MYO THWIN,劉 芃,馬 微,薛慶賀,郭 軍,康振生
(西北農(nóng)林科技大學(xué) 植物保護(hù)學(xué)院,旱區(qū)作物逆境生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,陜西楊陵 712100)
?
小麥CBL結(jié)合蛋白激酶基因TaCIPK16的克隆及特征分析
MYO THWIN,劉芃,馬微,薛慶賀,郭軍,康振生*
(西北農(nóng)林科技大學(xué) 植物保護(hù)學(xué)院,旱區(qū)作物逆境生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,陜西楊陵 712100)
摘要:類鈣調(diào)磷酸酶亞基B蛋白(calcineurin B-1ike protein,CBL)作為一類鈣離子結(jié)合蛋白,通過與一類蛋白激酶(CBL-interacting protein kinase,ClPK)結(jié)合,從而在鈣信號(hào)依賴的生理生化過程中發(fā)揮作用。該研究在條銹菌誘導(dǎo)的小麥葉片中克隆獲得CIPK家族中1個(gè)基因TaCIPK16,并利用qRT-PCR技術(shù)、酵母雙雜交技術(shù)及亞細(xì)胞定位技術(shù)分析了其功能特性。序列分析表明,TaCIPK16編碼447個(gè)氨基酸,包含保守的激酶催化結(jié)構(gòu)域及調(diào)控結(jié)構(gòu)域,與水稻、擬南芥CIPK蛋白具有高度相似性。酵母雙雜交分析驗(yàn)證顯示,TaCIPK16與TaCBL4和TaCBL9存在強(qiáng)烈互作。定量分析表明,TaCIPK16受到條銹菌的誘導(dǎo)表達(dá),在小麥與條銹菌互作過程中呈顯著差異表達(dá)趨勢(shì)。綜上結(jié)果,TaCIPK16可能作為正調(diào)控因子參與了小麥對(duì)條銹菌的抗病防衛(wèi)反應(yīng)。
關(guān)鍵詞:小麥,CBL,蛋白激酶,TaCIPK16,條銹菌
在適應(yīng)復(fù)雜多變自然環(huán)境的進(jìn)化中,植物形成了完善的信號(hào)通路。Ca2+是信號(hào)傳導(dǎo)中重要的第二信使,在植物的生理和生長(zhǎng)過程中起著重要的作用。植物在響應(yīng)外界的信號(hào)和脅迫時(shí),細(xì)胞中的Ca2+水平會(huì)發(fā)生相應(yīng)的改變[1]。植物中存在3種鈣離子結(jié)合蛋白,分別是鈣調(diào)素CaM (Calmodulin)及其相關(guān)蛋白、鈣依賴性蛋白激酶(Ca2+-dependent protein kinases, CDPK)、鈣調(diào)磷酸酶B類蛋白(calcineurin B-like protein, CBL)[2]。其中CBL本身沒有激酶活性,必須和靶蛋白CIPK結(jié)合形成復(fù)合體才能發(fā)揮作用[3]。CIPK是一個(gè)植物特有的絲氨酸-蘇氨酸蛋白激酶家族,屬于第3類的SnRK3 激酶(SNF1-related protein kinase3, SnRK3)[4]。對(duì)模式植物擬南芥CIPK蛋白的結(jié)構(gòu)分析表明,所有的CIPK蛋白含有N-端的激酶蛋白域和C-端的調(diào)節(jié)域,后者為CBL特異接合的NAF結(jié)構(gòu)域[5]和能與PP2C相互作用的PPI結(jié)構(gòu)域[6]。
前期研究表明CIPK家族基因參與響應(yīng)高鹽、滲透或者干旱脅迫,冷脅迫,以及低K+、硝酸鹽、低氧等其它脅迫[7]。在擬南芥中,AtCIPK23 可以與 AtCBL1互作,磷酸激活 K+通道 (AKT1)促進(jìn) K+的吸收[8]。當(dāng)擬南芥遭受高鹽脅迫時(shí), SOS3(CBL4)及CBL10結(jié)合Ca2+, 隨后與SOS2(CIPK24)蛋白激酶結(jié)合形成蛋白復(fù)合體, 分別在地下及地上部分調(diào)控相應(yīng)靶蛋白的表達(dá), 從而使植物能抵御或減輕高鹽脅迫帶來的傷害[9]。在水稻中,通過RNAi技術(shù)沉默OsCIPK23能夠?qū)е滤究购敌缘臏p弱[10]。除此之外,CBL-CIPK信號(hào)系統(tǒng)廣泛參與植物生理和發(fā)育的過程。水稻中OsCIPK15與水稻的缺氧耐性有關(guān),可能調(diào)節(jié)SnRK1A整合缺氧響應(yīng)和糖信號(hào)反應(yīng)[11]。在CIPK6功能缺失的突變體cipk6中,向基式與向頂式的生長(zhǎng)素運(yùn)輸均明顯減弱,造成植株表現(xiàn)為子葉融合、下胚軸膨大、側(cè)根發(fā)生延遲等生長(zhǎng)缺陷[12]。
除此之外,關(guān)于CIPK蛋白激酶在植物響應(yīng)生物脅迫過程中的作用也有了一定的研究。眾所周知,活性氧(reactive oxygen species, ROS)在植物抗病反應(yīng)中起到至關(guān)重要的作用,它能夠引起細(xì)胞壞死,從而限制病原菌的進(jìn)一步擴(kuò)展,并且可作為一個(gè)信號(hào)分子誘導(dǎo)抗病相關(guān)基因的表達(dá)[13]。在擬南芥中,AtCIPK26能夠和一個(gè)NADPH氧化酶AtRbohF互作并負(fù)調(diào)控其產(chǎn)生ROS[14]。在水稻中,OsCIPK14/15能都受到病原相關(guān)分子模式(microbe-associated molecular patterns,MAMP)的誘導(dǎo),若OsCIPK14/15的表達(dá)受到抑制,MAMP誘導(dǎo)產(chǎn)生的ROS也受到抑制,從而說明OsCIPK14/15參與了PAMP誘導(dǎo)的抗性(PAMP-triggered immunity, PTI)[15]。在番茄中,CBL10和CIPK6能夠正調(diào)控細(xì)胞免疫反應(yīng)和細(xì)胞程序性死亡。在煙草中,CIPK6與CBL10的互作參與ETI(effector-triggered immunity)過程中ROS的產(chǎn)生[16]。有研究表明,水楊酸信號(hào)通路也受到了CIPK的調(diào)節(jié)。在擬南芥中,NPR1能夠被CIPK11/PKS5磷酸化,從而誘導(dǎo)WKY38和WKY62的表達(dá)[17]。
目前,小麥中關(guān)于CIPK蛋白激酶在生物脅迫中的功能知之甚少。研究小麥CIPK蛋白激酶在小麥-條銹菌互作體系的功能對(duì)闡釋其作用機(jī)理具有重要的意義。因此,本研究分離獲得了一個(gè)蛋白激酶基因TaCIPK16,并利用qRT-PCR技術(shù)、酵母雙雜交技術(shù)及亞細(xì)胞定位技術(shù)分析了其功能特性,為進(jìn)一步揭示其在小麥-條銹菌互作過程中的分子機(jī)理奠定了基礎(chǔ)。
1材料與方法
1.1供試材料及試驗(yàn)試劑
本實(shí)驗(yàn)所用小麥條銹菌生理小種為‘條中23號(hào)’(CYR23)和‘條中31號(hào)’(CYR31),小麥品種為‘銘賢169’和‘水源11’。小麥培養(yǎng)、條銹菌繁殖及接種方法參考Kang等[18]的方法。Taq DNA 聚合酶(Fermentas,美國(guó)),dNTP、pMD18-T(Takara,日本),瓊脂糖凝膠 DNA 回收試劑盒(百泰克,中國(guó)),Top10感受態(tài)細(xì)胞(Wolsen,美國(guó)),質(zhì)粒提取盒(BioMiga,美國(guó)),限制性內(nèi)切酶(Fermentas,美國(guó)),T4 DNA連接酶(Fermentas),BIOZOL(BioFlux,日本),RNase inhibitor(Promega,美國(guó)),M-MLV反轉(zhuǎn)錄試劑盒(Fermentas,美國(guó)),SY BR Green 和 Rox reference 染料(Invitrogen,美國(guó))。
1.2方法
1.2.1TaCIPK16基因的克隆在TAIR v10 (http://www.arabidopsis.org/)和RGAP v7 (http://rice.plantbiology.msu.edu/)數(shù)據(jù)庫中得到擬南芥和水稻的CIPK序列,在中國(guó)春基因組數(shù)據(jù)庫中(http://wheat-urgi.versailles.inra.fr/Seq-Repository/Genes-annotations)得到小麥cDNA數(shù)據(jù)庫,并以水稻和擬南芥的CIPK序列為種子序列,參照NCBI“BLAST+ user manual”中的方法,對(duì)下載的小麥cDNA數(shù)據(jù)庫進(jìn)行本地BLAST檢索,得到小麥候選的CIPK序列,并通過MEGA5.0構(gòu)建進(jìn)化樹明確與OsCIPK16親緣關(guān)系最近的序列,即為候選的TaCIPK16。根據(jù)序列分析得到的候選基因序列設(shè)計(jì)引物TaCIPK16-F/R(表 1)。提取水源11葉片總 RNA 并反轉(zhuǎn)錄成 cDNA,具體方法參照 Ferments ReverAid First Strand cDNA synthesis 試劑盒操作說明。以 cDNA 為模板,PCR 擴(kuò)增程序?yàn)?5 ℃預(yù)變性 5 min,95 ℃ 變性30 s,55 ℃ 退火30 s,72 ℃延伸 1 min,共 35 個(gè)循環(huán);72 ℃ 延伸10 min。PCR 產(chǎn)物純化后連接到pGEM?-T Easy載體,經(jīng)大腸桿菌轉(zhuǎn)化后提取質(zhì)粒并送測(cè)序。
1.2.2序列分析將實(shí)驗(yàn)克隆測(cè)序的結(jié)果和通過預(yù)測(cè)得到的候選基因序列進(jìn)行相似性比對(duì)。使用ExPAsy網(wǎng)站的在線軟件Compute pI/Mw tool(http://web.expasy.org/compute_pi/)進(jìn)行計(jì)算編碼蛋白的等電點(diǎn)和分子量;利用DNASTAR軟件,BLAST (http://www.ncbi.nlm.nih.gov/blast/)和ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html)進(jìn)行cDNA序列的分析。利用ClustalW2 (http://www.ebi.ac.uk/Tools/msa/muscle/) 和 DNAMAN7.0 軟件(version 7.0; Lynnon Biosoft, USA)進(jìn)行序列比對(duì)分析。使用 MEGA5 software (version 5.0)軟件以鄰接法(Neighbor-Joining method)進(jìn)行目的蛋白與其同源蛋白的多重序列比對(duì)及進(jìn)化樹分析。使用InterProScan (http://www.ebi.ac.uk/Tools/pfa/iprscan/) 和 PROSITE Scan (http://prosite.expasy.org/scanprosite/) 來預(yù)測(cè)蛋白的保守蛋白結(jié)構(gòu)域。
1.2.3酵母雙雜交分析設(shè)計(jì)并合成TaCBL4(GenBank登錄號(hào)為KU736850)和TaCBL9(GenBank登錄號(hào)為KU736852)酵母雙雜交克隆引物TaCBL4-BD-F/R、TaCBL9-BD-F/R(表 1),并克隆至pGBKT7載體上,設(shè)計(jì)TaCIPK16酵母雙雜交克隆引物TaCIPK16-AD-F/R(表 1),并克隆至pGADT7載體上。按照酵母雙雜交手冊(cè)(Clontech, Japan),將TaCBL4與TaCIPK16或者TaCBL9與TaCIPK16共轉(zhuǎn)至酵母菌株AH109中,并分別在缺陷性培養(yǎng)基SD-Leucine-Tryptophan (-L-T)和SD-Ade-nine-Histidine-Leucine-Tryptophan(含20 μg·mL-1的X-α-Gal)(-L-T-H-A+ X-α-gal)上進(jìn)行培養(yǎng)。培養(yǎng)4 d后,利用血球計(jì)數(shù)板將酵母細(xì)胞稀釋到每毫升水含有107、106、105和104個(gè)細(xì)胞,點(diǎn)至-L-T-H-A+ X-α-gal培養(yǎng)基上培養(yǎng),24 h后照相。
表1 引物表
1.2.4亞細(xì)胞定位依據(jù)pCaMV35S:GFP中多克隆位點(diǎn)信息,設(shè)計(jì)并合成TaCIPK16亞細(xì)胞定位克隆引物TaCIPK16-163-F/R(表1),并將TaCIPK16克隆至pCaMV35S:GFP中,參照Li 等[19]的方法,制備小麥原生質(zhì)體,并參照該方法將融合載體pCaMV35S:TaCIPK16∶GFP及空載體pCaMV35S∶GFP轉(zhuǎn)至小麥原生質(zhì)體中,培養(yǎng)18 h后,通過共聚焦顯微鏡進(jìn)行觀察并照相。
1.2.5qRT-PCR分析根據(jù)克隆出來的TaCIPK16 基因和內(nèi)參基因小麥延伸因子TaEF-1α(GenBank登錄號(hào)Q03033)分別設(shè)計(jì)特異定量引物TaCIPK16-qRT-F1/R1及TaEF1-F/R(表 1)。采集接種條銹菌后 0、12、18、24、72和120 h 時(shí)間點(diǎn)的葉片提取 RNA,反轉(zhuǎn)錄為 cDNA,以此 cDNA為模板,qRT-PCR 反應(yīng)程序?yàn)?5 ℃預(yù)變性5 min,95 ℃變性,10 s,55 ℃ 退火 20 s,72 ℃延伸 40 s,共40個(gè)循環(huán)。qRT-PCR的反應(yīng)體系及程序參照Feng等的方法[20],最后采用2-ΔΔCt法計(jì)算目標(biāo)基因?qū)?nèi)參基因的相對(duì)表達(dá)量。
2結(jié)果與分析
2.1小麥TaCIPK16基因的克隆及序列分析
通過RT-PCR技術(shù)克隆得到的cDNA序列具有1 606個(gè)核苷酸(圖1),編碼1個(gè)447氨基酸的蛋白,蛋白分子量為 49.521 kD ,等電點(diǎn)為9.09。使用InterProScan軟件分析表明,其N端包含一個(gè)蛋白激酶結(jié)構(gòu)域,C端含有一個(gè)調(diào)控結(jié)構(gòu)域, 在調(diào)節(jié)域中包含能夠與CBL 特異結(jié)合的NAF結(jié)構(gòu)域及與PP2C相互作用的PPI結(jié)構(gòu)域(圖 2)。利用擬南芥與水稻中所有的CIPK序列氨基酸序構(gòu)建進(jìn)化樹發(fā)現(xiàn)該蛋白與水稻的OsCIPK16(LOC_Os09g25090)及擬南芥中的AtCIPK5(AAF86504)、AtCIPK16(AAK50348)及AtCIPK25(AF44226)同屬一個(gè)分支(圖 3)。5條序列比對(duì)分析表明,該蛋白序列與OsCIPK16相似度達(dá)到88.04%,與擬南芥(Arabidopsisthaliana)中AtCIPK16相似度達(dá)到76.43%,故命名為TaCIPK16。
1~2. PCR擴(kuò)增產(chǎn)物;M. Marker圖1 TaCIPK16基因cDNA的PCR擴(kuò)增片段1-2. PCR product; M. MarkerFig. 1 Electrophoresis of TaCIPK16 cDNA fragment
At. 擬南芥CIPK序列;Os. 水稻CIPK序列;箭頭指出本實(shí)驗(yàn)克隆的TaCIPK16序列;節(jié)點(diǎn)上的數(shù)值表示Bootstrap驗(yàn)證中基于1 000次重復(fù)該節(jié)點(diǎn)的可信度圖3 TaCIPK16與水稻、擬南芥中CIPK家族的進(jìn)化樹分析At, CIPK sequences of Arabidopsis download from TAIR v10; Os, CIPK sequences of rice download from RGAP v7; The arrow indicates TaCIPK16; The numbers at the nodes represents the reliability based on 1 000 replicatesFig. 3 Phylogenetic analysis of TaCIPK16 with CIPK family from rice and Arabidopsis
虛線表示N端蛋白激酶結(jié)構(gòu)域;黑線表示C端調(diào)控結(jié)構(gòu)域;黑框表示NAF結(jié)構(gòu)域;虛線框表示PPI結(jié)構(gòu)域圖2 TaCIPK16與水稻、擬南芥同源基因的多序列比對(duì)The conserved protein kinase domain and regulatory domain are marked with black full line and dash line, respectively. The conserved NAF and PPI motifs are marked with black box and dash boxFig. 2 Multi-sequence alignment of TaCIPK16 with homologous proteins in rice and Arabidopsis
2.2酵母雙雜分析
為了驗(yàn)證 TaCIPK16和TaCBL4或TaCBL9是否有相互作用,將TaCIPK16與TaCBL4或者TaCIPK16與TaCBL9共同轉(zhuǎn)至酵母中。在篩選培養(yǎng)基SD-Leucine-Tryptophan上酵母能夠正常生長(zhǎng),說明2種融合質(zhì)粒成功轉(zhuǎn)入酵母中(圖 4,A)。在篩選培養(yǎng)基SD-Adenine-Histidine-Leucine-Tryptophan(含20μg·mL-1X-α-Gal)酵母能夠生長(zhǎng)并且成藍(lán)色,與陽性對(duì)照相似,說明TaCIPK16與TaCBL4和TaCBL9均存在互作(圖 4,B)。將酵母培養(yǎng)液稀釋到每毫升含有104個(gè)酵母細(xì)胞時(shí),仍能觀察到酵母的生長(zhǎng),表明TaCIPK16與TaCBL4和TaCBL9具有強(qiáng)烈的互作。
含有重組質(zhì)粒的AH109酵母菌株在選擇培養(yǎng)基SD-Leucine-Tryptophan (-L-T)和SD-Adenine-Histidine-Leucine-Tryptophan(加20 μg/mL的X-α-gal)培養(yǎng);A、B.陽性對(duì)照,Takala酵母試劑盒中的SV40 large T-antigen和murine p53互作結(jié)果:C、D.TaCIPK16和TaCBL4的互作結(jié)果;E、F.TaCIPK16和TaCBL9的互作結(jié)果;G、H.陰性對(duì)照,Takala酵母試劑盒中SV40 large T-antigen 與human lamin的互作結(jié)果圖4 TaCIPK16與TaCBL4、TaCBL9的互作分析Cells of yeast strain AH109 harboring the indicated plasmid combinations were grown on selective media SD-Leucine-Tryptophan (-L-T) and SD-Adenine-Histidine-Leucine-Tryptophan (containing 20 μg/mL X-α-gal); A, B. Positive control, the interaction between SV40 large T-antigen and murine p53;C, D. The interaction of TaCIPK16 and TaCBL4: E,F(xiàn). The interaction between TaCIPK16 and TaCBL9; G,H. Negative control, the interaction between SV40 large T-antigen and human lamin C.Fig. 4 Analysis of interactions between TaCIPK16 and TaCBL4/TaCBL9
A~D.陽性對(duì)照,pCaMV35S:GFP轉(zhuǎn)化的小麥原生質(zhì)細(xì)胞;E~H.pCaMV35S:TaCIPK16:GFP轉(zhuǎn)化的小麥原生質(zhì)細(xì)胞;A、E.受激發(fā)的GFP熒光和葉綠體自發(fā)熒光組合結(jié)果;B、F.葉綠體自發(fā)熒光;C、G.受激發(fā)的GFP熒光;D、H.白光下的原生質(zhì)細(xì)胞圖5 小麥原生質(zhì)體中TaCIPK16亞細(xì)胞定位分析(Bar= 5 μm)A~D. Positive control, pCaMV35S:GFP; E~H. pCaMV35S:TaCIPK16:GFP; A, E. overlay; B, F. Chloroplast; C, G. GFP; D, H. Bright field.Fig. 5 Subcellular localization of TaCIPK16 in wheat protoplasts
圖6 TaCIPK16基因在小麥-條銹菌互作過程中的轉(zhuǎn)錄表達(dá)特征Fig. 6 Expression pattern of TaCIPK16 during the compatible and incompatible interaction between wheat and Pst
2.3亞細(xì)胞定位分析
為驗(yàn)證TaCIPK16在小麥細(xì)胞中的分布情況,將融合載體pCaMV35S∶TaCIPK16∶GFP以及空載體pCaMV35S∶GFP轉(zhuǎn)移至小麥原生質(zhì)體中。結(jié)果表明,TaCIPK16在小麥細(xì)胞中分布與陽性對(duì)照GFP的情況相同,在整個(gè)小麥細(xì)胞中均有分布(圖 5)。
2.4小麥TaCIPK16基因的實(shí)時(shí)定量RT-PCR分析
實(shí)時(shí)定量RT-PCR分析結(jié)果表明,TaCIPK16受到條銹菌誘導(dǎo)表達(dá)。在非親和互作(CYR23)中,TaCIPK16轉(zhuǎn)錄水平在接種后6~36 h低于0 h表達(dá)水平,呈下調(diào)表達(dá);當(dāng)?shù)?8 h表達(dá)量明顯上調(diào),并達(dá)到峰值(相對(duì)表達(dá)量為10.8),在以后的時(shí)間點(diǎn),表達(dá)量恢復(fù)到初始水平(圖 6)。在親和互作(CYR31)中,TaCIPK16的相對(duì)表達(dá)趨勢(shì)與在非親和中的表達(dá)趨勢(shì)相同,但在接菌48 h后輕微的上調(diào)表達(dá)量(相對(duì)表達(dá)量為2)顯著低于在非親和互作中表達(dá)量(圖 6)。由此推斷,TaCIPK16可能參與了小麥對(duì)條銹菌的抗病防衛(wèi)反應(yīng)。
3討論
在已有的研究中,植物CIPK基因家族是一個(gè)較大的家族,家族內(nèi)不同的CIPK成員的功能存在特異性,可以響應(yīng)一種或者多種生物或非生物脅迫。本研究克隆了1個(gè)小麥中編碼CIPK蛋白激酶的基因,其與擬南芥和水稻中的AtCIPK16和OsCIPK16具有高度的相似性,尤其是N-端的催化結(jié)構(gòu)域和C端的調(diào)節(jié)結(jié)構(gòu)域,推測(cè)TaCIPK16能夠感知Ca2+信號(hào),并且功能與水稻和擬南芥中的CIPK16蛋白功能高度保守。
CBL蛋白需要與CIPK蛋白激酶結(jié)合形成蛋白復(fù)合體,能激活細(xì)胞內(nèi)一系列的生理生化的變化。以前研究表明,不同的CBL蛋白與不同的CIPK蛋白結(jié)合能夠產(chǎn)生不同的信號(hào)通路,并且在不同的信號(hào)通路之間,CBL-CIPK蛋白復(fù)合體也起到橋梁的作用[21]。因此,明確CIPK與CBL的互作網(wǎng)絡(luò)是研究CIPK蛋白作用機(jī)理的基礎(chǔ)。本研究中通過酵母雙雜技術(shù),明確TaCIPK16與TaCBL4和TaCBL9有強(qiáng)烈的互作關(guān)系。由此推斷,TaCIPK16能夠響應(yīng)多種環(huán)境對(duì)植物的刺激,并且能與小麥CBL形成不同蛋白復(fù)合體發(fā)揮其特異功能。
分析CIPK在細(xì)胞中的分布情況有助于理解CBL-CIPK蛋白復(fù)合體的功能及其特異的鈣離子信號(hào)通路。在擬南芥中CIPK家族中的大部分基因都分布在細(xì)胞核與細(xì)胞質(zhì)中[22]。在玉米中,ZmCIPK16主要定位在細(xì)胞核和細(xì)胞膜上,在細(xì)胞質(zhì)中含量相對(duì)較少[2]。在本實(shí)驗(yàn)中,TaCIPK16也分布于整個(gè)細(xì)胞中,推斷TaCIPK16與ZmCIPK16功能具有保守性。同時(shí),細(xì)胞中蛋白的定位情況和其功能關(guān)系密切相關(guān),因此推測(cè)在細(xì)胞中TaCBL4-TaCIPK16與TaCBL9-TaCIPK16蛋白復(fù)合體能夠激活多種蛋白所引起的信號(hào)通路。
TaCIPK16基因在條銹菌誘導(dǎo)下呈上調(diào)表達(dá)趨勢(shì),說明其參與了條銹菌誘導(dǎo)的小麥抗病防衛(wèi)反應(yīng),但親和反應(yīng)和非親和反應(yīng)中的表達(dá)量差異說明TaCIPK16很可能參與了小麥R基因介導(dǎo)的抗病信號(hào)通路,在小麥-條銹菌組成的非親和互作過程中起重要作用。根據(jù)Wang等[23]報(bào)道,在非親和互作反應(yīng)中,接種條銹菌前期12~24 h,是小麥細(xì)胞活性氧爆發(fā)階段并在24 h時(shí)達(dá)到峰值,而接菌24 h之后活性氧的含量才開始降低,到接菌后48 h,活性氧的含量達(dá)到最低。而本實(shí)驗(yàn)中在接菌后12~36 hTaCIPK16的表達(dá)水平受到抑制,而在接菌后48 h TaCIPK16受到誘導(dǎo)且表達(dá)水平到最大。有研究表明,小麥TaCIPK29參與調(diào)控ROS信號(hào)通路[24]。因此推測(cè)TaCIPK16可能在小麥-條銹菌非親和互作過程中調(diào)控ROS信號(hào)通路以此介導(dǎo)小麥的抗病防衛(wèi)反應(yīng)。
參考文獻(xiàn):
[1]ZHU JK. Salt and drought stress signal transduction in plants[J].AnnualReviewofPlantBiology. 2002, 53: 247.
[2]ZHAO J, SUN Z, ZHENG J,etal. Cloning and characterization of a novel CBL-interacting protein kinase from maize[J].PlantMolecularBiology, 2009, 69(6): 661-674.
[3]LUAN S, KUDLA J, RODRIGUEZ-CONCEPCION M,etal. Calmodulins and calcineurin B-like proteins calcium sensors for specific signal response coupling in plants[J].ThePlantCell, 2002, 14: S389-S400.
[4]KOLUKISAOGLUü, WEINL S, BLAZEVIC D,etal. Calcium sensors and their interacting protein kinases: genomics of theArabidopsisand rice CBL-CIPK signaling networks[J].PlantPhysiology, 2004, 134(1): 43-58.
[5]ALBRECHT V, RITZ O, LINDER S,etal. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+regulated kinases[J].TheEMBOJournal, 2001, 20(5): 1 051-1 063.
[6]LEE S C, LAN W Z, KIM B G,etal. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel[J].ProceedingsoftheNationalAcademyofSciences, 2007, 104(40): 15 959-15 964.
[7]LI R, ZHANG J, WEI J,etal. Functions and mechanisms of the CBL-CIPK signaling system in plant response to abiotic stress[J].ProgressinNaturalScience, 2009, 19(6): 667-676.
[8]LI L, KIM B G, CHEONG Y H,etal. A Ca2+signaling pathway regulates a K+channel for low-K response inArabidopsis[J].ProceedingsoftheNationalAcademyofSciences, 2006, 103(33): 12 625-12 630.
[9]XU J, LI H D, CHEN L Q,etal. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+transporter AKT1 inArabidopsis[J].Cell, 2006, 125(7): 1 347-1 360.
[10]YANG W, KONG Z, OMO-IKERODAH E,etal. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (OryzasativaL.)[J].JournalofGeneticsandGenomics, 2008, 35(9): 531-543.
[11]LEE K W, CHEN P W, LU C A,etal. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding[J].ScienceSignaling, 2009, 2(91): ra61.
[12]TRIPATHI V, PARASURAMAN B, LAXMI A,etal. CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants[J].ThePlantJournal, 2009, 58(5): 778-790.
[13]MITTLER R, VANDERAUWERA S, SUZUKI N,etal. ROS signaling: the new wave?[J].TrendsinPlantScience, 2011, 16(6): 300-309.
[14]KIMURA S, KAWARAZAKI T, NIBORI H,etal. The CBL-interacting protein kinase CIPK26 is a novel interactor ofArabidopsisNADPH oxidase AtRbohF that negatively modulates its ROS-producing activity in a heterologous expression system[J].JournalofBiochemistry, 2013, 153(2): 191-195.
[15]KURUSU T, HAMADA J, NOKAJIMA H,etal. Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by calcineurin B-like protein-interacting protein kinases, OsCIPK14/15, in rice cultured cells[J].PlantPhysiology, 2010, 153(2): 678-692.
[16]DE LA TORRE F, GUTIéRREZ-BELTRN E, PAREJA-JAIME Y,etal. The tomato calcium sensor Cbl10 and its interacting protein kinase Cipk6 define a signaling pathway in plant immunity[J].ThePlantCell, 2013, 25(7): 2 748-2 764.
[17]XIE C, ZHOU X, DENG X,etal. PKS5, a SNF1-related kinase, interacts with and phosphorylates NPR1, and modulates expression of WRKY38 and WRKY62[J].JournalofGeneticsandGenomics, 2010, 37(6): 359-369.
[18]KANG Z S, LI Z Q. Discovery of a normal T. type new pathogenic strain to Lovrin10[J].ActaCllegiiSeptentrionaliOccidentaliAgriculturae, 1984, 4(1): 18-28.
[19]LI C, LIN H, DUBCOVSKY J. Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley[J].ThePlantJournal, 2015, 84(1): 70-82.
[20]FENG H, WANG X, SUN Y,etal. Cloning and characterization of a calcium binding EF-hand protein geneTaCab1 from wheat and its expression in response toPucciniastriiformisf. sp.triticiand abiotic stresses[J].MolecularBiologyReports, 2011, 38(6): 3 857-3 866.
[21]THODAY-KENNEDY E L, JACOBS A K, ROY S J. The role of the CBL-CIPK calcium signaling network in regulating ion transport in response to abiotic stress[J].PlantGrowthRegulation, 2015, 76(1): 3-12.
[23]WANG C F, HUANG L L, BUCHENAUER H,etal. Histochemical studies on the accumulation of reactive oxygen species (O2-and H2O2) in the incompatible and compatible interaction of wheat-Pucciniastriiformisf. sp.tritici[J].PhysiologicalandMolecularPlantPathology, 2007, 71(4): 230-239.
[24]DENG X, HU W, WEI S,etal.TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco[J].PLoSONE, 2013, 8(7): e69881.
(編輯:宋亞珍)
文章編號(hào):1000-4025(2016)06-1073-07
doi:10.7606/j.issn.1000-4025.2016.06.1073
收稿日期:2016-04-27;修改稿收到日期:2016-05-23
基金項(xiàng)目:國(guó)家“973”計(jì)劃(2013CB127700);國(guó)家自然科學(xué)基金(31371889);教育部新世紀(jì)優(yōu)秀人才支持計(jì)劃(NCET-12-0471);高等學(xué)校學(xué)科創(chuàng)新引智計(jì)劃(B07049)
作者簡(jiǎn)介:MYO THWIN(1990-),男,碩士,主要從事植物免疫學(xué)研究。E-mail: myothwinpatho@gmail.com *通信作者:康振生,教授,博士生導(dǎo)師,主要從事小麥條銹病的防控研究。E-mail: kangzs@nwsuaf.edu.cn
中圖分類號(hào):Q785;Q786
文獻(xiàn)標(biāo)志碼:A
Characterization of a CBL-interacting Protein Kinase GeneTaCIPK16 in Wheat
MYO THWIN, LIU Peng, MA Wei, XUE Qinghe, GUO Jun, KANG Zhensheng*
(State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China)
Abstract:The calcineurin B-like (CBL)-CBL-interacting protein kinase (CIPK) network plays a pivotal role in regulating the physiological as well as developmental processes in plants. In this study, we obtained a CIPK gene, TaCIPK16, from the wheat leaves infected by Puccinia striiformis f. sp. tritici (Pst) using in silico cloning and RT-PCR. The full-length cDNA of TaCIPK16 was 1 606 bp, which encoding 433 amino acids. Multi-sequence alignment showed that TaCIPK16 share high similarity with OsCIPK16 and AtCIPK16 in rice and Arabidopsis, respectively. Analysis of the protein domain features indicated that TaCIPK16 contained conserved regulatory domain in C-terminal and protein kinases domain in N-terminal. Subcellular localization assays revealed that TaCIPK16 displayed a localization pattern similar to that of the GFP control, indicating a cytoplasmic and nuclear localization. Yeast two-hybrid assays showed that TaCIPK16 strongly interacts with TaCBL4 and TaCBL9, respectively. qRT-PCR assays indicated that TaCIPK16 was induced by Pst infection and differentially expressed during incompatible and compatible interactions between wheat and Pst. Our results suggest that TaCIPK16 has a positive role in regulating wheat resistance against Pst.
Key words:wheat; CBL; protein kinase; TaCIPK16; Puccinia striiformis f. sp. tritici