• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Goos–H¨anchen-like shift related to spin and valley polarization in ferromagnetic silicene?

    2021-10-28 07:14:54MeiRongLiu劉美榮ZhengFangLiu劉正方RuoLongZhang張若龍XianBoXiao肖賢波andQingPingWu伍清萍
    Chinese Physics B 2021年10期
    關鍵詞:正方

    Mei-Rong Liu(劉美榮) Zheng-Fang Liu(劉正方) Ruo-Long Zhang(張若龍)Xian-Bo Xiao(肖賢波) and Qing-Ping Wu(伍清萍)

    1Department of Applied Physics,East China Jiaotong University,Nanchang 330013,China

    2School of Computer Science,Jiangxi University of Traditional Chinese Medicine,Nanchang 330004,China

    Keywords: Goos–H¨anchen-like shift,silicene,polarization

    1. Introduction

    The Goos–H¨anchen (GH) shift was first discovered by Goos and H¨anchen in 1947.[1,2]This is an optical phenomenon, which means that when a very narrow beam is totally reflected, the reflection point and the incident point are not at the same position, and the reflected light has a very small lateral shift at the interface relative to geometric optics.The GH shift is widely used in integrated optics,near-field optics and optical devices. For example, optical switch based on GH shift,[3]solution concentration sensor[4]and temperature sensor.[5]In addition, quantum GH effect has been considered in electronics. For example, it has shown that the effect at a p–n interface in graphene is strongly dependent on the sublattice degree of freedom.[6]And it has been studied in graphene double barriers,[7]which provides feasibility for making valley splitter. Furthermore, the GH effect can be affected by the presence of a magnetic field in graphene triangular barrier.[8]This GH shift can be applied to spintronics to obtain spintronic devices.[9]Compared with traditional electronic devices,spintronic devices have the advantages of large information storage capacity, fast data processing speed, and low power consumption.[10]

    Combining semiconductor materials with the optical phenomenon[11,12]of GH shift, Chenet al.[13–15]extended it to partial reflection to obtain Goos–H¨anchen-like(GHL)shift,which is similar to but different from GH shift and has nothing to do with evanescent waves. Researchers studied GHL shift on various graphene-based nanostructures in single barrier,[16]and have proved that the GHL shift can be adjusted by changing the electrostatic potential and the induced gap. The GH shift in Weyl semi-metallic electrons is analogous to that in graphene.[17]It is also found that the GHL shift, as the function of the barrier’s width and incidence angle,can be negative and positive in the cases of Klein tunneling and classical motion. Studies in strained graphene[18–20]have shown that the GHL shift is the function of the strain tensor and direction. In a gated monolayer WS2,[21]the GHL shift of spin-polarized electrons extremely rely on the width of the gated region and can be positive or negative in both Klein tunneling and classical motion regimes.

    In addition, silicene is similar in structure and physical properties to graphene. However, there is a significant difference between silicene and graphene, the strong spin–orbit coupling (SOC), which results in a band gap in the energy spectrum of silicene.[22,23]It has demonstrated that for a normal/ferromagnetic/normal silicene junction, the GHL shift is negative and positive.[24,25]However, there are few further studies on simultaneous valley-and spin-polarized GHL shift in silicene. Recently, it is reported that the off-resonant circularly polarized light can open a band gap of the Dirac cone in silicene,[26–28]which can lead to the valley separation.[29]In this paper, we investigate the GHL shift of a single silicene barrier with the external perpendicular electric field,the exchange field and the off-resonant circularly polarized light.The GHL shift of spin-polarized can be achieved in silicene with off-resonant circularly polarized light or the exchange field. The addition of the external perpendicular electric field can make the GHL shift of the system have the characteristics of spin polarization and valley polarization at the same time.What’s more, the continuous exchange field can realize the transition between positive and negative GHL shifts.

    2. Model and formalism

    We place a ferromagnetic insulator on the bottom of the silicene to form a ferromagnetic silicene. The external perpendicular electric fieldλzand off-resonant circularly polarized lightλΩare applied to the ferromagnetic silicene area,as shown in Fig.1. The low-energy effective Hamiltonian of the ferromagnetic silicene region with the external perpendicular electric field and off-resonant circularly polarized light can be written as[28–31]

    Here,vF≈5.5×105m/s is the Fermi velocity,λso≈3.9 meV is the spin–orbit coupling in silicene,τx,y,zare the Pauli matrixs in sublattice pseudo-spin space,Mis the effective exchange field obtained by the magnetic neighboring effect of ferromagnetic insulators,λzis the external perpendicular electric field andλΩis the effective energy induced by the off-resonant circularly polarized light.

    Fig.1. Schematic diagram of the normal-ferromagnetic-normal silicene under the external perpendicular electric field λz and off-resonant circularly polarized light λΩ. The transport direction is along the x-axis.

    Upon diagonalization of the Hamiltonian,the energy dispersion can be calculated as following:

    3. Results and discussion

    Firstly,we calculate the GHL shift as a function ofqxdat the different external perpendicular electric field,off-resonant circularly polarized light or the exchange field. Herein,Sthas been rescaled byλF,whereλFis the Fermi wavelength of electrons,whiledis rescaled byqx?1.

    We discuss the GHL shift for silicene with different external perpendicular electric field strength (as seen in Figs. 2(a)and 2(b)). The shifts of spin-up electrons atKvalley(K↑)are the same as that for spin-down electrons atK′valley (K′↓),and the shifts of spin-down electrons atKvalley(K↓)are also the same as that for spin-up electrons atK′valley (K′↑). Asλz= 25 meV (as shown in Fig. 2(b)), the shifts of spin-up(spin-down)electrons atK(K′)valley are high,while the shifts of spin-down(spin-up)electrons atK(K′)valley vanish. The maximum value of the GHL shift corresponds to the resonance conditionsqxd=kπ(k=0,1,2,3,...),which is given as

    For sake of clearness, the inset of Fig. 2(b) further displays the magnitude ofSt-peak versus external perpendicular electric field atqxd=3π, where the GHL shift demonstrates obvious jump. For example,the shift values of spin-up(spindown)electrons atK(K′)valley suddenly change from a large positive shift to zero whenλz ≈21 meV,while the shift values of spin-down (spin-up) electrons atK(K′) valley emerge the same adjustment atλz ≈29 meV.

    Fig.2. GHL shift for the transmitted beam as a function of barrier width d with parameters E =50 meV,λso =3.9 meV,and θ =π/3. (a)λz =20 meV, (b)λz =25 meV. (d)λΩ =20 meV, (e)λΩ =25 meV. (g) M=6 meV, (h)M=100 meV. Panels(c), (f)and (i) are electronic band structures for spins and valleys corresponding to(a),(d)and(g),respectively.

    Under the modulation of the off-resonant circularly polarized light (as seen in Figs. 2(d) and 2(e)), the values of CHL shift have no difference, which is similar to that of Figs. 2(a) and 2(b). However, the shifts of the spin-up electrons are identical, and the spin-down of that are also identical. AsλΩ= 25 meV (as shown in Fig. 2(e)), the shifts of spin-up electrons become higher, while the shifts of spindown electrons vanish. In the inset of Fig.2(e),the values of all shifts increase first, then rapidly decrease to zero. However,the position where the shift of the spin-up electrons and the spin-down electrons vary to zero is different. We can find that the shift of spin-up electrons exhibits a mutation atλΩ ≈21 meV, and comparably, the shift of spin-down electrons is atλΩ ≈29 meV.

    The electrons shifts are also spin-dependent with only adjusting the exchange field (as shown in Figs. 2(g) and 2(h)).But the difference is that the fluctuation in shifts of spin-down electrons is very weak. WhenM=6 meV,the shifts of spinup electrons are positive.While,for the case ofM=100 meV,the shifts of spin-up electrons are negative. To show this reversal more clearly, we plotSt-peak atqxd=3πin the inset of Fig. 2(h). With the value of the exchange fieldMincreasing from 0 meV to 6.65 meV, the shift value of spin-up electrons gradually increases to positive peak value, then it abruptly reduced to zero. WhenMsurpasses to the critical value 93.34 meV, the shift value suddenly changes from 0 to negative peak value. Then it increases to zero gradually with the further increasing exchange fieldM. Such a changed shift is closely related to the longitudinal wave-vector which is determined by the exchange fieldM.

    In order to explore the effect of combined modulation,the calculated results for GHL shift are shown in Fig.3. The relationship between the GHL shift and incident energy is discussed when both off-resonant circularly polarized light and the exchange field are considered (as seen in Fig. 3(a)). The electrons shifts separate two spin-dependent beams for a specific valley. A strong contrast in amplitude can be observed for spins orientation. Specifically,at the same valley,the shift value of the spin-up electrons is about six times that of the spin-down electrons. These maximum values correspond to the transmission resonances and demonstrate the spin splitting of charge carriers in silicene, which means that the shift can be generated and controlled by the exchange field and offresonant circularly polarized light. The equation of propagation mode is given as

    Only considering off-resonant circularly polarized light and the exchange field in this structure,we can obtain that the values of shift are 0 whenE1,1=E?1,1< 101.4145 meV andE1,?1=E?1,?1<247.0904 meV. Then, with increasing exchange fieldM, it reaches the maximum, and finally decay.The band gap forK↑(K↓)is also the same as that ofK′↑(K′↓)(as seen in Fig.3(a)).So,the GHL shift with both off-resonant circularly polarized light and the exchange field is only spindependent.

    The GHL shift is spin-polarized when only the exchange field is modulated. By further involving a nonzero external perpendicular electric fieldλz, we can find that the shifts of different valleys can be distinguished weakly (as seen in Fig.3(b)). Spin-up and spin-down states are mixed at the energy band intersection and spin degeneracy is broken. Similarly, from Eq.(15), the maximum shifts ofK↑,K′↑,K↓andK′↓occur at 156.1 meV,163.9 meV,3.9 meV and?3.9 meV,respectively. Thus, the GHL shift under the external perpendicular electric field combined with exchange field is partial spin-and valley-polarized.

    The GHL shifts with the external perpendicular electric field and the off-resonant circularly polarized light comodulated are plotted in Fig. 3(c). From Eq. (15), we can obtain that the four spectras change from zero to the maximum atE?1,1= 111.9965 meV,E?1,?1= 127.6214 meV,E1,1= 192.0813 meV andE1,?1= 207.6902 meV, respectively,then oscillation decay.Moreover,the shift value of electrons fromK′valley is a quarter ofKvalley,which can be perfectly reflected in Fig.3(c). The band gap of spins and valleys are both broader,and the gaps with different spins and valleys do not coincident. Since the both spin-and valley-dependent beams can be well separated under the external perpendicular electric field and off-resonant circularly polarized light modulations,the GHL shift is spin and valley polarization.

    Considering all three external modulations, the polarization is more pronounced (as seen in Fig. 3(d)).The spin and valley are separate completely, which features that fourSt-peaks appear inE?1,?1= 65.2144 meV,E1,?1=138.9411 meV,E?1,1=211.6936 meV andE1,1=284.1940 meV, respectively. These conclusions can also be proved from Eq.(15). More interestingly, the values of GHL shifts atK′↓,K↓,K′↑, andK↑increase in turn. Based on Eq. (2), one can find that the valley and spin degenerate are lifted and different gaps are induced at different spins and valleys (as seen in Fig. 3(d)). Therefore, both spin and valley polarization are striking in this case.Since the above researches were conducted under the fixed value of the field strength, we further explore the influence of the continuous off-resonant circularly polarized light,the external perpendicular electric field or the exchange field on the GHL shift,respectively.Figure 4(a)displays the shift as a function of the circularly polarized light modulation. As we can see, the shift of spin-down electrons occur, but the electrons shift of spin-up electrons is negligible. The formula of the critical point can be derived from Eq.(15)as

    The shift of spin-down electrons increases oscillatingly,and then alters to zero abruptly. However, the shift values of spin-up electrons are negligible. The shift values of spindown electrons atKandK′become maximum at the position ofλΩ=31.2036 meV andλΩ=71.2036 meV, respectively,which can be derived from Eq.(17).

    Fig. 3. GHL shift as a function of incident energy E with λso =3.9 meV, θ =π/3, and d =40 nm. (a) λΩ =80 meV, M =20 meV and λz=0 meV. (b)λΩ =0 meV,M=20 meV and λz=20 meV. (c)λΩ =80 meV,M=0 meV and λz=20 meV. (d)λΩ =80 meV,M=20 meV and λz=20 meV.

    The effect of the external perpendicular electric field on the GHL shift in Fig.4(b)is similar to that of off-resonant circularly polarized light modulation in Fig. 4(a). However, the values of the electrons shift for the same valley are different.In the case,with the external perpendicular electric fieldλzincreasing to 55.0709 meV and 102.8709 meV, from Eq. (17),the shifts ofK′↓andK↓increase gradually to maximum.

    While under a continuous range of the exchange field modulation, in Fig. 4(c), all spin up-related peaks are displayed as a negative value, and spin down-related peaks are displayed as positive values. For valleys with the same spin direction, a strong amplitude contrast can be observed.The GHL shifts ofK′↓,K ↓,K′↑, andK ↑convert from zero to maximum in turn, and then the oscillation decrease.WhenM=11.5695 meV, 44.3547 meV, 106.2744 meV and 137.4917 meV, the values of GHL shift reach maximum,which can be derived from Eq. (17). Therefore, the filtering function can be modified by adjusting the values of the three fields.

    From Eq. (16), we can find that the incident angle can also affect the GHL shifts of the electrons. The GHL shifts with different incident angles are demonstrated in Fig. 5. Indeed,it is shown that valley and spin are always polarization,and the GHL shift is closely related to the incident angle. In Fig.5(a),for the incident angleθ=π/18,the maximum shift ofK′valley is always smaller than that ofKvalley. Increasing the incident angle to 4π/18 (see Fig. 5(b)), the magnitude of the shift value is six times that of the original value in Fig.5(a).By further comparing with the corresponding results forθ=8π/18 in Fig.5(c),the spin up-related peaks become larger than the spin down-related peaks. We can regulate the GHL shift to higher values by increasing incident angle,which can be a good way to make valley correlation filters.4

    Fig.4. (a)GHL shift as a function of off-resonant circularly polarized light λΩ with M=20 meV,and λz=20 meV. (b)GHL shift as a function of the external perpendicular electric field λz with M =40 meV, and λΩ =20 meV. (c) GHL shift as a function of the exchange field M with λΩ =60 meV,and λz=20 meV. Other parameters are λso=3.9 meV,θ =π/3,E=50 meV,and d=40 nm.

    Fig.5. GHL shift for the transmitted beam as a function of incident energy E with λso=3.9 meV,M=20 meV,λΩ =80 meV,λz=20 meV,and d=40 nm. (a)θ =π/18. (b)θ =4π/18. (c)θ =8π/18. The regime for 0

    4. Conclusion

    In summary, the Goos–H¨anchen-like shift for single silicene with off-resonant circularly polarized light, exchange field and the external perpendicular electric field has been studied.It was found that the GHL shift of silicene with an external perpendicular electric field cannot distinguish valleys or spins. Only with the exchange field or the off-resonant circularly polarized modulation,the GHL shift was spin-dependent.Particularly,not only under the external perpendicular electric field and off-resonant circularly polarized light modulations but also under the exchange field and the external perpendicular electric field modulations,the GHL shift is both spin-and valley-polarized. Furthermore, by controlling the strength of these three fields appropriately,the spin-and valley-polarized of the shift is more noticeable. The magnitude of the shift can also be changed by adjusting the incident angle. We hope our findings can be helpful for the electrical control of spin and valley filtering and the application of quantum information.

    猜你喜歡
    正方
    有力的反駁
    基于機器視覺的千粒質(zhì)量測量儀的設計與試驗
    人日
    源流(2020年3期)2020-07-14 05:38:15
    尋找缺失的一角
    我的機器人在哪里
    辯論會的啟發(fā)
    快樂語文(2019年10期)2019-11-28 00:23:03
    回憶辯論賽
    回憶辯論賽
    減肥秘方
    可折疊3D魔方
    黄片无遮挡物在线观看| 在线免费观看不下载黄p国产| 精品人妻一区二区三区麻豆| 国产一区二区三区综合在线观看 | 久久ye,这里只有精品| 久久国内精品自在自线图片| av在线app专区| 成人高潮视频无遮挡免费网站| 大话2 男鬼变身卡| 国产精品秋霞免费鲁丝片| 噜噜噜噜噜久久久久久91| 婷婷色综合www| 九九爱精品视频在线观看| 日日摸夜夜添夜夜添av毛片| 欧美xxⅹ黑人| 中文精品一卡2卡3卡4更新| 毛片一级片免费看久久久久| 久久久久久久国产电影| 久久鲁丝午夜福利片| 2022亚洲国产成人精品| 狂野欧美激情性xxxx在线观看| 在线 av 中文字幕| 伊人久久国产一区二区| 成人亚洲欧美一区二区av| 婷婷色综合大香蕉| 日本av手机在线免费观看| 少妇熟女欧美另类| 人人妻人人看人人澡| 国产精品一区二区性色av| 最近最新中文字幕免费大全7| 女人十人毛片免费观看3o分钟| 色视频www国产| 赤兔流量卡办理| 1000部很黄的大片| 国产成人精品婷婷| 麻豆成人午夜福利视频| 国产免费又黄又爽又色| 边亲边吃奶的免费视频| 精品久久久久久久久av| 丝袜脚勾引网站| 在线观看一区二区三区激情| 两个人的视频大全免费| 777米奇影视久久| 一级毛片我不卡| 亚洲精品乱码久久久v下载方式| 日本黄色日本黄色录像| 亚洲成人中文字幕在线播放| 久久97久久精品| 亚洲av综合色区一区| 日韩在线高清观看一区二区三区| 在线观看免费日韩欧美大片 | 日韩不卡一区二区三区视频在线| 午夜福利视频精品| 精品人妻一区二区三区麻豆| 国产精品久久久久久久电影| 日韩三级伦理在线观看| 久久久久精品性色| 久久久欧美国产精品| av网站免费在线观看视频| 精品午夜福利在线看| 午夜老司机福利剧场| 99久久人妻综合| h日本视频在线播放| 男女下面进入的视频免费午夜| 一级二级三级毛片免费看| 麻豆乱淫一区二区| 国产精品人妻久久久久久| 国产色婷婷99| 最近中文字幕2019免费版| 亚洲av中文av极速乱| 日本vs欧美在线观看视频 | 日本av手机在线免费观看| av不卡在线播放| 狂野欧美激情性bbbbbb| 麻豆乱淫一区二区| 国产久久久一区二区三区| 国产成人a区在线观看| 在线观看免费视频网站a站| 久久久欧美国产精品| 不卡视频在线观看欧美| 人体艺术视频欧美日本| 91久久精品电影网| 成人毛片60女人毛片免费| 日产精品乱码卡一卡2卡三| 视频区图区小说| 多毛熟女@视频| 在线观看美女被高潮喷水网站| 国语对白做爰xxxⅹ性视频网站| 国产精品伦人一区二区| 国产精品一区二区在线观看99| 免费播放大片免费观看视频在线观看| 精品少妇久久久久久888优播| 亚洲成人一二三区av| 久久精品国产亚洲av涩爱| 中文欧美无线码| 午夜激情久久久久久久| 国产精品一区www在线观看| 久久婷婷青草| av天堂中文字幕网| 亚洲精品乱久久久久久| 欧美精品亚洲一区二区| 欧美高清成人免费视频www| 汤姆久久久久久久影院中文字幕| 亚洲国产精品一区三区| 中文字幕免费在线视频6| 精品酒店卫生间| 成人国产麻豆网| 美女内射精品一级片tv| 中文在线观看免费www的网站| 国产av精品麻豆| 日韩中文字幕视频在线看片 | 亚洲av日韩在线播放| 久久人人爽人人爽人人片va| 99热全是精品| 三级经典国产精品| 中文在线观看免费www的网站| 精品国产露脸久久av麻豆| av免费在线看不卡| 最近的中文字幕免费完整| 熟女av电影| 国产真实伦视频高清在线观看| 嫩草影院新地址| 纯流量卡能插随身wifi吗| h日本视频在线播放| av免费在线看不卡| 在线 av 中文字幕| 一个人看视频在线观看www免费| 国产精品国产三级专区第一集| 国产精品欧美亚洲77777| 韩国av在线不卡| 国产伦在线观看视频一区| 国产精品福利在线免费观看| 男男h啪啪无遮挡| 国产乱人偷精品视频| 人体艺术视频欧美日本| av免费在线看不卡| 在线免费十八禁| 成人午夜精彩视频在线观看| 成人亚洲欧美一区二区av| 九九在线视频观看精品| 九九爱精品视频在线观看| 国产精品不卡视频一区二区| 我要看黄色一级片免费的| 亚洲精品色激情综合| 亚洲aⅴ乱码一区二区在线播放| 三级国产精品片| 国产色婷婷99| 在线天堂最新版资源| 中文欧美无线码| 久久99热这里只有精品18| a级毛片免费高清观看在线播放| 啦啦啦中文免费视频观看日本| 女性被躁到高潮视频| 国产精品久久久久久久久免| 久久久精品免费免费高清| 日韩国内少妇激情av| 纵有疾风起免费观看全集完整版| 国产乱人视频| 黑人高潮一二区| 免费观看无遮挡的男女| 水蜜桃什么品种好| 少妇精品久久久久久久| 日韩成人伦理影院| 午夜福利网站1000一区二区三区| av免费观看日本| 国产免费一区二区三区四区乱码| 午夜免费男女啪啪视频观看| 菩萨蛮人人尽说江南好唐韦庄| 五月天丁香电影| 尾随美女入室| 精品国产三级普通话版| 少妇熟女欧美另类| 国产精品久久久久久久电影| 黄色怎么调成土黄色| av线在线观看网站| 日日啪夜夜撸| 插阴视频在线观看视频| 亚洲,欧美,日韩| 日韩制服骚丝袜av| 三级国产精品片| 黄色日韩在线| 日韩不卡一区二区三区视频在线| 一级二级三级毛片免费看| 人妻少妇偷人精品九色| 国产一区有黄有色的免费视频| 亚洲精华国产精华液的使用体验| 国产伦精品一区二区三区四那| 国产久久久一区二区三区| 女的被弄到高潮叫床怎么办| 久久精品国产亚洲网站| 水蜜桃什么品种好| 国产精品99久久99久久久不卡 | 看十八女毛片水多多多| 久久精品人妻少妇| 国产一区亚洲一区在线观看| 国产精品久久久久成人av| 男人狂女人下面高潮的视频| 国产精品国产av在线观看| 亚洲电影在线观看av| 日本与韩国留学比较| 国产男女内射视频| 国产 精品1| 国产乱人偷精品视频| 亚洲国产日韩一区二区| 国产真实伦视频高清在线观看| 一级a做视频免费观看| 王馨瑶露胸无遮挡在线观看| 女的被弄到高潮叫床怎么办| 黄色一级大片看看| 欧美日韩精品成人综合77777| 激情五月婷婷亚洲| 美女视频免费永久观看网站| 最近中文字幕2019免费版| 久久久国产一区二区| 男人狂女人下面高潮的视频| 成人毛片a级毛片在线播放| 噜噜噜噜噜久久久久久91| 内地一区二区视频在线| 日产精品乱码卡一卡2卡三| 亚洲高清免费不卡视频| 国产伦理片在线播放av一区| 亚洲自偷自拍三级| 高清毛片免费看| 欧美精品人与动牲交sv欧美| 黄色怎么调成土黄色| 亚洲国产毛片av蜜桃av| 日韩伦理黄色片| 中文乱码字字幕精品一区二区三区| 亚洲性久久影院| 亚洲av男天堂| 日本黄色片子视频| 美女脱内裤让男人舔精品视频| 精品一区在线观看国产| 国产日韩欧美在线精品| 成人国产麻豆网| 国产成人aa在线观看| 少妇高潮的动态图| 丰满迷人的少妇在线观看| 国产大屁股一区二区在线视频| 国产精品国产三级专区第一集| videossex国产| 小蜜桃在线观看免费完整版高清| 最近最新中文字幕免费大全7| 国产精品一二三区在线看| 国产熟女欧美一区二区| 嫩草影院新地址| 大又大粗又爽又黄少妇毛片口| 日本色播在线视频| 99热6这里只有精品| 精品国产一区二区三区久久久樱花 | 美女国产视频在线观看| 美女视频免费永久观看网站| 亚洲av中文av极速乱| 一级毛片我不卡| 欧美人与善性xxx| av又黄又爽大尺度在线免费看| 亚洲精品中文字幕在线视频 | 国产极品天堂在线| 女性被躁到高潮视频| 大香蕉久久网| 久久综合国产亚洲精品| 99久久精品一区二区三区| 久久精品久久久久久噜噜老黄| 精品人妻熟女av久视频| 99精国产麻豆久久婷婷| 一区二区三区四区激情视频| 欧美日本视频| 亚洲国产欧美人成| 夜夜爽夜夜爽视频| 国产精品一及| 99久久人妻综合| 在线观看免费日韩欧美大片 | 久久 成人 亚洲| 久热这里只有精品99| 一区在线观看完整版| 下体分泌物呈黄色| 亚洲第一区二区三区不卡| 国产黄片视频在线免费观看| 国产又色又爽无遮挡免| 国产亚洲欧美精品永久| 国产久久久一区二区三区| 日产精品乱码卡一卡2卡三| 国产亚洲精品久久久com| 岛国毛片在线播放| 在线观看国产h片| 伊人久久国产一区二区| 又大又黄又爽视频免费| 婷婷色av中文字幕| 久久久午夜欧美精品| 日本一二三区视频观看| av天堂中文字幕网| 国产免费视频播放在线视频| 十八禁网站网址无遮挡 | 一级毛片久久久久久久久女| 赤兔流量卡办理| 亚州av有码| 免费黄网站久久成人精品| 2022亚洲国产成人精品| 狂野欧美激情性bbbbbb| 国产女主播在线喷水免费视频网站| 免费观看性生交大片5| av视频免费观看在线观看| 丰满人妻一区二区三区视频av| 国产一级毛片在线| 亚洲欧美精品专区久久| 久久久久网色| 全区人妻精品视频| videossex国产| 国产成人freesex在线| a级毛片免费高清观看在线播放| 国产高清三级在线| 十分钟在线观看高清视频www | 国产大屁股一区二区在线视频| av国产免费在线观看| 亚洲精品第二区| 亚洲美女视频黄频| 水蜜桃什么品种好| 欧美精品人与动牲交sv欧美| 男人和女人高潮做爰伦理| 亚洲色图av天堂| 国产精品女同一区二区软件| 久久久欧美国产精品| 在线观看三级黄色| 丝袜喷水一区| 日韩大片免费观看网站| 精品人妻一区二区三区麻豆| 久久久成人免费电影| 国产v大片淫在线免费观看| 亚洲精品久久久久久婷婷小说| 国产精品熟女久久久久浪| 老司机影院毛片| 黄色怎么调成土黄色| 国产成人午夜福利电影在线观看| 啦啦啦在线观看免费高清www| 女的被弄到高潮叫床怎么办| 美女主播在线视频| 蜜桃亚洲精品一区二区三区| 国产真实伦视频高清在线观看| 99热6这里只有精品| 在线看a的网站| 午夜老司机福利剧场| 五月开心婷婷网| 观看美女的网站| 欧美高清成人免费视频www| 少妇的逼好多水| 一级爰片在线观看| 日韩中文字幕视频在线看片 | 国产亚洲午夜精品一区二区久久| 男女无遮挡免费网站观看| 亚洲一级一片aⅴ在线观看| 欧美成人午夜免费资源| 草草在线视频免费看| 极品教师在线视频| 成人黄色视频免费在线看| a级毛色黄片| 亚洲精品日韩在线中文字幕| 最后的刺客免费高清国语| 亚洲经典国产精华液单| 99久久综合免费| 色综合色国产| 国产成人a∨麻豆精品| 欧美激情极品国产一区二区三区 | 岛国毛片在线播放| 午夜福利视频精品| .国产精品久久| 午夜福利视频精品| 老司机影院毛片| 欧美成人a在线观看| 久久鲁丝午夜福利片| 日本av手机在线免费观看| 午夜免费男女啪啪视频观看| 在线观看国产h片| 国产色爽女视频免费观看| 日韩制服骚丝袜av| 乱码一卡2卡4卡精品| 国产精品av视频在线免费观看| 中文字幕免费在线视频6| 欧美日韩精品成人综合77777| 国产精品伦人一区二区| 3wmmmm亚洲av在线观看| 九九爱精品视频在线观看| 久久精品久久久久久噜噜老黄| 国产精品蜜桃在线观看| 欧美亚洲 丝袜 人妻 在线| 免费黄色在线免费观看| 亚洲电影在线观看av| 午夜福利影视在线免费观看| 亚洲欧美一区二区三区黑人 | 18禁动态无遮挡网站| 日本午夜av视频| 国产一级毛片在线| 免费播放大片免费观看视频在线观看| 亚洲av在线观看美女高潮| 日韩制服骚丝袜av| 国产色爽女视频免费观看| 日韩大片免费观看网站| 成人综合一区亚洲| 免费av中文字幕在线| 亚洲av中文字字幕乱码综合| 男女国产视频网站| 91狼人影院| 视频中文字幕在线观看| 九草在线视频观看| 亚洲高清免费不卡视频| 肉色欧美久久久久久久蜜桃| 亚洲精品日本国产第一区| 日韩欧美 国产精品| 国产亚洲精品久久久com| 亚洲第一区二区三区不卡| 大香蕉97超碰在线| 波野结衣二区三区在线| 亚洲欧美清纯卡通| 在线天堂最新版资源| 99久久精品国产国产毛片| 你懂的网址亚洲精品在线观看| 国产在视频线精品| 高清黄色对白视频在线免费看 | h视频一区二区三区| 欧美国产精品一级二级三级 | 日韩av不卡免费在线播放| 欧美xxxx性猛交bbbb| 久久久午夜欧美精品| 国产亚洲一区二区精品| 婷婷色综合大香蕉| 又爽又黄a免费视频| 99久久中文字幕三级久久日本| 一个人免费看片子| 精品久久久久久久久av| 日日摸夜夜添夜夜添av毛片| 国产av国产精品国产| 五月开心婷婷网| 欧美xxxx黑人xx丫x性爽| 国产av码专区亚洲av| 国产精品熟女久久久久浪| 91久久精品电影网| 国产亚洲一区二区精品| 又大又黄又爽视频免费| 一个人免费看片子| 夫妻午夜视频| 高清视频免费观看一区二区| 午夜福利视频精品| 中文字幕制服av| 亚洲av成人精品一二三区| 直男gayav资源| 成人国产av品久久久| 欧美zozozo另类| .国产精品久久| 亚洲,一卡二卡三卡| av福利片在线观看| 国产片特级美女逼逼视频| 日韩av不卡免费在线播放| 乱系列少妇在线播放| 免费高清在线观看视频在线观看| 国产精品久久久久久久久免| 亚洲综合色惰| 国产欧美日韩精品一区二区| 国产综合精华液| 性高湖久久久久久久久免费观看| 免费观看的影片在线观看| 高清黄色对白视频在线免费看 | 久久久欧美国产精品| 午夜免费鲁丝| 免费av不卡在线播放| 日本欧美国产在线视频| 午夜日本视频在线| 99久国产av精品国产电影| 久久久久久九九精品二区国产| 简卡轻食公司| 亚洲美女黄色视频免费看| 在线亚洲精品国产二区图片欧美 | 国产午夜精品久久久久久一区二区三区| 女的被弄到高潮叫床怎么办| 亚洲一级一片aⅴ在线观看| 午夜免费观看性视频| 偷拍熟女少妇极品色| 国产在线免费精品| 99久国产av精品国产电影| 亚洲一区二区三区欧美精品| 欧美成人精品欧美一级黄| 99热网站在线观看| 在线观看免费视频网站a站| 美女xxoo啪啪120秒动态图| 黄色一级大片看看| 日本欧美国产在线视频| 免费人妻精品一区二区三区视频| 亚洲不卡免费看| 国产精品人妻久久久影院| 少妇的逼水好多| 色视频在线一区二区三区| 夫妻性生交免费视频一级片| 国产精品一区www在线观看| 黄片无遮挡物在线观看| 97在线人人人人妻| 国产精品欧美亚洲77777| 久久精品国产亚洲av涩爱| 亚洲国产最新在线播放| 精品人妻偷拍中文字幕| 如何舔出高潮| 亚洲一级一片aⅴ在线观看| 少妇的逼水好多| 久久6这里有精品| 久久人妻熟女aⅴ| 韩国av在线不卡| 亚洲欧洲国产日韩| 大又大粗又爽又黄少妇毛片口| 18禁在线播放成人免费| 成人免费观看视频高清| 日韩亚洲欧美综合| 自拍偷自拍亚洲精品老妇| 亚洲图色成人| 97在线视频观看| 日本黄色日本黄色录像| 99久国产av精品国产电影| 国产极品天堂在线| 久久精品国产鲁丝片午夜精品| 精品午夜福利在线看| 欧美日本视频| 午夜老司机福利剧场| 亚洲激情五月婷婷啪啪| 日韩一区二区三区影片| av播播在线观看一区| 欧美丝袜亚洲另类| 国产精品无大码| 男人狂女人下面高潮的视频| 美女主播在线视频| 99热这里只有精品一区| 国产精品av视频在线免费观看| 久久精品国产亚洲av天美| 亚洲av成人精品一二三区| 熟妇人妻不卡中文字幕| 99久久精品热视频| 中文在线观看免费www的网站| 午夜日本视频在线| 亚洲综合精品二区| 久久毛片免费看一区二区三区| 99热国产这里只有精品6| av一本久久久久| 中文在线观看免费www的网站| 久久国产乱子免费精品| 国语对白做爰xxxⅹ性视频网站| 亚洲无线观看免费| 一本—道久久a久久精品蜜桃钙片| 亚洲va在线va天堂va国产| 国产精品国产av在线观看| 久久97久久精品| 久久ye,这里只有精品| av黄色大香蕉| 日本色播在线视频| 纯流量卡能插随身wifi吗| 亚洲国产av新网站| 极品少妇高潮喷水抽搐| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美在线精品| 又粗又硬又长又爽又黄的视频| 精品视频人人做人人爽| 久久久精品94久久精品| 欧美高清成人免费视频www| 美女xxoo啪啪120秒动态图| 免费看光身美女| 亚洲成人手机| 国产有黄有色有爽视频| 午夜老司机福利剧场| 交换朋友夫妻互换小说| 少妇熟女欧美另类| 黄片wwwwww| 观看免费一级毛片| 又粗又硬又长又爽又黄的视频| 秋霞伦理黄片| 综合色丁香网| 女性生殖器流出的白浆| 亚洲四区av| 这个男人来自地球电影免费观看 | 国产精品久久久久久精品古装| av免费观看日本| 亚洲精品一区蜜桃| 久久久国产一区二区| 精品一品国产午夜福利视频| 精品一区在线观看国产| 亚洲在久久综合| 王馨瑶露胸无遮挡在线观看| 午夜福利网站1000一区二区三区| 国产片特级美女逼逼视频| 中文字幕av成人在线电影| 久久人人爽人人片av| 22中文网久久字幕| 青春草国产在线视频| 最黄视频免费看| 最近最新中文字幕大全电影3| 男女边吃奶边做爰视频| 欧美激情国产日韩精品一区| 在线观看免费高清a一片| 伦理电影大哥的女人| 春色校园在线视频观看| 久久精品人妻少妇| 91精品国产九色| 最近最新中文字幕免费大全7| 成人一区二区视频在线观看| 18禁在线播放成人免费| .国产精品久久| 下体分泌物呈黄色| 只有这里有精品99| 国产爽快片一区二区三区| 少妇人妻一区二区三区视频| 亚洲av在线观看美女高潮| 97超视频在线观看视频| 国产淫语在线视频| 久久久精品94久久精品| 久久精品国产亚洲av涩爱| 六月丁香七月| 欧美xxⅹ黑人| 久久精品夜色国产| 久久国产乱子免费精品| 久久精品国产鲁丝片午夜精品| 一级毛片 在线播放| 日本欧美视频一区|