李寶香,徐紅梅
(河海大學(xué)理學(xué)院,江蘇 南京 211100)
?
BBM-Burgers方程解的整體存在性和有界性估計(jì)
李寶香,徐紅梅
(河海大學(xué)理學(xué)院,江蘇 南京 211100)
摘要:通過(guò)構(gòu)造一個(gè)Banach空間柯西序列的方法和解的整體有界性估計(jì),得到一維空間去掉粘性項(xiàng)的BBM-Burgers方程u=0大初值時(shí),解的整體存在性及某些有界性估計(jì).
關(guān)鍵詞:BBM-Burgers方程;解的整體存在性;有界性估計(jì)
0引言
我們考慮一維空間去掉粘性項(xiàng)的BBM-Burgers方程柯西問(wèn)題
(1)
在u0∈H1時(shí)解的整體存在性和有界性估計(jì).
關(guān)于BBM-Burgers方程的研究可以追溯到上個(gè)世紀(jì),對(duì)流體動(dòng)力學(xué)的物理研究導(dǎo)出了該方程.BBM-Burgers方程與我們熟悉的BBM方程有著非常緊密的聯(lián)系.BBM方程具有形式
ut-uxxt+ux+uux=0
(2)
是1972年由Benjamin等[1]作為對(duì)Kdv[1-3]方程的精煉而提出.Kdv方程最初由研究水波而得出,后也可以作為研究物理系統(tǒng)中長(zhǎng)波的一個(gè)修正模型.所以BBM方程的各種變型的解的大時(shí)間狀態(tài)都得到了廣泛關(guān)注,見(jiàn)文獻(xiàn)[4-8].(1)式是BBM-Burgers方程
(3)
1局部解的存在性
定義序列{u(m)},u(0)=0,u(m)(m≥1)滿足
(4)
定理1當(dāng)u0∈H1,有u(1)∈X∞.
定理1的證明由(4)式,我們有
(5)
在(5)式兩邊同乘u(1),并在R上關(guān)于變量x積分可以得到
于是
所以
u(1)∈X∞.
由數(shù)學(xué)歸納法,可得到下述定理.
定理2存在常數(shù)T1,有u(m)(x,t)∈XT1.
(6)
在(6)式兩邊同乘以u(píng)(m),并在R上關(guān)于變量積分得
(7)
設(shè)u(m-1)∈XT,由Sobolev嵌入不等式,得‖u(m-1)‖L∞≤C‖u(m-1)‖H1≤CE
(8)
把(8)式代入(7)式,當(dāng)t≤T1,T1待定,得
取T1足夠小,滿足
則
u(m)(x,t)∈XT1.
定理3存在常數(shù)T2≤T1,有u(m)(x,t)是XT2空間的柯西序列.
定理3的證明由(4)式的第一式,當(dāng)m≥2,有
(9)
在(9)式兩邊同乘v(m),并關(guān)于變量x在R上積分得
∫?xv(m)(u(m-1)2-u(m-2)2)dx≤‖?xv(m)‖L2‖(u(m-1)-u(m-2))(u(m-1)+u(m-2))‖L2≤
CE2‖u(m-1)-u(m-2)‖XT2
(10)
注意到v(m)|t=0=0,當(dāng)t≤T2時(shí),由(10)式,得
所以
取T2足夠小,滿足
則
所以u(píng)(m)(x,t)是XT2空間的柯西序列.
結(jié)合定理2和定理3,由u(m)的構(gòu)造方法,我們得到方程(1)的解的局部存在性.
2結(jié)論
為證明解的整體存在性,我們還需證明‖u‖H1有界.由能量估計(jì),可得到下面的定理.
定理4若u0∈H1,則u∈H1.
定理4的證明在(1)式的第一式兩邊乘以u(píng),并關(guān)于變量x在R上積分得
(11)
注意到∫u?xu2dx=0,由(11)式得
所以若u0∈H1,則u∈H1.
于是得到本文中的結(jié)論.
3參考文獻(xiàn)
[1] Benjamin T B,Bona J L,Mahony J J.Model equations for long waves in nonlinear dispersive system[J].Phil Trans R Soc London(Ser A),1972,272:47-78.
[2] Medeiros L A,Menzala P G.Existence and uniqueness for periodic solutions of the Benjamin-Bona-Mahony equation[J].SIAM J Math Anal,1977,8(5):792-799.
[3] Avrin J.The generalized Benjamin-Bona-Mahony equation in with singular initial data[J].Nonlinear Anal,1987,11:139-147.
[4] Albert J.Dispersion of low energy waves for the generalized Benjamin-Bona-Mahony equation[J].J Differential Equations,1986,63:117-134.
[5] Albert J.On the decay of solutions of the generalized Benjamin-Bona-Mahony equation[J].J Math Anal Appl,1989,141:527-537.
[6] Biler P.Long time behavior of solutions of the generalized Benjamin-Bona-Mahony equation in two space dimensions[J].Diff Integral Eqns,1992(5):891-901.
[7] Zhang L H.Decay of solutions of generalized Benjamin-Bona-Mahony equations[J].Acta Math Sinica (N.S.),1994,10:428-438.
[8] Fang S M,Guo B L.The decay rates of solutions of generalized Benjamin-Bona-Mahony equations in multi-dimensions[J].Nonlinear Anal,2008,69:2230-2235.
[9] Zhao H J.Existence and convergence of solutions for the generalized BBM-burgers equations with dissipative term 2:the multidimensional case[J].Applicable Analysis,2000,75(1):107-135.
[10] Zhao H J.Optimal temporal decay estimates for the solution to the multidimensional generalized BBM-Burgers Equations with Dissipative Term[J].Applicable Analysis,2000,75(1):85-105.
[11] Zhao H J,Xuan B J.Existence and convergence of solutions for the generalized BBM-Burgers equations with dissipative term[J].Nonlinear Anal,1997,28(11):1835-1849.
[12] Wang Weike,Zhang Dandan.Large-time behavior for the solution to the generalized Benjamin-Bona-Mahony-Burgers equation with larger initial date in the whole space[J].Journal of Mathematical Analysis ahd Applications,2014,411:144-165.
(責(zé)任編輯趙燕)
Global existence and bounded estimate of solutions of the BBM-Burgers equation
LI Baoxiang,XU Hongmei
(College of Science,Hohai University,Nanjing 211100,China)
Abstract:By the construction of a Cauchy sequence in a Banach space and the global bounded estimate of solution,we obtain the global existence and the bounded estimate of solution of a one-dimensional BBM-Burgers equation without the viscous termu=0 with large initial date.
Key words:BBM-Burgers equation;global existence of solution;bounded estimate
文章編號(hào):1000-2375(2016)03-0307-03
收稿日期:2015-12-14
基金項(xiàng)目:國(guó)家自然科學(xué)基金(11571092)資助
作者簡(jiǎn)介:李寶香(1991-),女,碩士生;徐紅梅,通信作者,副教授,E-mail:xxu_hongmei@163.com
中圖分類號(hào):O175.28
文獻(xiàn)標(biāo)志碼:A
DOI:10.3969/j.issn.1000-2375.2016.04.008