)合地質(zhì)背景,認(rèn)為鶴城變玄武巖與伏川蛇綠巖中的基性火山巖年齡相似。結(jié)合近年來(lái)在皖南祁門附近溪口群中新發(fā)現(xiàn)的枕狀熔巖[25, 52]、湖南北部益陽(yáng)冷家溪群中的枕狀熔巖[34]以及黔東南梵凈山地區(qū)梵凈山群中的枕狀熔巖[53],在江南造山帶的近揚(yáng)子陸塊一側(cè),隱約存在著一條走向大致平行于造山帶的枕狀熔巖帶,可能代表著弧后洋盆最終消失的部位。與鶴城處于同一構(gòu)造帶的贛東北蛇綠巖有關(guān)西灣斜長(zhǎng)花崗巖中 SHRIMP U-Pb年齡為(968±23)Ma[7]及贛北廬山筲箕洼?漢陽(yáng)峰組島弧火山巖的鋯石U-Pb年齡分別為(917±36) Ma和(878±51) Ma[54],說(shuō)明(900~850) Ma浙北?皖南?贛北一線,出現(xiàn)了大量的島弧巖漿巖活動(dòng),揚(yáng)子板塊與華夏板塊處于會(huì)聚階段[6?7]。
吳榮新等[18]通過(guò)對(duì)皖南新元古代花崗閃長(zhǎng)巖巖體鋯石LA-ICP-MS U-Pb定年,表明約(881±9) Ma出現(xiàn)過(guò)大規(guī)模的島弧巖漿活動(dòng),皖南石耳山花崗巖和浙北虹赤村/上墅組玄武巖?流紋巖的鋯石 SHRIMP U-Pb年齡分別為(779±11) Ma和(797±11) Ma[7],指示這個(gè)構(gòu)造帶出現(xiàn)晚期雙峰式巖漿活動(dòng)[55?56]。江西九嶺花崗巖體SHRIMP鋯石U-Pb年齡為(819±9) Ma[7]。表明浙北?皖南?贛東北一帶存在820 Ma的巖漿活動(dòng)記錄。
圖12 鶴城變玄武巖構(gòu)造環(huán)境判別圖解(a) La-La/Nb圖解[44]:MORB-洋中脊玄武巖;OTB-洋島拉斑玄武巖;IAB-島弧玄武巖;(b) Zr/4-Y-2Nb三角圖解[45]:AⅠ—板內(nèi)堿性玄武巖;AⅡ—板內(nèi)拉斑玄武巖;B—富集型MORB;C—火山島玄武巖;D—正常型MORB火山弧玄武巖;(c) Th-Nb/16-Hf/3三角圖解[46]:A—N型MORB;B—E型MORB及板內(nèi)拉斑玄武巖;C—板內(nèi)堿性玄武巖;D—破壞性板塊邊緣玄武巖及其分異物;(d) Ta/Hf-Th/Hf圖解[47]:Ⅰ—板塊發(fā)散邊緣N-MORB區(qū);Ⅱ—板塊匯聚邊緣(Ⅱ1—大洋島弧玄武巖區(qū);Ⅱ2—陸緣島弧及陸緣火山弧玄武巖區(qū));Ⅲ—大洋板內(nèi)洋島、海山玄武巖區(qū)及T-MORB、E-MORB區(qū);Ⅳ—大陸板內(nèi)(Ⅳ1—陸內(nèi)裂谷及陸緣裂谷拉斑玄武巖區(qū);Ⅳ2—陸內(nèi)裂谷堿性玄武巖區(qū);Ⅳ3—大陸拉張帶或初始裂谷玄武巖區(qū));Ⅴ—地幔熱柱玄武巖區(qū)Fig. 12 Tectonic discrimination diagrams for Hecheng meta-basalts, South Anhui: (a) La-La/Nb diagram[44]: MORB-ocean ridge basalt; OTB—Ocean island tholeiite basalt; IAB—Island arc basalt; (b) Zr/4-Y-2Nb diagram[45]: AⅠ—Within-plate alkali basalt;AⅡ—Within-plate tholeiite; B—Enriched type MORB; C—Volcanic island arc basalt; D—Normal type MORB volcanic arc basalt;(c) Th-Nb/16-Hf/3 diagram[46]: A—N-type MORB; B—E-type MORB and within-plate tholeiite; C—Within-plate alkali basalt; D—Destructive plate margin basalt and differentiation. (d) Ta/Hf-Th/Hf diagram[47]: Ⅰ—Plate divergence margin N-MORB; Ⅱ—Plate convergent margin (Ⅱ1—Ocean arc basalt; Ⅱ2—Continental margin arc and continental margin volcanic arc basalt); Ⅲ—Oceanic within-plate island, seamount basalt and T-MORB, E-MORB; Ⅳ—Continental within-plate (Ⅳ1—Continental rift and continental margin rift tholeiite; Ⅳ2—Contiental rift alkali basalt; Ⅳ3—Continental extension or original rift basalt); Ⅴ—Mantle plume basalt
通過(guò)以上分析討論,可以將鶴城變玄武巖形成與演化的過(guò)程概括如下(見圖13):1) 約1300~900 Ma,華夏板塊與揚(yáng)子板塊之間處于洋殼消減俯沖階段(見圖 13(a))。在洋殼消減俯沖過(guò)程中,俯沖洋殼的部分熔融形成了皖南蛇綠巖套。2) 約 900~830 Ma(見圖13(b)),俯沖消減引起地幔對(duì)流使揚(yáng)子板塊東南緣引張,出現(xiàn)了大規(guī)模的島弧巖漿活動(dòng),導(dǎo)致島弧型巖漿巖在揚(yáng)子板塊東南緣的浙北?皖南?贛東北地區(qū)廣泛發(fā)育,沿著大陸邊緣形成初生地殼。3) 約 830~800 Ma(見圖 13(c)),華夏板塊與揚(yáng)子板塊之間的拼合結(jié)束,形成拉張?jiān)錾驮焐綆?。高熱流事件?duì)造山帶下伏巖石圈地幔及其上覆加厚地殼加熱,導(dǎo)致古揚(yáng)子大陸邊緣加厚地殼內(nèi)部的富水的沉積巖高比例重熔,形成典型的S型花崗巖巖漿,并于中上地殼水平固結(jié)成巖。
圖13 中?新元古代江南造山帶演化模式簡(jiǎn)圖Fig. 13 Sketch evolution model for East Jiangnan Orogen during Meso-to Neoproterozoic: (a) Oceanic subduction (1.3?0.9 Ga); (b)Arc magmatism (0.9?0.83 Ga); (c) Collision (0.83?0.8 Ga)
1) 鶴城變玄武巖具有低 SiO2含量(49.99%~53.38%),富鐵(FeO含量為8.49%~10.16%)、偏堿、高鎂(MgO含量為7.38%~9.01%),稀土總量低,具有輕稀土元素略富集的右傾模式;富集 Rb、Ba、Th、U等強(qiáng)不相容元素,虧損高場(chǎng)強(qiáng)元素Nb和Ta,具有島弧玄武巖及科馬提質(zhì)玄武巖的地球化學(xué)特征,巖漿形成深度較大,部分熔融程度較高,主要來(lái)源于富集地幔巖漿,同時(shí)有地殼物質(zhì)的混染。
2) 鶴城變玄武巖地質(zhì)及地球化學(xué)特征表明其可能屬于皖南伏川蛇綠巖西延組成部分,與伏川蛇綠巖組成了一個(gè)弧后雜巖帶,形成于與俯沖有關(guān)的弧后小洋盆環(huán)境。
3) 新元古代板塊俯沖、島弧巖漿活動(dòng)、拼合以及拼合后由于高熱流事件形成典型的S型花崗巖巖漿是江南造山帶形成的比較合理的構(gòu)造演化過(guò)程。
REFERENCES
[1] 薛懷民, 馬 芳, 宋永勤, 謝亞平. 江南造山帶東段新元古代花崗巖組合的年代學(xué)和地球化學(xué): 對(duì)揚(yáng)子與華夏地塊拼合時(shí)間與過(guò)程的約束[J]. 巖石學(xué)報(bào), 2010, 26(11): 3215?3244. XUE Huai-min, MA Fang, SONG Yong-qin, XIE Ya-ping. Geochronology and geochemistry of the Neoproterozoic granitoid association from eastern segment of the Jiangnan orogeny, China: Constraints on the timing and process of amalgamation between the Yangtze and Cathaysia blocks[J]. Acta Petrologica Sinica, 2010, 26(11): 3215?3244.
[2] 水 濤, 徐步臺(tái), 梁如華, 邱郁雙. 紹興?江山古陸對(duì)接帶[J].科學(xué)通報(bào), 1986, 31(6): 444?448. SHUI Tao, XU Bu-tai, LIANG Ru-hua, QIU Yu-shuang. Paleoland collisional zone of Jiangshan-Shaoxing[J]. Chinese Science Bulletin, 1986, 31(6): 444?448.
[3] 程 海. 浙西北晚元古代早期碰撞造山帶的初步研究[J]. 地質(zhì)論評(píng), 1991, 37(3): 203?212. CHENG Hai. The late proterozoic collision orogeny in northwestern Zhejiang Province China[J]. Geological Review,1991, 37(3): 203?212.
[4] WU Rong-xin, ZHENG Yong-fei, WU Yuan-bao. Reworking of Juvenile crust element and isotope evidence from Neoproterozoic granodiorite in South China[J]. Precambrian Research, 2006, 146(3): 179?212.
[5] ZHENG Yong-fei, ZHANG Shao-bing, ZHAO Zi-fu, WU Yuan-bao, LI Xian-hua, LI Zheng-xiang, WU Fu-yuan X. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust[J]. Lithos, 2007, 96(1)127?150.
[6] 周金城, 王孝磊, 邱檢生. 江南造山帶形成過(guò)程中若干新元古代地質(zhì)事件[J]. 高校地質(zhì)學(xué)報(bào), 2009, 15(4): 453?459. ZHOU Jin-cheng, WANG Xiao-lei, QIU Jian-sheng. Some Neoproterozoic geological events involved in the development of the Jiangnan Orogen[J]. Geological Journal of China Universities, 2009, 15(4): 453?459.
[7] LI Zheng-xiang, LI Xian-hua, KINNY P D. Geochronology of Neoproterozoic syn-riftmagmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle super plume that broke up Rodinia[J]. Precambrian Research, 2003, 122: 85?109.
[8] 朱 光, 劉國(guó)生. 皖南江南陸內(nèi)造山帶的基本特征與中生代造山過(guò)程[J]. 大地構(gòu)造與成礦學(xué), 2000, 24(2): 103?111. ZHU Guang, LIU Guo-sheng. Basic characteristics and Mesozoic orogenic process of the Jiangnan intraccontinental orogenic belt in Southern Anhui[J]. Geotect Metal, 2000, 24(2): 103?111.
[9] 馬慧英, 孫海清, 謝 維. 揚(yáng)子?xùn)|南緣“南華紀(jì)”火山巖與沉積盆地演化[J]. 中國(guó)有色金屬學(xué)報(bào), 2013, 23(9): 2631?2640. MA Hui-ying, SUN Hai-qing, XIE Wei. “Nanhuaian” volcanic rocks and sedimentary basin evolution in southeastern margin of Yangtze platform[J]. The Chinese Journal of Nonferrous Metals,2013, 23(9): 2631?2640.
[10] YAO Jin-long, SHU Liang-shu, SANTOSH M, ZHAO Guo-chun. Neoproterozoic arc-related mafic-ultramafic rocks and syn-collision granite from the western segment of the Jiangnan Orogen, South China: Constraints on the Neoproterozoic assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2014, 243: 39?62.
[11] ZHANG Shao-bing, WU Rong-xin, ZHENG Yong-fei. Neoproterozoic continental accretion in South China: Geochemical evidence from the Fuchuan ophiolite in the Jiangnan orogen[J]. Precambrian Research, 2012, 220/221: 45?64.
[12] ZHANG Chuan-lin, SANTOSH M, ZOU Hai-bo, LI Huai-kun,HUANG Wen-cheng. The Fuchuan ophiolite in Jiangnan Orogen: Geochemistry, zircon U-Pb geochronology, Hf isotope and implications for the Neoproterozoic assembly of South China[J]. Lithos, 2013, 179: 263?274.
[13] ZHANG Yu-zhi, WANG Yue-jun, GENG Hong-yan, ZHANG Yan-hua, FAN Wei-ming, ZHANG Hong. Early Neoproterozoic(~850 Ma) back-arc basin in the Central Jiangnan Orogen (Eastern South China): Geochronological and petrogenetic constraints from meta-basalts[J]. Precambrian Research, 2013,231: 325?342.
[14] WANG Wei, ZHOU Mei-fu, YAN Dan-ping, LI Liang, MAlpas John. Detrial zircon record of Neoproterozoic active-margin sedimentation in the eastern Jiangnan Orogen, South China[J]. Precambrian Research, 2013, 235: 1?19.
[15] LI Xian-hua, LI Zheng-xiang, GE Wen-chun, ZHOU Han-wen,LI Wu-xian, LIU Ying, WINGATE M T D. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca.825 Ma?[J]. Precambrian Research, 2003, 122: 45?83.
[16] WANG Xiao-lei, SHU Liang-shu, XING Guang-fu, ZHOU Jin-cheng, TANG Ming, SHU Xu-jie, QI Liang, HU Yan-hua. Post-orogenic extension in the eastern part of the Jiangnan orogen: Evidence from ca 800?760 Ma volcanic rocks[J]. Precambrian Research, 2012, 222/223: 404?423.
[17] 王德恩, 周 翔, 余心起, 杜玉雕, 楊赫鳴, 傅建真, 董會(huì)明. 皖南祁門地區(qū)東源鎢鉬礦區(qū)花崗閃長(zhǎng)斑巖 SHRIMP鋯石U-Pb年齡和 Hf同位素特征[J]. 地質(zhì)通報(bào), 2011, 30(10): 1514?1529. WANG De-en, ZHOU Xiang, YU Xin-qi, DU Yu-diao, YANG He-ming, FU Jian-zhen, DONG Hui-ming. SHRIMP zircon U-Pb dating and characteristics of Hf isotopes of the granodiorite porphyries in the Dongyuan W-Mo ore district, Qimen area,southern Anhui[J]. Geological Bulletin of China, 2011, 30(10): 1514?1529.
[18] 吳榮新, 鄭永飛, 吳元保. 皖南新元古代花崗閃長(zhǎng)巖體鋯石U-Pb定年以及元素和氧同位素地球化學(xué)研究[J]. 巖石學(xué)報(bào),2005, 21(3): 587?606. WU Rong-xin, ZHENG Yong-fei, WU Yuan-bao. Zircon U-Pb age, element and oxygen isotope geochemistry of Neoproterozoic granodiorites in South Anhui[J]. Acta Petrologica Sinica, 2005, 21(3): 587?606.
[19] 翁望飛, 支利庚, 蔡連友, 徐生發(fā), 王邦民. 皖南及鄰區(qū)燕山期兩個(gè)類型花崗巖地球化學(xué)對(duì)比與巖石成因[J]. 礦物巖石地球化學(xué)通報(bào), 2011, 30(4): 433?448. WENG Wang-fei, ZHI Li-geng, CAI Lian-you, XU Sheng-fa,WANG Bang-min. Petrogenesisand geochemical comparison of two types of Yanshanian granite in South Anhui and its surrounding area[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(4): 433?448.
[20] 程光華, 汪應(yīng)庚. 江南東段構(gòu)造格架[J]. 安徽地質(zhì), 2000,10(1): 1?8. CHENG Guang-hua, WANG Ying-geng. The structural framework of the wastern section of the Jiangnan orogeny[J]. Geology of Anhui, 2000, 10(1): 1?8.
[21] 余心起, 江來(lái)利, 許 衛(wèi), 邱瑞龍, 杜建國(guó), 戴圣潛. 皖浙贛斷裂帶的界定及其基本特征[J]. 地學(xué)前緣, 2007, 14(3): 102?113. YU Xin-qi, JIANG Lai-li, XU Wei, QIU Rui-long, DU Jian-guo,DAI Sheng-qian. Identification and basic characteristics of the Anhui-Zhejiang-Jiangxi fault zone[J]. Earth Science Frontiers,2007, 14(3): 102?113.
[22] 高林志, 張傳恒, 劉鵬舉, 丁孝忠, 王自強(qiáng), 張彥杰. 華北—江南地區(qū)中、新元古代地層格架的再認(rèn)識(shí)[J]. 地球?qū)W報(bào), 2009,30(4): 433?446. GAO Lin-zhi, ZHANG Chuan-heng, LIU Peng-ju, DING Xiao-zhon, WANG Zhi-qiang, ZHANG Yan-jie. Recognition of Meso-and Neoproterozoic stratigraphic framework in Norht and South China[J]. Acta Geoscientica Sinica, 2009, 30(4): 433?446.
[23] 吳新華, 樓法生, 劉春根. 皖浙贛相鄰區(qū)中元古代溪口巖群的劃分與對(duì)比[J]. 資源調(diào)查與環(huán)境, 2005, 26(2): 86?96. WU Xin-hua, LOU Fa-sheng, LIU Chun-gen. The division and the contrast of Middle Proerozoic Xikou rocks group in the boundary of Anhui Zhejiang Jiangxi Provinces[J]. Resources Survey & Environment, 2005, 26(2): 86?96.
[24] 江西地質(zhì)調(diào)查院. 1:25萬(wàn)景德鎮(zhèn)幅區(qū)調(diào)報(bào)告[M]. 2002. Jiangxi Geological Survey Institue. 1:25 million regional survey report of Jingdezhen amplitude[M]. 2002.
[25] 張彥杰, 周效華, 廖圣兵, 張曉東, 武 彬, 王存智, 余明剛.皖贛相鄰鄣公山地區(qū)新元古代地殼組成及造山過(guò)程[J]. 地質(zhì)學(xué)報(bào), 2010, 84(10): 1401?1427. ZHANG Yan-jie, ZHOU Xiao-hua, LIAO Sheng-bing, ZHANG Xiao-dong, WU Bin, WANG Cun-zhi, YU Ming-gang. The crustal composition and orogenic process in Neoproterozoic in Zhanggongshan area of Anhui-Jiangxi border region[J]. Acta Geologica Sinica, 2010, 84(10): 1401?1427.
[26] 丁炳華, 史仁燈, 支霞臣, 鄭 磊, 陳 雷. 江南造山帶存在新元古代(~850 Ma)俯沖作用—來(lái)自皖南 SSZ型蛇綠巖鋯石SHRIMP U-Pb年齡證據(jù)[J]. 巖石礦物學(xué)雜志, 2008, 27(5): 375?388. DING Bing-hua, SHI Ren-deng, ZHI Xia-chen, ZHENG Lei,CHEN Lei. Neoproterozoic (~850Ma) subduction in the Jiangnan orogen: evidence from the SHRIMP U-Pb dating of the SSZ-type ophiolite in southern Anhui Province[J]. Acta Petrologica et Mineralogica, 2008, 27(5): 375?388.
[27] LE MAITRE R W, BATEMAN P, DUDEK A. A classification of igneous rocks and glossary of terms[M]. Oxford: Blackwell,1989.
[28] WINCHESTER J A, FLOYD P A. Geochemical discrimination of different magma series and their differentiation products[J]. Chem Geol, 1977, 20: 325?343.
[29] MIYASHIRO A. Classification, characteristics, and origin of ophiolites[J]. J Geol, 1975, 83(2): 249?281.
[30] SUN S S, MCDONOUGH W F. Magmatism in the ocean basin[M]. SAUNDERS A D, NORRY M J. Geological Society Special Publication, 1989, 42: 313?345.
[31] LUHR J F, HALDAR D. Barren Island Volcano (NE Indian Ocean): Island-arc high-alumina basalts produces by troctolite contamination[J]. Journal of Volcanology and Geothermal Research, 2006, 149: 177?212.
[32] CONDIE K C. Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: Identification and significance[J]. Lithos, 1989, 23: 1?18.
[33] 車勤建, 彭和求, 李金冬, 賈寶華, 伍光英, 陳必河. 湘北益陽(yáng)古火山巖的成因及其地質(zhì)意義[J]. 地質(zhì)通報(bào), 2005, 24(6): 513?519. CHE Qin-jian, PENG He-qiu, LI Jin-dong, JIA Bao-hua, WU Guang-ying, CHEN Bi-he. Origin of the Yiyang paleovolcanic suite in northern Hunan, China, and its geological significance[J]. Geological Bulletin of China, 2005, 24(6): 513?519.
[34] WANG Xiao-lei, ZHOU Jin-cheng, QIU Jian-sheng, GAO Jian-feng. Geochemistry of the Meso- to Neoproterozoic basic-acid rocks from Hunan Province, South China: Implications for the evolution of the western Jiangnan orogen[J]. Precambrian Research, 2004, 135: 79?103.
[35] ZHOU Mei-fu, ZHAO Tai-ping, MALPAS J, SUN Min. Crustal-contaminated komatiitic basalts in Southern China: Products of a Proterozoic mantle plume beneath the Yangtze Block[J]. Precambrian Research, 2000, 103: 175?189.
[36] ZHENG Yong-fei, WU Rong-xin, WU Yuan-bao. Rift melting of juvenile arc-derived crust: Geochemical evidences from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China[J]. Precambrian Research, 2008, 163:351?383.
[37] PEARCE J A. Andesites[M]. THORPE R S. New York: Wily,1982: 528?548.
[38] PICHAVANT M, MYSEN B O, MACDONALD R. Source and H2O content of high-MgO magma in island arc settings: An experimental study of a primitive calc-alkaline basalt from St. Vincent, Lesser Antilles arc[J]. Geochimica et Cosmochimica Acta, 2002, 66(12): 2193?2209.
[39] PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. J Petrol, 1984, 25: 956?983.
[40] TREUIL M, JORON J L, JAFFREZIC H. Geochimie des elements hygromagmaphiles: Coeficients de partage mineraux/ liquid et proprieties structurales de ces elements dans les liquids magmatiques[J]. Bull Mkrul, 1979, 102: 402?409.
[41] 顏丹平, 周美夫, 宋鴻林, MALPAS J. 華南在Rodinia古陸中位置的討論—揚(yáng)子地塊西緣變質(zhì)巖漿雜巖證據(jù)及其與Seychelles地塊的對(duì)比[J]. 地學(xué)前緣, 2002, 9(4): 249?256. YAN Dan-ping, ZHOU Mei-fu, SONG Hong-lin, MALPAS J. Where was South China located in the reconstruction of Rodinia[J]. Earth Science Frontiers, 2002, 9(4): 249?256.
[42] ZHOU Mei-fu, ZHAO Jun-hong, XIA Xiao-ping, SUN Wei-hua,YAN Dan-ping. Comment on “Revisiting the “Yanbian Terrane”: Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China”[J]. Precambrian Research,2007, 155: 313?317.
[43] ZHAO Xin-fu, ZHOU Mei-fu, LI Jian-wei, WU Fu-yuan. Association of Neoproterozoic A-and I-type granites in South China: Implications for generation of A-type granites in a subduction-related environment[J]. Chemical Geology, 2008,257: 1?15.
[44] 李曙光. 蛇綠巖生成構(gòu)造環(huán)境的 Ba-Th-Nb-La判別圖[J]. 巖石學(xué)報(bào), 1993, 9(2): 146?157. LI Shu-guang. Ba-Th-Nb-La diagrams used to identify tectonic environments of ophiolite[J]. Acta Petrologica Sinica, 1993, 9(2): 146?157.
[45] MESCHEDE M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207?218.
[46] WOOD D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth Planet Sci Lett, 1980, 50(1): 11?30.
[47] 汪云亮, 張成江, 修淑芝. 玄武巖類形成的大地構(gòu)造環(huán)境的Th/Hf-Ta/Hf圖解判別[J]. 巖石學(xué)報(bào), 2001, 17(3): 413?421. WANG Yun-liang, ZHANG Cheng-jiang, XIU Shu-zhi. Th/Hf-Ta/Hf identification of tectonic setting of basalts[J]. Acta Petrol Sinica, 2001, 17(3): 413?421.
[48] 趙建新, 李獻(xiàn)華, MCGULLOCH M T. 皖南和贛東北蛇綠巖成因及其構(gòu)造意義:元素和Sm-Nd同位素制約[J]. 地球化學(xué),1995, 24(4): 311?324. ZHAO Jian-xin, LI Xian-hua, MCGULLOCH M T. Petrogenesis of ophiolites from South Anhui and Northeast Jiangxi, and their tectonic implications: Chemical and Sm-Nd isotopic constraints[J]. Geochimica, 1995, 24(4): 311?324.
[49] 張 旗, 陳 雨, 錢 青. 兩類蛇綠巖剖面及其成因的探討[J]. 自然科學(xué)進(jìn)展, 1998, 8(3): 326?330. ZHANG Qi, CHEN Yu, QIAN Qing. Two types of ophiolite sections and their genesis[J]. Progress in Natural Science, 1998,8(3): 326?330.
[50] 張彥杰, 周效華, 廖圣兵, 余明剛, 蔣 仁, 姜 楊. 江南造山帶北緣鄣源基性巖地質(zhì)—地球化學(xué)特征及成因機(jī)制[J]. 高校地質(zhì)學(xué)報(bào), 2011, 17(3): 393?405. ZHANG Yan-jie, ZHOU Xiao-hua, LIAO Sheng-bing, YU Ming-gang, JIANG Ren, JIANG Yang. Geological and geochemical characteristics and petrogenesis of the mafic rocks from Zhangyuan, Northern Jiangnan Orogen[J]. Geological Journal of China Universities, 2011, 17(3): 393?405.
[51] 董樹文, 薛懷民, 項(xiàng)新葵, 馬立成. 贛北廬山地區(qū)新元古代細(xì)碧?角斑巖系枕狀熔巖的發(fā)現(xiàn)及其地質(zhì)意義[J]. 中國(guó)地質(zhì),2010, 37: 1021?1033. DONG Shu-wen, XUE Huai-min, XIANG Xin-kui, MA Li-cheng. The discovery of Neoproterozoic pillow lava in spilite-ceratophyre of Lushan area, northern Jiangxi Province,and its geological significance[J]. Geology in China, 2010, 37: 1021?1033.
[52] 周效華, 高天山, 馬雪, 張彥杰, 廖圣兵, 余明剛, 陳丹丹,朱延輝. 江南造山帶東段彰源枕狀玄武巖的年代學(xué)與構(gòu)造屬性研究[J]. 資源調(diào)查與環(huán)境, 2014, 35(4): 235?244. ZHOU Xiao-hua, GAO Tian-shan, MA Xue, ZHANG Yan-jie,LIAO Sheng-bing, YU Ming-gang, CHEN Dan-dan, ZHU Yan-hui. Study on geochronology and structural properties of pillow basalts in Zhangyuan region, eastern section of the Jiangnan orogen[J]. Resources Survey and Environment, 2014,35(4): 235?244.
[53] 薛懷民, 馬 芳, 宋永勤. 江南造山帶西南段梵凈山地區(qū)鎂鐵質(zhì)—超鎂鐵質(zhì)巖:形成時(shí)代、地球化學(xué)特征與構(gòu)造環(huán)境[J].巖石學(xué)報(bào), 2012, 28(9): 3015?3030. XUE Huai-min, MA Fang, SONG Yong-qin. Mafic-ultramafic rocks from the Fanjingshan region, southwestern margin of the Jiangnan orogenic belt: Ages, geochemical characteristics and tectonic setting[J]. Acta Petrologica Sinica, 2012, 28(9): 3015?3030.
[54] 謝國(guó)剛, 李均輝, 李武顯, 唐紅峰, 李惠民, 周新民. 廬山前震旦紀(jì)巖石中鋯石 U-Pb法定年與其地質(zhì)意義[J]. 地質(zhì)科學(xué),1997, 32(1): 110?115. XIE Guo-gang, LI Jun-hui, LI Wu-xian, TANG Hong-feng, LI Hui-min, ZHOU Xin-min. U-Pb zircon dating of presinian rocks at Lushan Mt. and its geological implication[J]. Sci Geol Sin,1997, 32(1): 110?115.
[55] ZHENG Yong-fei, FU Bin, GONG Bing, LI Long. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogeny in China: Implications for geodynamics and fluid regime[J]. Earth Sci Rev, 2003, 62: 105?161.
[56] ZHENG Yong-fei, WU Yuan-bao, GONG Bing, LI Long, ZHAO Zi-fu. Zircon U-Pb and oxygen isotope evidence for a large-scale18O depletion event in igneous rocks during the Neoproterozoic[J]. Geochim Cosmochim Acta, 2004, 68: 4145?4163.
(編輯 龍懷中)
Tectonic significance and geochemistry of Komatiitic meta-basalt in Hecheng, southern Anhui
WANG Long1, LIU Chun-ming1, 2, HU Zhao-qi3, JIANG Lai-li3, HUANG De-zhi1
(1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China;2. Hunan Key Laboratory of Non-ferrous Resources and Geological Hazard Detection,Central South University, Changsha 410083, China;3. Bureau of Geology and Mineral Resources Exploration of Anhui Province, Hefei 230001, China)
The Neoproterozoic meta-mafic rocks of the Jiangnan Orogen in South China provide a critical geological record for unraveling regional tectonic history and testing previously proposed tectonic models. An integrated study of geochemistry and petrogenesis was carried out for the meta-basaltic rocks from Hecheng, south Anhui Province of the eastern Jiangnan Orogen, which distributed along the NE-SW Yaoli-Hecheng-Jiangtan line. The geochemical features of the Hecheng meta-basalt are similar to those of Komatiitic basalt as well as island arc basalt. The trace elements features,such as the enrichment in strongly incompatible elements (Rb, Ba, Th and U) and the depletion in high field strength elements (Nb and Ta), indicate that the Hecheng meta-basalt is derived from partial melting of enriched mantle, with crust materials contamination, suggesting that Hecheng meta-basalt is a westward extension of Fuchuan ophiolite in southern Anhui Province, and constitute a back-arc complex belt with Fuchuan ophiolite, attributed to the back arc basin environment related to the subduction. Integrating this information with previous studies, the plate subduction-island arc magmatism-assembly model is a more appropriate geodynamic interpretation for the Neoproterozoic tectonic evolution of South China.
Eastern Jiangnan orogen; Hecheng; meta-basalt; Komatiitic basalt; island arc basalt
Project(41174103) supported by the National Natural Science Foundation of China; Project (2012-g-38) supported by Public Welfare Geological Research of Anhui Province, China; Project (2015JJ2151) supported by the Natural Science Foundation of Hunan Province, China
date: 2015-04-08; Accepted date: 2015-09-05
LIU Chun-ming; Tel: +86-13755190421; E-mail: lifuming001@163.com
P611;P618.51
A
1004-0609(2016)-04-0863-15
國(guó)家自然科學(xué)基金資助項(xiàng)目(41174103);安徽省公益性地質(zhì)調(diào)查項(xiàng)目(2012-g-38);湖南省自然科學(xué)基金資助項(xiàng)目(2015JJ2151)
2015-04-08;
2015-09-05
劉春明,講師,博士;電話:13755190421;E-mail: lifuming001@163.com