朱景修
(中國石化 河南油田分公司 勘探開發(fā)研究院,河南 南陽 473132)
?
泥頁巖不同介質(zhì)中可溶有機(jī)質(zhì)組成差異性及對頁巖油富集的意義
朱景修
(中國石化 河南油田分公司 勘探開發(fā)研究院,河南 南陽473132)
摘要:泥頁巖中的有機(jī)質(zhì)組成復(fù)雜,其差異性對于認(rèn)識油氣的生排烴和頁巖油氣的形成與富集機(jī)理具有重要意義。選擇南襄盆地泌陽凹陷始新統(tǒng)核桃園組湖相泥頁巖為研究對象,系統(tǒng)對比了其中不同介質(zhì)(包括無機(jī)礦物和有機(jī)干酪根)中可溶有機(jī)質(zhì)的組成與差異,并與頁巖油和砂巖油相對比,分析差異性,討論其地質(zhì)地球化學(xué)意義。結(jié)果表明,泥頁巖不同介質(zhì)中可溶有機(jī)質(zhì)的飽和烴組成差異性較小,難以區(qū)分,反映了頁巖油氣的源內(nèi)生排烴過程,飽和烴自身各種化合物之間的極性差異不大;而芳烴組成差異明顯,其中,有機(jī)介質(zhì)中可溶有機(jī)質(zhì)的芳烴組成與頁巖油/砂巖油相當(dāng),而無機(jī)介質(zhì)中可溶有機(jī)質(zhì)的芳烴組成與頁巖油/砂巖油差異較大,反映了油氣生排烴的過程。據(jù)此,泥頁巖在初次運(yùn)移的排烴過程中,生成的烴類物質(zhì)首先充滿無機(jī)礦物基質(zhì)孔隙,并滿足礦物顆粒表面吸附后,進(jìn)入烴源層內(nèi)微裂縫和/或砂巖夾層而富集,這類油氣資源即目前所謂的頁巖油。
關(guān)鍵詞:可溶有機(jī)質(zhì);排烴;油氣初次運(yùn)移;泥頁巖;頁巖油;泌陽凹陷;南襄盆地
泥頁巖是油氣地質(zhì)地球化學(xué)研究的重要對象,因為它是重要的烴源巖類型[1-2],并且隨勘探開發(fā)技術(shù)的進(jìn)步,目前已開始把泥頁巖作為目標(biāo)開采油氣,即所謂的頁巖油氣,這是當(dāng)前石油地質(zhì)地球化學(xué)研究的前緣與熱點(diǎn)[3-7]。在此背景下,對泥頁巖中的油氣組成與聚集機(jī)理研究具有重要意義,因為這可以查明泥頁巖生排烴過程中的變化,進(jìn)而討論頁巖油氣和常規(guī)油氣的形成以及富集。
最近隨頁巖油氣的興起,相關(guān)研究不斷深入,如根據(jù)巖石學(xué)研究,發(fā)現(xiàn)泥頁巖具有較強(qiáng)的非均質(zhì)性[6, 8-10],相應(yīng)其油氣賦存狀態(tài)可能包括多種,總體可分為游離態(tài)和吸附態(tài),具體又可分為基質(zhì)礦物顆粒表面的吸附烴,孔隙中分散的游離烴,裂縫中聚集的游離烴,以及干酪根表面的吸附烴和干酪根網(wǎng)絡(luò)內(nèi)部的互溶烴,等等[3, 5, 8, 11-12]。理論而言,因油氣的形成與運(yùn)移是一個連續(xù)漸進(jìn)的過程[1,13],因此這些不同賦存狀態(tài)的有機(jī)質(zhì)其組成必然有差異,查明這些差異對于認(rèn)識油氣成烴成藏機(jī)理具有重要意義。
據(jù)此,本文選擇我國當(dāng)前頁巖油勘探最為成功的泌陽凹陷古近系核桃園組,采集泥頁巖樣品,力圖通過對泥頁巖進(jìn)行化學(xué)處理,從而獲得泥頁巖不同介質(zhì)中賦存的有機(jī)質(zhì),包括有機(jī)干酪根表面和干酪根網(wǎng)絡(luò)孔隙中賦存的有機(jī)介質(zhì)可溶有機(jī)質(zhì),以及無機(jī)礦物質(zhì)表面和納米/微米孔隙及微裂縫中的無機(jī)介質(zhì)可溶有機(jī)質(zhì),剖析它們的組成及差異性,討論地質(zhì)地球化學(xué)指示意義。
1樣品與實驗
1.1樣品
泥頁巖樣品采自泌陽凹陷深凹區(qū)程2井核三3段(圖1),深度2 816.5 m,其基本地球化學(xué)特征為,w(TOC)=2.36%,S1=2.09 mg/g,S2=9.88 mg/g,Tmax=448 °C,氯仿瀝青“A”為707.72×10-6,飽和烴含量為56.44%,芳烴為15.18%,膠質(zhì)為12.02%,瀝青質(zhì)為2.18%,飽芳比為3.72。干酪根、瀝青“A”、飽和烴、芳烴、膠質(zhì)、瀝青質(zhì)的碳同位素分別為:-27.4‰,-28.5‰,-29.2‰,-27.8‰,-27.1‰,-27.8‰。
此外,為對比分析,以討論油氣的整個形成演化過程,除了泥頁巖樣品外,還同時選擇了頁巖層系中產(chǎn)出的頁巖油和砂巖油樣品各2個。其中,頁巖油采自業(yè)已開采的BYHF 1井和BY2HF井,產(chǎn)油層位均為核三3段;砂巖油一個是梨樹凹地區(qū)的B343井核三3段原油,另一個來自雙河地區(qū)的SH417井核三3段原油。
本次研究共涉及7個樣品,即2個頁巖油、2個砂巖油、1個頁巖全巖抽提物和2個頁巖處理物(有機(jī)和無機(jī)介質(zhì)中賦存的有機(jī)質(zhì)),樣品信息見表1。
1.2方法
將采集的泌陽凹陷泥頁巖粉碎至60目(0.037 mm)以下,樣品分成2份,一份直接用三氯甲烷抽提,代表全巖抽提物可溶有機(jī)質(zhì),即表1中的WR-66(總可溶有機(jī)質(zhì))。另一份樣品先用6M鹽酸除去碳酸鹽,再用氫氟酸+鹽酸除去硅酸鹽,收集所有處理的酸液,用三氯甲烷萃取有機(jī)組分(視為無機(jī)礦物介質(zhì)中可溶有機(jī)質(zhì),即表1中的InO-66)。酸處理的殘渣用三氯甲烷浸泡提取有機(jī)組分(視為有機(jī)干酪根介質(zhì)賦存的可溶有機(jī)質(zhì),即表1中的Org-66)。具體處理步驟如圖2。
(1)酸處理:①將泥頁巖粉碎并過60目篩,稱取100 g樣品置于塑料燒杯內(nèi),加蒸餾水充分潤濕浸泡4 h,倒去上部清水于玻璃燒杯內(nèi)。②加600 mL的6M鹽酸,在50~60 ℃水浴鍋內(nèi)加熱,并不時攪拌,使其充分反應(yīng),大于2 h;倒去上部酸液于玻璃燒杯內(nèi),用蒸餾水清洗至弱酸性,靜置1~2 h,澄清后倒去上部清洗液于燒杯內(nèi)。③加240 mL的6M鹽酸,360 mL的40%氫氟酸,在50~60 ℃水浴鍋內(nèi)加熱,并不時攪拌,使其充分反應(yīng),大于2 h。倒去上部酸液于塑料燒杯內(nèi),用1M鹽酸清洗3次,靜置1~2 h,澄清后倒去上部清洗液于塑料燒杯內(nèi)。④加600 mL的6M鹽酸,在50~60 ℃水浴鍋內(nèi)加熱,并不時攪拌,使其充分反應(yīng),大于2 h;倒去上部酸液于塑料燒杯內(nèi),用1M鹽酸清洗3次,靜置1~2 h,澄清后倒去上部清洗液于塑料燒杯內(nèi)。⑤加240 mL的6M鹽酸,360 mL的40%氫氟酸,在50~60 ℃水浴鍋內(nèi)加熱,并不時攪拌,使其充分反應(yīng),大于2 h;倒去上部酸液于塑料燒杯內(nèi),用1M鹽酸清洗3次,靜置1~2 h,澄清后倒去上部清洗液于塑料燒杯內(nèi)。⑥加600 mL的6M鹽酸,在50~60 ℃水浴鍋內(nèi)加熱,并不時攪拌,使其充分反應(yīng),大于2 h;倒去上部酸液于塑料燒杯內(nèi),用蒸餾水清洗至弱酸性,靜置1~2 h,澄清后倒去上部清洗液于塑料燒杯內(nèi)。
圖1 南襄盆地泌陽凹陷構(gòu)造單元和樣品位置Fig.1 Geological structure of Biyang Sag, Nanxiang Basin and sampling locations表1 南襄盆地泌陽凹陷核三3段樣品信息Table 1 Sample information from the 3rd section of the 3rd member of Hetaoyuan Formation in Biyang Sag, Nanxiang Basin
樣號地區(qū)井號深度/m樣品類型BY1O深凹區(qū)泌頁12701.0~3642.5頁巖油BY2O深凹區(qū)泌頁22728.0~2844.0頁巖油B343O梨樹凹泌3432679.6~2777.2砂巖儲層油SH417O雙河雙4171732.8~1773.0砂巖儲層油WR-66深凹區(qū)程22816.5全巖抽提物InO-66深凹區(qū)程22816.5無機(jī)礦物介質(zhì)Org-66深凹區(qū)程22816.5有機(jī)干酪根介質(zhì)
圖2 頁巖樣品處理流程Fig.2 Handling process for shale samples
(2)萃取富集:用三氯甲烷分別萃取殘渣、鹽酸處理液和硅酸處理液,并分別將萃取的有機(jī)相濃縮至5 mL左右,轉(zhuǎn)移至25 mL的小燒杯內(nèi)濃縮至干,以備色層用。
(3)色層分離:樣品用正己烷沉淀瀝青質(zhì)后,分別用正己烷、2∶1的二氯甲烷與正己烷混合溶劑淋洗出飽和烴、芳香烴,轉(zhuǎn)移至色譜瓶以備儀器檢測。
(4)飽和烴和芳烴分析:飽和烴、芳香烴色譜—質(zhì)譜分析均用Agilent 7890A 和Agilent 5973(N)臺式色譜—質(zhì)譜儀檢測。分析條件:采用DB-Petro(50 m×0.20 mm×0.50 μm),以3 ℃/min速度自80 ℃升溫至300 ℃恒溫20 min,載氣為He;EI電流源70 eV,MID 方式檢測。該測試由中國石化石油勘探開發(fā)研究院無錫石油地質(zhì)研究所完成。
2結(jié)果與討論
2.1飽和烴組成差異性
系統(tǒng)的地球化學(xué)分析發(fā)現(xiàn),7個樣品中有機(jī)質(zhì)的飽和烴組成差異不如芳烴那么明顯,飽和烴色譜圖總體上比較相似,其各種地球化學(xué)參數(shù)雖有一定差異,但基本上在同一數(shù)量級內(nèi)(與芳烴參數(shù)相比)(表2,圖3,4)。
首先是反映有機(jī)質(zhì)母源和沉積環(huán)境特征的典型參數(shù),鏈烷烴的姥植比均在0.5左右,表明植烷占優(yōu)勢;萜烷分布樣式很相似,均以C30藿烷為主峰,其次是C29藿烷,而長鏈三環(huán)萜烷含量都很低,C24-四環(huán)萜烷/C26-三環(huán)萜烷,Ts/Tm,以及伽馬蠟烷指數(shù)等參數(shù)都有相似的數(shù)值;甾烷中的αααRC27/C29在0.5左右,以C29甾烷為優(yōu)勢??傮w而言,頁巖的全巖抽提物(WR-66)、無機(jī)介質(zhì)(InO-66)和有機(jī)介質(zhì)(Org-66)的這些參數(shù)特征更為接近。就是說,不管是賦存于泥頁巖有機(jī)介質(zhì)中的可溶有機(jī)質(zhì),還是無機(jī)介質(zhì)中的可溶有機(jī)質(zhì),或是它們的總和,其飽和烴餾分的組成差異不大。
表2 反映有機(jī)質(zhì)來源、形成環(huán)境和熱演化成熟度的參數(shù)Table 2 Parameters reflecting organic sources, depositional environments and maturity
圖3 南襄盆地泌陽凹陷核三3段樣品的飽和烴色譜圖Fig.3 GC for samples from the 3rd section of the 3rd member of Hetaoyuan Formation in Biyang Sag, Nanxiang Basin
其次對于反映有機(jī)質(zhì)成熟度特征的典型參數(shù),它們的OEP都在1.0附近(因頁巖處理物樣量少,沒有做色譜分析),表明這些樣品中的有機(jī)質(zhì)都處于成熟階段;甾烷的2個成熟度參數(shù)也可以很好地說明這點(diǎn)[C29S/(S+R)都在0.50以上,C29ββ/(αα+ββ)也在0.45以上],2個儲層油稍低一些,但差異仍不大。
即使是可以體現(xiàn)運(yùn)移差異的低分子量化合物與高分子量化合物的比值,如C27的Ts和Tm分別與C35藿烷比值,或是低環(huán)數(shù)萜烷與高環(huán)數(shù)萜烷的比值,如三環(huán)萜烷與五環(huán)三萜烷比值,在無機(jī)介質(zhì)中、有機(jī)介質(zhì)中以及頁巖油和儲層油中也都很接近(表3)。前人研究表明,烴源巖在生排烴過程中會產(chǎn)生色層效應(yīng),具體體現(xiàn)在排出烴與殘留烴相比,其飽和烴含量>芳香烴含量>非烴含量、正構(gòu)烷烴主峰碳后移、類異戊二烯烴類含量小于同碳數(shù)正構(gòu)烷烴、低環(huán)數(shù)少支鏈的甾萜烷含量比高環(huán)數(shù)多支鏈的高等[14-18]。然而,上述結(jié)果都是針對常規(guī)油氣的研究,即基于殘留在烴源巖內(nèi)部的可溶有機(jī)質(zhì)和已經(jīng)排出烴源巖、在砂巖儲層中的原油/油砂抽提物比對所獲得的結(jié)果,這相對于烴源巖內(nèi)部不同介質(zhì)中(頁巖油氣)的排烴作用,其運(yùn)移距離要大得多,故而能夠獲得較好的色層效應(yīng),而烴源巖內(nèi)部不同介質(zhì)中的排烴作用所產(chǎn)生的地球化學(xué)效應(yīng),在飽和烴方面表現(xiàn)得并不突出。
圖4 南襄盆地泌陽凹陷核三3段樣品的萜烷和甾烷質(zhì)量色譜圖Fig.4 GC-MS for samples from the 3rd section of the 3rd member of Hetaoyuan Formation in Biyang Sag, Nanxiang Basin 表3 反映排烴差異的飽和烴參數(shù)Table 3 Saturated parameters reflecting expulsion difference
樣品號三環(huán)萜烷/五環(huán)萜烷甾烷/萜烷(Ts+Tm)/C35(R+S)(C21TT+C23TT)/C35(R+S)BY1O0.070.193.010.51BY2O0.080.193.600.64B343O0.100.243.451.03SH417O0.070.243.360.76WR-660.080.214.010.73InO-660.070.223.980.56Org-660.070.224.260.67
注:TT表示長鏈三環(huán)萜烷。
根據(jù)分子動力學(xué)原理和分子擴(kuò)散效應(yīng),低分子量非—弱極性化合物易于脫離其吸附的介質(zhì),在介質(zhì)中運(yùn)移速度相對較快[19-22]。為了反映烴源巖層內(nèi)排烴產(chǎn)生的分子地球化學(xué)效應(yīng),我們選擇低分子量化合物與高分子量化合物的比值來衡量。理論上,該比值在烴源巖不同介質(zhì)中會有所變化。然而,由于烴源巖不同介質(zhì)距離非常近(相對于烴源巖與儲集巖之間),屬于源內(nèi)生排烴,加上飽和烴本身各種化合物之間的極性差異不大,因此,根據(jù)飽和烴化合物的特征不能有效區(qū)分烴源巖不同介質(zhì)中可溶有機(jī)質(zhì)組成的差異性(表3,圖5a),這是頁巖油氣形成與演化過程中的一個重要特征。
圖5 南襄盆地泌陽凹陷核三3段樣品地球化學(xué)參數(shù)交匯圖 TT:長鏈三環(huán)萜烷;TMN:三甲基萘;TMP:三甲基菲;TeMN:四甲基萘;TeMP:四甲基菲Fig.5 Geochemical parameter cross plots for samples from the 3rd section of the 3rd member of Hetaoyuan Formation in Biyang Sag, Nanxiang Basin
2.2芳烴組成差異性
與泥頁巖不同介質(zhì)中可溶有機(jī)質(zhì)的飽和烴組成差異小的特征(表2,圖3,圖4,圖5a)不同,這些有機(jī)質(zhì)的芳烴組成差異明顯(表4,圖5b)。如表4,三甲基萘與三甲基菲的比值(∑TMN/∑TMP),2個頁巖油分別為2.28(BY1O)和2.41(BY2O),2個砂巖儲層油分別為1.90(B343O)和3.55(SH417O),而頁巖有機(jī)介質(zhì)中可溶有機(jī)質(zhì)的該比值也高達(dá)3.21(Org-66),但頁巖無機(jī)介質(zhì)中可溶有機(jī)質(zhì)的該比值僅為0.09(InO-66),與頁巖全巖抽提物的比值相當(dāng)(0.06,WR-66)。與此類似,四甲基萘與四甲基菲的比值(∑TeMN/∑TeMP),2個頁巖油分別為4.82和4.34,2個砂巖儲層油分別為5.73和6.51,頁巖有機(jī)介質(zhì)中可溶有機(jī)質(zhì)的該比值也高達(dá)6.010,而頁巖無機(jī)介質(zhì)中可溶有機(jī)質(zhì)的比值僅有1.03(InO-66),與頁巖全巖抽提物的比值相當(dāng)(1.19,WR-66)。由于頁巖無機(jī)介質(zhì)和全巖抽提物的上述2個比值與頁巖油和砂巖油以及頁巖有機(jī)介質(zhì)差異明顯,使得萘系列和菲系列的總體比值(∑N/∑P)也存在這種差異性,頁巖有機(jī)介質(zhì)、頁巖油及砂巖油比頁巖無機(jī)介質(zhì)和全巖抽提物高出一個數(shù)量級(表4)。萘系列與苯基萘系列的比值(∑N/∑BN),Org-66高達(dá)99.08,BY1O為61.80,BY2O為65.40,B343O為36.40,SH417O為47.64,而InO-66僅有3.47,WR-66也只有3.84;單個化合物芴(fluorene)與熒蒽(fluoranthene)的比值(F/FT),Org-66最高,為6.48,BY1O為4.41,BY2O為5.50,B343O為3.24,SH417O為4.31,為而InO-66僅有0.10,WR-66也只有0.12(表4)。這些化合物比值的差異性從它們相應(yīng)的質(zhì)量色譜圖(圖6,7)上也可以看出,由它們做出的關(guān)系圖(圖8)差異更是顯而易見。
表4 南襄盆地泌陽凹陷核三3段樣品芳烴地球化學(xué)參數(shù)Table 4 Aromatic parameters for samples from the 3rd section of the 3rd member of Hetaoyuan Formation in Biyang Sag, Nanxiang Basin
注:TMN/TMP為三甲基萘/三甲基菲;TeMN/TeMP為四甲基萘/四甲基菲;∑N/∑P為萘系列/菲系列;∑N/∑BN為萘系列/苯基萘系列;F/FT為單個化合物芴/熒蒽。
對于這種差異,無疑反映了烴類化合物從生成到排出烴源層所經(jīng)過介質(zhì)對不同極性化合物吸附性能的差異。理論而言,烴類化合物從干酪根斷裂首先會吸附在干酪根表面,相比之下,二環(huán)萘比三環(huán)菲容易被干酪根吸附[17, 23],因此兩者比值高;在滿足干酪根吸附之后,進(jìn)入到無機(jī)礦物質(zhì)表面和納米孔隙中,在充滿頁巖納米孔隙之后離開并匯聚到頁巖裂縫或夾層中,此時二環(huán)萘比三環(huán)菲較易離開[17, 23],所以兩者比值較低。由于頁巖納米孔隙中的可溶有機(jī)質(zhì)是頁巖中可溶有機(jī)質(zhì)的主體[24-27],所以使得頁巖抽提物的萘與菲比值也低。匯聚到頁巖裂縫和夾層中的可溶有機(jī)質(zhì)可能就是我們目前可以開采的頁巖油,它的萘/菲比值當(dāng)然高很多。
圖6 南襄盆地泌陽凹陷核三3段頁巖油芳烴中多甲基萘和多甲基菲質(zhì)量色譜圖Fig.6 Methylnaphthalenes and methylphenanthrenes GC for shale oils from the 3rd section of the 3rd member of Hetaoyuan Formation in Biyang Sag, Nanxiang Basin
圖7 南襄盆地泌陽凹陷核三3段砂巖儲層油芳烴中多甲基萘和多甲基菲質(zhì)量色譜圖Fig.7 Methylnaphthalenes and methylphenanthrenes GC for sand oils from the 3rd section of the 3rd member of Hetaoyuan Formation in Biyang Sag, Nanxiang Basin
圖8 南襄盆地泌陽凹陷核三3段所有樣品地化參數(shù)關(guān)系Fig.8 Naphthalene/phenanthrene and naphthalene/phenyl naphthalene series of all samples from the 3rd section of the 3rd member of Hetaoyuan Formation in Biyang Sag, Nanxiang Basin
烴類化合物在滿足頁巖裂縫和夾層充填之后,最后排離頁巖,進(jìn)入砂巖,所以,砂巖油的萘/菲比值都很高,且與頁巖油相當(dāng)或高于頁巖油。這些現(xiàn)象都是因為萘比菲容易被吸附、萘比菲容易運(yùn)移[17, 23]所造成的結(jié)果。這種差異同樣反映在二環(huán)的萘系列與三環(huán)的苯基萘系列的比值(∑N/∑BN)上,也反映在三環(huán)的芴與四環(huán)的熒蒽這樣單個化合物的比值(F/FT)上。
2.3地質(zhì)—地球化學(xué)意義
如上所述,泥頁巖不同賦存狀態(tài)有機(jī)質(zhì)的組成差異主要表現(xiàn)在芳烴化合物,并且有機(jī)介質(zhì)(干酪根)中的組成與泥頁巖源內(nèi)聚集的頁巖油以及砂巖油相似,而與分散在泥頁巖基質(zhì)礦物孔隙中,即無機(jī)介質(zhì)中的可溶有機(jī)質(zhì)的組成差異明顯,可能反映烴類從干酪根中生成到排離烴源巖需要經(jīng)過幾個連續(xù)階段。如圖9,烴類物質(zhì)從脫離干酪根到排離烴源巖,可大致分為4個過程:(1)短側(cè)鏈烴類從干酪根大分子中斷裂,進(jìn)入干酪根有機(jī)孔隙和附著在干酪根表面;(2)在充滿干酪根內(nèi)部孔隙和滿足表面吸附之后脫離干酪根,進(jìn)入無機(jī)礦物基質(zhì)的納米孔隙中和被吸附在礦物顆粒表面;(3)在充滿無機(jī)礦物基質(zhì)孔隙和滿足礦物顆粒表面吸附后,進(jìn)入烴源層微裂縫和夾層(和或有機(jī)質(zhì)含量較低的相鄰烴源巖);(4)在充滿烴源巖微裂縫和夾層充填后排離烴源巖,進(jìn)入鄰近儲集巖,完成油氣初次運(yùn)移,開始油氣二次運(yùn)移。
3結(jié)論
(1)泥頁巖不同介質(zhì)中可溶有機(jī)質(zhì)在芳烴組成上存在一定差異性,而飽和烴組成比較相似。在飽和烴組分中,無論是反映母源性質(zhì)的參數(shù),還是指示母質(zhì)形成環(huán)境的參數(shù),在有機(jī)介質(zhì)和無機(jī)介質(zhì)中的可溶有機(jī)質(zhì)組成變化都不大,甚至與頁巖油和儲層油也在同一數(shù)量級內(nèi)波動。而芳烴組成中,由于環(huán)數(shù)差異,存在極性差異,使得它們在泥頁巖有機(jī)介質(zhì)和無機(jī)介質(zhì)中含量有明顯的差別。
(2)烴類物質(zhì)從脫離干酪根到排離烴源巖,可分為4個過程,即:第一步進(jìn)入干酪根有機(jī)孔隙和附著在干酪根表面;第二步進(jìn)入無機(jī)礦物基質(zhì)的納米孔隙中和被吸附在礦物顆粒表面;第三步進(jìn)入烴源層微裂縫和夾層(和或有機(jī)質(zhì)含量較低的相鄰烴源巖);第四步進(jìn)入儲集巖,完成油氣初次運(yùn)移,開始油氣二次運(yùn)移。
(3)頁巖油的富集發(fā)生在烴源巖源內(nèi)排烴的第三步,即頁巖的微裂縫和夾層中的油氣資源,而分散在頁巖納米孔隙和吸附在無機(jī)礦物質(zhì)表面的液態(tài)烴資源,在目前技術(shù)條件下很難被開采利用,賦存在有機(jī)孔隙和表面的液態(tài)烴同樣難以解脫出來。這也可能是目前頁巖油井開采不能持續(xù)穩(wěn)產(chǎn)的原因之一。
圖9 烴類源內(nèi)微運(yùn)移過程示意Fig.9 Diagram showing hydrocarbon micro-migration in shale
參考文獻(xiàn):
[1]Tissot B P,Welte D H.Petroleum formation and occurrence[M].2nd ed.Germany:Springer-Verlag,1984.
[2]Yang Ruofei,Cao Jian,Hu Guang,et al.Organic geochemistry and petrology of Lower Cretaceous black shales in the Qiangtang Basin,Tibet:Implications for hydrocarbon potential[J].Organic Geoche-mistry,2015,86:55-70.
[3]Katz B,Lin Fang.Lacustrine basin unconventional resource plays:Key differences[J].Marine and Petroleum Geology,2014,56:255-265.
[4]Bryndzia L T,Braunsdorf N R.From source rock to reservoir:The evolution of self-sourced unconventional resource plays[J].Elements,2014,10(4):271-276.
[5]Jarvie D M.Shale resource systems for oil and gas:Part 1—Shale-gas resource systems[C]//Breyer J A.Shale reservoirs—Giant resources for the 21st century:AAPG Memoir 97.Tulsa:AAPG,2012:69-87.
[6]Jarvie D M.Shale resource systems for oil and gas:Part 2—Shale-oil resource systems[C]//Breyer J A.Shale reservoirs—Giant resources for the 21st century:AAPG Memoir 97.Tulsa:AAPG,2012:89-119.
[7]Badics B,Vet? I.Source rocks and petroleum systems in the Hungarian part of the Pannonian Basin:The potential for shale gas and shale oil plays[J].Marine and Petroleum Geology,2012,31(1):53-69.
[8]Chen Lei,Lu Yongchao,Jiang Shu,et al.Heterogeneity of the Lower Silurian Longmaxi marine shale in the southeast Sichuan Basin of China[J].Marine and Petroleum Geology,2015,65:232-246.
[9]Qiu Xinwei,Liu Chiyang,Mao Guangzhou,et al.Major,trace and platinum-group element geochemistry of the Upper Triassic nonmarine hot shales in the Ordos Basin,Central China[J].Applied Geochemistry,2015,53:42-52.
[10]Wilhelms A,Larter S R,Leythaeuser D,et al.Recognition and quantification of the effects of primary migration in a Jurassic clastic source-rock from the Norwegian continental shelf[J].Organic Geochemistry,1990,16(13):103-113.
[11]Zhang Xuejun,Xu Xingyou,Wang Yongshi,et al.Relationship between heterogeneity of source rocks and genetic mechanism of abnormally high pressure[J].Science China Earth Sciences,2013,56(11):1971-1976.
[12]Zou Caineng,Zhang Guosheng,Yang Zhi,et al.Concepts,cha-racteristics,potential and technology of unconventional hydrocarbons:On unconventional petroleum geology[J].Petroleum Exploration and Development,2013,40(4):413-428.
[13]Hunt J M.Petroleum geochemistry and geology[M].2nd ed.New York:W. H. Freeman,1995.
[14]Berg R R,Gangi A F.Primary migration by oil-generation microfracturing in low-permeability source rocks:Application to the Austin chalk,Texas[J].AAPG Bulletin,1999,83(5):727-756.
[15]Jia Wanglu,Wang Qiuling,Liu Jinzhong,et al.The effect of oil expulsion or retention on further thermal degradation of kerogen at the high maturity stage:A pyrolysis study of type Ⅱ kerogen from Pingliang shale,China[J].Organic Geochemistry,2014,71:17-29.
[16]Ritter U.Fractionation of petroleum during expulsion from kerogen[J].Journal of Geochemical Exploration,2003,78-79:417-420.
[17]Eseme E,Littke R,Krooss B M,et al.Experimental investigation of the compositional variation of petroleum during primary migration[J].Organic Geochemistry,2007,38(8):1373-1397.
[18]Leythaeuser D,Schaefer R G,Radke M.Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae field area,North Sea.Ⅰ: Gross composition of C15+-soluble organic matter and molecular composition of C15+-saturated hydrocarbons[J].Geochimica et Cosmochimica Acta,1988,52(3):701-713.
[19]Eseme E,Littke R,Krooss B M,et al.Experimental investigation of the compositional variation of acyclic paraffins during expulsion from source rocks[J].Journal of Geochemical Exploration,2006,89(13):100-103.
[20]Sandvik E I,Young W A,Curry D J.Expulsion from hydrocarbon sources: The role of organic absorption[J].Organic Geochemistry,1992,19(13):77-87.
[21]Stainforth J G.Practical kinetic modeling of petroleum generation and expulsion[J].Marine and Petroleum Geology,2009,26(4):552-572.
[22]Bennett B,Chen M,Brincat D,et al.Fractionation of benzocarbazoles between source rocks and petroleums[J].Organic Geochemistry,2002,33(5):545-559.
[23]Leythaeuser D,Radke M,Willsch H.Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae field area,North Sea.Ⅱ:Molecular composition of alkylated naphthalenes,phenanthrenes,benzothiophenes and dibenzothiophenes[J].Geochimica et Cosmochimica Acta,1988,52(12):2879-2891.
[24]L?hr S C,Baruch E T,Hall P A,et al.Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J].Organic Geochemistry,2015,87:119-132.
[25]Furmann A,Mastalerz M,Schimmelmann A,et al.Relationships between porosity,organic matter,and mineral matter in mature organic-rich marine mudstones of the Belle Fourche and Second White Specks formations in Alberta,Canada[J].Marine and Petroleum Geology,2014,54:65-81.
[26]Romero-Sarmiento M F,Ducros M,Carpentier B,et al.Quantitative evaluation of TOC,organic porosity and gas retention distribution in a gas shale play using petroleum system modeling:Application to the Mississippian Barnett shale[J].Marine and Petroleum Geology,2013,45:315-330.
[27]Romero-Sarmiento M F,Ducros M,Carpentier B,et al.Predicting TOC,organic porosity and gas retention distribution in a shale-gas system using petroleum basin modelling[C]//AAPG Annual Convention and Exhibition.Long Beach,California,USA:AAPG,2012.
(編輯徐文明)
文章編號:1001-6112(2016)04-0429-09
doi:10.11781/sysydz201604429
收稿日期:2016-04-01;
修訂日期:2016-06-07。
作者簡介:朱景修(1973—),男,高級工程師,從事油氣勘探地質(zhì)綜合研究及管理工作。E-mail:102527382@QQ.com。
基金項目:中國石化科技部項目“泌陽凹陷陸相頁巖油富集主控因素研究”(P13106)資助。
中圖分類號:TE122.1
文獻(xiàn)標(biāo)識碼:A
Composition difference of soluble organic matter in different media in mudstones and its significance for shale oil enrichment
Zhu Jingxiu
( Exploration and Development Research Institute of Henan Oilfield Branch Company, SINOPEC, Nanyang, Henan 473132, China)
Abstract:The composition of soluble organic matter in mudstones is complex and the study of composition diffe-rence is not only important to understanding hydrocarbon generation and expulsion processes, but also necessary for us to determine shale oil formation and accumulation mechanisms. Lacustrine shale of the Hetaoyuan Formation in the Biyang Sag of Nanxiang Basin was systematically studied to determine the composition difference of soluble organic matter from different media (including inorganic minerals and kerogen). The results were compared with shale oil and sandstone oil, and their geological and geochemical significance discussed. Results show that, it is mainly because of the similar polarity among various compounds of saturated hydrocarbon that we can hardly distinguish the difference of saturated hydrocarbon component of soluble organic matter in different media, which implies shale oil generation and expulsion processes in source rock. However, there are obvious variations of aromatic composition. The aromatic composition of soluble organic matter in organic medium is similar to shale oil/sandstone oil, but the aromatic composition of soluble organic matter in inorganic medium is different from shale oil/sandstone oil, which reflects the processes of hydrocarbon generation and expulsion. Accordingly, in the primary migration in mudstone, the generated hydrocarbons firstly filled inorganic mineral pores, after achieving the adsorption capacity of mineral particles, then entering into the micro-cracks in source rock and/or sandstone interlayer, finally forming oil and gas enrichment, which was the so-called shale oil.
Key words:soluble organic matter; hydrocarbon expulsion; primary migration; shale; shale oil; Biyang Sag; Nanxiang Basin