劉慧巍
(渤海大學(xué) 工學(xué)院,遼寧 錦州 121013)
?
執(zhí)行器部分失效的時(shí)滯系統(tǒng)穩(wěn)定性分析
劉慧巍
(渤海大學(xué) 工學(xué)院,遼寧 錦州 121013)
摘要:針對(duì)時(shí)滯系統(tǒng)給出了一種控制器設(shè)計(jì)方法,使系統(tǒng)在執(zhí)行器發(fā)生部分失效時(shí),仍然能使系統(tǒng)狀態(tài)指數(shù)穩(wěn)定.針對(duì)執(zhí)行器部分失效和正常執(zhí)行兩種情況,本文把時(shí)滯系統(tǒng)轉(zhuǎn)化為切換系統(tǒng),應(yīng)用平均駐留時(shí)間及多Lyapunov函數(shù)方法,給出系統(tǒng)狀態(tài)指數(shù)穩(wěn)定的線性矩陣不等式形式條件.
關(guān)鍵詞:時(shí)滯系統(tǒng);平均駐留時(shí)間;切換系統(tǒng);多Lyapunov函數(shù)
0引言
在大多數(shù)實(shí)際工程應(yīng)用中,控制系統(tǒng)運(yùn)行的可靠性是最關(guān)鍵的因素,往往受到最多關(guān)注,如果控制系統(tǒng)中的元器件(如執(zhí)行器)出現(xiàn)故障,可能會(huì)使受控對(duì)象性能變差甚至運(yùn)行不穩(wěn)定、執(zhí)行器失效〔1〕.近年來,針對(duì)執(zhí)行器失效的研究逐漸成為熱點(diǎn)〔2-5〕,學(xué)者及研究機(jī)構(gòu)對(duì)其重視程度越來越高,尤其在衛(wèi)星姿態(tài)控制〔6〕、水下機(jī)器人〔7〕等遠(yuǎn)距離、不可視、受控對(duì)象運(yùn)行環(huán)境惡劣等條件下,執(zhí)行器失效問題尤為突出.針對(duì)一類網(wǎng)絡(luò)化控制系統(tǒng)可能存在的執(zhí)行器失效,文獻(xiàn)〔4〕利用Lyapunov-Krasovskii泛函方法,給出了控制器設(shè)計(jì)并給出了矩陣不等式條件形式的系統(tǒng)漸進(jìn)穩(wěn)定判定定理.對(duì)于時(shí)變執(zhí)行器和傳感器發(fā)生故障時(shí),文獻(xiàn)〔8〕將一類線性系統(tǒng)將問題轉(zhuǎn)化為增益優(yōu)化問題,文中設(shè)計(jì)的控制策略使時(shí)變執(zhí)行器和傳感器故障失效給系統(tǒng)造成的影響大幅降低.文獻(xiàn)〔9〕針對(duì)一類不確定隨機(jī)切換非線性系統(tǒng),研究了系統(tǒng)的魯棒可靠性控制問題,在執(zhí)行器失效情況下,應(yīng)用駐留時(shí)間方法,給出能可靠控制的控制器設(shè)計(jì),保證了系統(tǒng)在隨機(jī)切換時(shí)幾乎必然指數(shù)穩(wěn)定.本文運(yùn)用平均駐留時(shí)間方法,研究了一類線性時(shí)滯系統(tǒng)在執(zhí)行器失效情況下的系統(tǒng)穩(wěn)定性問題.
1問題描述及預(yù)備知識(shí)
考慮如下線性系統(tǒng)
(1)
其中x(t)∈Rn為系統(tǒng)狀態(tài)向量,A,E,B為具有適當(dāng)維數(shù)的已知常數(shù)矩陣,h為系統(tǒng)時(shí)滯常數(shù),u(t)為系統(tǒng)輸入向量,φ(θ)為已知連續(xù)函數(shù).
我們將系統(tǒng)執(zhí)行器正常執(zhí)行和執(zhí)行器部分失效兩種情況系統(tǒng)模型分別表示為如下形式:
(2)
由(2)式,將系統(tǒng)(1)轉(zhuǎn)化為如下切換系統(tǒng)形式:
(3)
uσ(t)(t)=Kσ(t)(t)x(t)
(4)
Kσ(t)為控制器增益.
定義1平衡點(diǎn)x*=0稱為系統(tǒng)(1)在切換信號(hào)σ(t)下是指數(shù)穩(wěn)定的,如果對(duì)初始條件t0∈0∪R+,φ(t)∈Cn,存在常數(shù)Γ>0,γ>0,使得系統(tǒng)(1)的解x(t,t0,φ(t))滿足
‖x(t0,t,φ(t)‖≤?!瑇(t0)‖e-γ(t-t0)
2主要結(jié)果
考慮系統(tǒng)(3)中σ(t)=1時(shí)的情況,備選Lyapunov函數(shù)選擇如下形式:
(5)
引理1對(duì)于任意給定的常數(shù)h>0和λ0,如果存在正定矩陣P1,Q1,使下面線性矩陣不等式成立:
(6)
則有V(x(t)) 證明此時(shí)將系統(tǒng)(3)控制器選為u(t)=K1x(t),K1=-BTP,則沿系統(tǒng)(3)的軌跡,V(x(t))對(duì)時(shí)間的求導(dǎo),可得 =xT(t)(ATP1+P1A+Q1-2P1BBTP1)x(t)+xT(t-h)ETP1x(t)+xT(t)P1Ex(t-h)- xT(t-h)ETP1x(t)+xT(t)P1Ex(t-h)-e-2λ0hxT(t-h)Q1x(t-h) 下面考慮系統(tǒng)(3)中σ(t)=2時(shí)的情況,備選Lyapunov函數(shù)如下式所示: (7) 引理2對(duì)于任意給定的常數(shù)h>0和λ0>0,如果存在正定矩陣P2,Q2,使得下面的線性矩陣不等式成立: (8) xT(t-h)ETP2x(t)+xT(t)P2Ex(t-h)-e-2λ0hxT(t-h)Q2x(t-h) 現(xiàn)考慮時(shí)滯切換系統(tǒng)(3),基于已得結(jié)果引理1及引理2,下面給出本文的主要結(jié)果. 定理1對(duì)于任意給定的常數(shù)h>0和λ0>0,如果存在正定矩陣Pi,Qi(i=1,2),使得(6)式和(8)式成立,且滿足條件(S1)和(S2),則系統(tǒng)(3)是指數(shù)穩(wěn)定的,且狀態(tài)估計(jì)滿足 (9) 其中 (10) λ(P)表示矩陣P 的特征值.μ>1且滿足: Pi≤μPj,Qi≤μQj,?i,j∈M (11) 條件(S2) :令Nσ(t0,t)表示(t0,t)內(nèi)切換次數(shù),平均駐留時(shí)間τα滿足下面不等式 證明:對(duì)系統(tǒng)(3),備選分段Lyapunov函數(shù)形式如下: (12) Pi,Qi(i=1,2)分別滿足(6)式和(8)式.由Lyapunov函數(shù)(12)及(11)式可知 Vi(x(t))≤μVj(x(t)),?i,j∈M (13) 對(duì)任意給定t>0,令ti(i=1,2,…k)表示在(t0,t)內(nèi)的切換時(shí)刻,且t0 (14) 由(13)可得 V(x(t))≤Vσ(tk)(x(tk))e2λ0T+(tk,t)-2λ0T-(tk,t)≤μVσ(tk)(x(tk))e2λ0T+(tk,t)-2λ0T-(tk,t) ≤μVσ(tk-1)(x(tk-1))e2λ0T+(tk-1,t)-2λ0T-(tk-1,t)≤… ≤μN(yùn)σ(t0,t)Vσ(t0)(x(t0))e2λ0T+(t0,t)-2λ0T-(t0,t) =e2λ0T+(t0,t)-2λ0T-(t0,t)+Nσ(t0,t)lnμVσ(t0)(x(t0)) 再由條件(S1)、(S2),則可得到如下不等式 (15) 由(10)式及(12)式可知不等式a‖x(t)‖2≤Vx(t)≤b‖x(t)‖2成立,進(jìn)而聯(lián)合(15)式即可得 (16) 參考文獻(xiàn): 〔1〕謝立.執(zhí)行器失效不確定時(shí)滯系統(tǒng)的指定衰減度魯棒可靠控制〔J〕.傳感技術(shù)學(xué)報(bào):2005,18(3) :460-465. 〔2〕WANG W,WEN C.Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance〔J〕.Automatica,2010,46(12): 2082-2091. 〔3〕TIAN E,YUE D,YANG T C,et al.T-S fuzzy model-based robust stabilization for networked control systems with probabilistic sensor and actuator failure〔J〕.IEEE Transactions on Fuzzy Systems,2011,19(3): 553-561. 〔4〕PENG C,YANG T C,TIAN E G.Robust fault-tolerant control of networked control systems with stochastic actuator failure〔J〕.IET Control Theory & Applications,2010,4(12): 3003-3011. 〔5〕TONG S,WANG T,LI Y.Fuzzy adaptive actuator failure compensation control of uncertain stochastic nonlinear systems with unmodeled dynamics〔J〕.IEEE Transactions on Fuzzy Systems,2014,22(3): 563-574. 〔6〕MA Y,JIANG B,TAO G,et al.Actuator failure compensation and attitude control for rigid satellite by adaptive control using quaternion feedback〔J〕.Journal of the Franklin Institute,2014,351(1): 296-314. 〔7〕CORRADINI M L,MONTNTERIU A,ORLANDO G.An actuator failure tolerant control scheme for an underwater remotely operated vehicle〔J〕.IEEE Transactions on Control Systems Technology,2011,19(5): 1036-1046. 〔8〕CAI X J,WU E.Robust parameter-dependent fault-tolerant control for actuator and sensor faults〔J〕.International Journal of Control,2010,83(7):1475-1484. 〔9〕XIANG Z R,WANG R H,CHEN Q W.Robust reliable stabilization of stochastic switched nonlinear systems under asynchronous switching〔J〕.Applied Mathematics and Computation,2011,217(19):7725-7736. Stability analysis of time-delay systems with actuator partial failure LIU Hui-wei (College of Engineering,Bohai University,Jinzhou 121013,China) Abstract:A controller design method is provided in this paper for time-delay system that ensure the state of system be exponentially stable when the actor partial failure happens.The time-delay system is transformed to a switching system in this paper for the scenes of actor running formally and actor partial failure.With application of average dwell time and multiple Lyapunov functional mothed,a sufficient condition is given in form of linear matrix inequality for exponential stability of the switching system states. Key words:time-delay system; average dwell time; switching system; multiple Lyapunov functions 收稿日期:2015-04-15. 基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(No: 11544013);國家自然科學(xué)基金項(xiàng)目(No: 11404032);國家自然科學(xué)基金項(xiàng)目(No: 11305016). 作者簡介:劉慧巍(1979-),男,講師,從事網(wǎng)絡(luò)化控制系統(tǒng)理論方面研究. 通訊作者:liuhuiwei0158@163.com. 中圖分類號(hào):TP13 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-0569(2016)02-0155-05渤海大學(xué)學(xué)報(bào)(自然科學(xué)版)2016年2期
——基于錦州城市居民的調(diào)查分析