• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface-Enhanced Raman Spectroscopy Study of Fresh Human Urine:A Preliminary Study

    2016-07-12 12:59:43ZHENGBinDONGJinchaoSULizhongMENGMengZHANGYuejiaoLIJianfeng
    光譜學(xué)與光譜分析 2016年6期
    關(guān)鍵詞:成份拉曼尿液

    ZHENG Bin, DONG Jin-chao, SU Li-zhong, MENG Meng,ZHANG Yue-jiao, LI Jian-feng*

    1. Department of Otolaryngology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China 2. State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and

    Surface-Enhanced Raman Spectroscopy Study of Fresh Human Urine:A Preliminary Study

    ZHENG Bin1*, DONG Jin-chao2, SU Li-zhong1, MENG Meng2,ZHANG Yue-jiao2, LI Jian-feng2*

    1. Department of Otolaryngology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China 2. State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and

    Chemical Engineering, Xiamen University, Xiamen 361005, China

    In this work, we have mainly studied SERS spectra of fresh human urine by using Au nanoparticles excited by 785 and 1 030 nm lasers, respectively. And the UV/Vis adsorption experiment of the Au nanoparticles mixed with different ratio of urine has been performed, and the obvious shifting of corresponding absorption band is observed. The result showed that the Au nanoparticles which have been synthesized by classical Fren’s method can interact with urine, and the Au nanoparticles aggregations caused by the urine have strong SERS effect. Intense and repeatable spectra of the urine samples can be quickly obtained using Au colloids, which characterized by the scanning electron microscope (SEM) and the high-resolution transmission electron microscope (HRTEM) images, and it can be confirmed that the size of the Au nanoparticles is about 55 nm with a finite variation. When different spectra can be detected under different exciting lasers, the various biofluid to Au substrate ratios can generate different intense spectra. From the spectra of 785 nm laser, we can conclude that it has lower background and higher resolution with more detail information of this system contained human urine. For the 1 030 nm laser, a portable Raman instrument is helpful for on-site clinic treatment detection. It also gets well defined information and will be a good and convenient choice for urine analysis. It should note that this peak band located at 1 006 cm-1may be the dominant nitrogen-containing component in urine. On the other hand, uric acid, urea, hypoxanthine as well as creatinine can be assigned; the other bands are still unknown, which might be attributed to biomarkers important for disease differentiation. Another result shows that different sample preparation can influence the SERS spectra with different ratio. We also have made a comparison of Raman spectra between 785 and 1 030 nm lasers to learn the difference between each other just like background and high-resolution. The current study indicates the SERS of urine might be a good choice and tool for urinalysis with potential diagnostic application, especially with the portable Raman instrument which would be an accurate and convenient approach for urine analysis. It is possible for SERS detection to be applied in not only the health diagnosis but also biological tissue in the future.

    SERS; Urine; Diagnosis; Au nanoparticle

    Introduction

    Surface-enhanced Raman spectroscopy (SERS) is vibrational spectroscopy which can provide ultra-high surface sensitivity with fingerprint information[1-2]. It has large Raman cross-sections on nanostructured gold and silver surfaces, which can realize small molecules, even single molecules level detection[3-6]. With the aim of developing diagnostic applications, increasing attention has been paid to the SERS studies of biological samples, such as blood[7-9]and urine[10-12]. Urine is excess wastes extracted from the bloodstream by the kidney, containing water, sugars, and more than 2600 different metabolites[13-15]. More importantly, urine has been universally used as samples in diagnostics for its easily available and noninvasively collected in large volumes, since it has rich biological information[16].

    Despite of the potential diagnostic value of urine, there are only a few groups studied the SERS spectra of urine using a variety of substrates and excitation wavelengths[10,12,17-18]. It was reported that the urine can be detected by SERS, including uric acid, urea, hypoxanthine and creatinine[10,18], where the change of Raman band intensity may reflect the disease information[10]. Different exciting lasers play important roles on the SERS detections of the target compounds[19]. However, there were only 785 nm[10,12]and 633 nm[18]lasers applied to detect urine. It’s also important to study SERS spectra excited by the other laser lines, such as 1 030 nm, which may provide different useful information for urine analysis.

    In the present work, we have performed SERS studies of fresh human urine using 55 nm Au nanoparticles as SERS substrate. The comparison of spectra between 785 and 1 030 nm laser are carried out, and the Raman signals with different biofluid-substrate ratios will also be discussed.

    1 Materials and methods

    1.1 Collection of urine samples

    Human urine experiments were performed with the agreement of ethical committee in our institution (Zhejiang Provincial People’s Hospital, Hangzhou, China), and the informed consent was obtained. The male volunteer was 32 years old, and he had no chronic systemic diseases or acute inflammations. Before experiments, a routine urine test of a morning urine sample was done and there were no abnormal results. After overnight fasting, midstream specimens of urine were collected in a 50 mL centrifuge tube and placed under room temperature. All the samples were obtained from the same person, and all experiments were carried out within 1 hour after the collection of urine.

    1.2 SERS substrates preparation and characterization

    1.2.1 Chemicals

    Chloroauric acid (99.99%) and sodium citrate (99.0%) were purchased from Alfa Aesar. All chemicals were used as received without further purification. Milli-Q water (~18.2 MΩ·cm) was used throughout the study.

    1.2.2 Synthesis of 55 nm Au nanoparticles

    Au nanoparticles were prepared as following[20]: 1.4 mL of 1 Wt% sodium citrate solution was added into 200 mL of 0.01 Wt% boiling HAuCl4solution. The mixture was refluxed for 1 h and then cooled down to room temperature. The structure gold nanoparticles were measured by the scanning electron microscope (SEM, Sigma-4800) and high-resolution transmission electron microscope (HRTEM, JEM-2100). The images are shown in Figs.1(a) and (b) respectively. It can be confirmed that the size of the Au nanoparticle is (55±10) nm.

    Fig.1 SEM (a) and HRTEM (b) image of (55±10) nm Au nanoparticles

    1.3 SERS and UV/Vis instrumentation

    UV/Vis absorption spectra were carried out on a UV2550 spectrophotometer (Shimadzu Corp., Japan) using a 1 cm quartz cell. SERS spectra were recorded by Xplora (HORIBA Jobin Yvon). A 50× magnification long working distance (8 mm) objective was used. The excitation wavelength was 785 nm from a He—Ne laser (power on the sample was about 10 mW), and spectrograph was equipped with a 1 200 lines·mm-1(for 785 nm excitation) grating, and a charge coupled device (CCD) camera. Before each measurement, calibration was checked using as reference the 520.6 cm-1vibrational band of a silicon wafer. For 1 030 nm spectra acquisition, a portable Raman instrument (Inspector 500, SciAps) with specifications: laser power grand: High, spectral range 100~2 500 cm-1, resolution across range 8~10 cm-1, detector cooled Type Ⅲ-Ⅳ semiconductor array. The portable Raman spectrometer can be used in situ and out of lab, which is very important for clinic treatment detection.

    1.4 Sample preparation for SERS measurements

    Before loading samples, urine was mixed well in 50 mL centrifuge tubes. Then, a 250 μL urine sample was transferred to a 1 mL quartz colorimetric cell using a micropipette. After that, a 250 μL Au nanoparticles colloid was added to the urine to make a biofluid-substrate ratio of 1∶1 for a total volume of 500 μL. And another mixture containing 50 μL urine and 450 μL Au nanoparticles colloid was also prepared to make a biofluid-substrate ratio of 1∶9. The mixtures were instantly placed under the Raman microscope for spectral acquisition. The laser was then focused in the very center of the mixtures automatically, and SERS spectra were acquired with an exposure time of 60 s.

    For 1 030 nm spectra acquisition, 500 μL mixtures (i.e., 250 μL urine+ 250 μL Au nanoparticles colloid, or 50 μL urine+450 μL Au nanoparticles colloid) were transferred to 5 mm quartz nuclear magnetic resonance (NMR) tubes and tested directly by portable Raman instrument Inspector 500 with high power and an exposure time of 10 s.

    2 Results and discussion

    2.1 UV-Vis absorption spectra

    We first performed the UV/Vis adsorption experiment. As shown in Fig.2, the absorption peak at ~520 nm was observed in both Au NPs-to-H2O ratio of 1∶1 and 9∶1, which is contributed to the Au NPs. When the Au NPs was mixed with urine with ratio of 9∶1, a shoulder absorption band at high wavelength (ca. 650 nm) appeared. We can get another absorption peak around 710 nm with the increasing of urine (Au NPs-to-urine ratio of 1∶1), while the absorption peak around 520 nm became even weaker. The above phenomenon indicates that the Au NPs are interacting with urine. The absence of absorption peak at high wavelength in urine together with water further demonstrates that absorption bands the 710 and 650 nm are caused by the mixture of Au NPs and urine. The current experiment shows the Au NPs aggregations caused by the urine, which with strong SERS effect.

    Fig.2 UV-Vis absorption spectra of mixture of Au NPs and H2O (1∶1 and 9∶1); Au NPs and urine (1∶1 and 9∶1), and H2O and urine (1∶1 and 9∶1)

    2.2 SERS of urine excited by 785 nm laser

    We then performed the SERS of urine excited by 785 nm laser. As shown in Fig.3a, primary Raman band at 1 006 cm-1in the spectra of pure urine, is attributed to the C—N stretching of urea[21-22]. This peak is the dominant nitrogen-containing component in urine and thus can be easily detected by normal Raman. The spectrum of the mixture of Au NPs and water with a volume ratio of 1∶1 is shown in Fig.3d.

    Fig.3 SERS spectra obtained with excitation at 785 nm

    a: Spectrum of pure urine;b: Spectrum of urine together with Au NPs in a sample-to-substrate ratio of 1∶9;c: Spectrum of urine together with Au NPs in a sample-to-substrate ratio of 1∶1;d: Spectrum of water and Au NPs in a sample-to-substrate ratio of 1∶1

    2.3 SERS of urine excited by 1 030 nm laser

    The SERS experiments of urine were also carried out under 1 030 nm laser. The spectrum showed in Fig.4abelongs to pure urine excited at 1 030 nm. The primary Raman band at 1 001 cm-1for pure urine is attributed to the C—N stretching of urea[21]. Spectra of the mixture of urine and Au NPs in sample-to-substrate ratios of 1∶9 and 1∶1 are illustrated in Fig.4band Fig.4c, respectively. Unlike the bands excited by 785 nm, most bands are similar as that of mixture of water and Au colloid (Fig.3d).

    Taking the spectrum Au NPs∶Urine=1∶1 as example (Fig.4c), 721, 1 500 and 1 605 cm-1are the new bands from the background. The 721 cm-1may also be attributed to C—H stretching vibration of hypoxanthine, while 1 500 and 1 605 cm-1are still uncertain, but should correspond to the urine. The results obtained from the sample of Au NPs∶Urine=1∶9 shows similar feature as that of 1∶1. The results point out that the urine excited by 785 nm give more information than that of 1 030 nm. However, the SERS of urine excited by 1 030 nm laser can also provide additional information for the urine.

    Fig.4 SERS spectra obtained with excitation at 1 030 nm

    a: Spectrum of pure urine;b: Spectrum of urine together with 55 nm Au colloids in a sample-to-substrate ratio of 1∶9;c: Spectrum of urine together with 55 nm Au colloids in a sample-to-substrate ratio of 1∶1

    2.4 Comparison between 785 and 1 030 nm spectra

    Now we will focus on the comparison of Raman spectra between 785 and 1 030 nm lasers. From the perspective of normal Raman spectra (Fig.5aandb), there is no obvious difference between 785 and 1 030 nm lasers. However, the SERS spectra of 785 and 1 030 nm lasers are difference between each other. First, comparing the SERS spectra of 1 030 nm laser (Fig.5d), the spectra of 785 nm laser have a higher resolution and it can provide more detail information about the urine (Fig.5c), such as uric acid, hypoxanthine, urea and creatinine, etc. Second, the SERS spectra background of 785 nm laser is lower than 1 030 nm laser, which is more useful for the quantitative analysis. However, 1 030 nm laser can provide other information location at 1 500 and 1 605 cm-1, which may also be useful in the diagnostic application. In addition, as the 1030 nm Raman instrument is a portable Raman instrument, and is helpful for on-site detection and it can give some qualitative test results for reference.

    Fig.5 Comparison of Raman spectra between 785 and 1 030 nm lasers

    a: Spectrum of pure urine with excitation at 785 nm;b: Spectrum of pure urine with excitation at 1 030 nm;c: Spectrum of urine together with Au NPs in a sample-to-substrate ratio of 1∶1 with excitation at 785 nm;d: Spectrum of urine together with 55 nm Au colloids in a sample-to-substrate ratio of 1∶1 with excitation at 1 030 nm

    3 Conclusions

    In conclusion, we have demonstrated a SERS study of urine using 55 nm Au NPs as SERS substrate and with excited by 785 and 1 030 nm lasers respectively. The results show that we can get the SERS information of urine in this system, and different spectra can be obtained under different exciting laser. The SERS spectra of 785 nm laser has lower background and higher resolution, it can provide more detail information of the urine. And the 1 030 nm laser instrument is a portable Raman instrument, which is helpful for on-site clinic treatment detection, and it also would be a good and convenient choice for urine analysis.

    [1] Fleischmann M, Hendra P J, Mcquillan A J. Chemical Physics Letters, 1974, 26(2): 163.

    [2] Moskovits M. Reviews of Modern Physics, 1985, 57(3): 783.

    [3] Hu J, Bing Z, Xu W, et al. Langmuir, 2002, 18(18): 6839.

    [4] Nie S M, Emory S R. Science, 1997, 275(5303): 1102.

    [5] Kneipp K, Wang Y, Kneipp H, et al. Physical Review Letters, 1997, 78(9): 1667.

    [6] Yuan Y X, Liu Y, Xu M M, et al. Journal of Electroanalytical Chemistry, 2014, 726: 44.

    [7] Drescher D, Buchner T, McNaughton D, et al. Physical Chemistry Chemical Physics, 2013, 15(15): 5364.

    [8] Lin D, Pan J J, Huang H, et al. Scientific Reports, 2014, 4(4): 4751.

    [9] Kamińska A, Witkowska E, Winkler K, et al. Biosensors and Bioelectronics, 2015, 66: 461.

    [10] Del Mistro G., Cervo S, Mansutti E, et al. Analytical and Bioanalytical Chemistry, 2015, 407(12): 3271.

    [11] Yang T X, Guo X Y, Wu Y P, et al. ACS Applied Materials and Interfaces, 2014, 6(23): 20985.

    [12] Dong R L, Weng S Z, Yang L B, et al. Analytical Chemistry, 2015, 87(5): 2937.

    [13] Kanabrocki E L, Sothern R B, Ryan M D, et al. La Clinica Terapeutica, 2008, 159(5): 329.

    [14] Ku J H, Godoy G., Amiel G E, et al. BJU International, 2012, 110(5): 630.

    [15] Mcevoy J, Millet R A, Dretchen K, et al. Psychopharmacology, 2014, 231(23): 4421.

    [16] Fogazzi G B, Garigali G. Current Opinion in Nephrology and Hypertension, 2003, 12(6): 625.

    [17] Huang S H, Wang L, Chen W S, et al. Laser Physics Letters, 2014, 11(11): 115604.

    [18] Wang T L, Chiang H K, Lu H H, et al. Optical and Quantum Electronics, 2005, 37(13-15): 1415.

    [19] Bonifacio A, Cervo S, Sergo. Analytical and Bioanalytical Chemistry, 2015, 407(27): 8265.

    [20] Li J F, Tian X D, Li S B, et al. Nature Protocols, 2013, 8(1): 52.

    [21] Premasiri W R, Clarke R H, Womble M E. Lasers in Surgery and Medicine, 2001, 28(4): 330.

    [22] Keuleers A, Desseyn H O, Rousseau B, Van Alsenoy C. Journal of Physical Chemistry A,1999, 103: 4621.

    [23] Chen J S, Feng S Y, Lin J Q, et al. Acta Laser Biology Sinica, 2011, 20(1): 98.

    [24] Trachta G, Schwarze B, Sagmuller B, et al. Journal of Molecular Structure, 2004, 693(1-3): 175.

    O657.3

    A

    表面增強(qiáng)拉曼散射光譜對人體尿液成份的初步研究

    鄭 彬1*,董金超2,蘇立眾1,蒙 萌2,張月皎2,李劍鋒2*

    1. 浙江省人民醫(yī)院耳鼻喉科,浙江 杭州 310014 2. 廈門大學(xué)固體表面物理化學(xué)國家重點實驗室,化學(xué)化工學(xué)院,福建 廈門 361005

    作為人體體液之一的尿液中含有多種人體新陳代謝的產(chǎn)物以及體內(nèi)排出的毒素,如果能夠?qū)@些組分進(jìn)行定性分析,就能夠在一定程度上有效反映人體器官的健康狀況,這是臨床醫(yī)學(xué)中重要的研究途徑。該實驗分別以785和1 030 nm激光作為源激發(fā),以具有電磁場增強(qiáng)的金納米粒子作為基底,利用表面增強(qiáng)拉曼散射光譜(SERS)對臨床實驗研究中所用的人體新鮮尿液的成份進(jìn)行快速、無損分析。通過控制金納米溶膠與尿液原液的混合比例從而來制備一系列具有不同配比的實驗樣品,并且通過實驗我們獲得其相應(yīng)的SERS光譜。由實驗結(jié)果分析可知,我們能夠有效地得到尿液中尿酸、次黃嘌呤等多種成份的SERS光譜。與此同時,我們還研究了在不同波長激光條件下的尿液的SERS光譜。相較于1 030 nm的激光,785 nm的激光得到的SERS光譜具有較高的分辨率以及較低的背景值。與此同時,利用具有1 030 nm激光的便攜式拉曼儀對實驗樣品進(jìn)行快速、無損分析,有望為臨床醫(yī)學(xué)現(xiàn)場、快速分析診斷提供幫助和支持。而且相信,SERS能夠在人類健康甚至生物組織的檢測等方面提供更加詳細(xì)的信息。

    表面增強(qiáng)拉曼光譜; 人體尿液; 臨床診斷; 金納米粒子

    2015-10-30,

    2016-02-04)

    Foundation item: Medical Science and Technology Project of Zhejiang Province (2015KYB025), and National Science Foundation of China (21522508)

    10.3964/j.issn.1000-0593(2016)06-1987-05

    Received: 2015-10-30; accepted: 2016-02-04

    Biography: ZHENG Bin, (1982—), an attending physician in Department of Otolaryngology in Zhejiang Provincial People’s Hospital e-mail: zhengbin017@163.com *Corresponding authors e-mail: Li@xmu.edu.cn

    *通訊聯(lián)系人

    猜你喜歡
    成份拉曼尿液
    賊都找不到的地方
    沒聽錯吧?用污泥和尿液制水泥
    軍事文摘(2022年16期)2022-08-24 01:50:52
    尿液檢測可能會發(fā)現(xiàn)侵襲性前列腺癌
    基于單光子探測技術(shù)的拉曼光譜測量
    電子測試(2018年18期)2018-11-14 02:30:36
    跟蹤導(dǎo)練(三)
    績優(yōu)指數(shù)成份變更與一周表現(xiàn)
    兩市主要成份指數(shù)中期成份股調(diào)整
    Variational Mode Decomposition for Rotating Machinery Condition Monitoring Using Vibration Signals
    基于相干反斯托克斯拉曼散射的二維溫度場掃描測量
    歐盟禁止在化妝品成份中使用3-亞芐基樟腦
    久久久国产成人免费| 看黄色毛片网站| 日日摸夜夜添夜夜添av毛片| 亚洲第一电影网av| 白带黄色成豆腐渣| 亚洲高清免费不卡视频| 99久久成人亚洲精品观看| 99热这里只有是精品50| av.在线天堂| 色综合站精品国产| 成人精品一区二区免费| 男女边吃奶边做爰视频| 亚洲人成网站在线观看播放| av卡一久久| 亚洲激情五月婷婷啪啪| 亚洲精品乱码久久久v下载方式| 亚洲自偷自拍三级| 美女免费视频网站| 少妇裸体淫交视频免费看高清| 亚洲av免费高清在线观看| 成年av动漫网址| 波多野结衣巨乳人妻| 亚洲av二区三区四区| av天堂在线播放| 成人av一区二区三区在线看| 十八禁网站免费在线| 岛国在线免费视频观看| 国产成人a区在线观看| 22中文网久久字幕| 免费看av在线观看网站| 亚洲美女视频黄频| 亚洲国产日韩欧美精品在线观看| 嫩草影院入口| 国产精品福利在线免费观看| av专区在线播放| 一级毛片我不卡| 1000部很黄的大片| 国产高清视频在线播放一区| 亚洲av成人av| 久久久国产成人免费| 真实男女啪啪啪动态图| 日本-黄色视频高清免费观看| 一a级毛片在线观看| 亚洲最大成人av| 国产淫片久久久久久久久| 亚洲第一电影网av| 国语自产精品视频在线第100页| 99国产极品粉嫩在线观看| 亚洲av美国av| 给我免费播放毛片高清在线观看| av在线老鸭窝| 国产精品99久久久久久久久| 国内久久婷婷六月综合欲色啪| 久久亚洲国产成人精品v| 亚洲欧美精品自产自拍| 精品午夜福利在线看| 99久久精品国产国产毛片| 成年av动漫网址| 日日摸夜夜添夜夜添av毛片| 村上凉子中文字幕在线| 欧美一区二区亚洲| 女人被狂操c到高潮| 免费观看精品视频网站| 99久久久亚洲精品蜜臀av| 我的女老师完整版在线观看| 亚洲欧美清纯卡通| 精品久久久久久久久久免费视频| 午夜福利在线观看免费完整高清在 | 国产黄色小视频在线观看| 国产麻豆成人av免费视频| 男女那种视频在线观看| 日韩,欧美,国产一区二区三区 | 亚洲av一区综合| 观看免费一级毛片| 男插女下体视频免费在线播放| 少妇人妻一区二区三区视频| 日韩 亚洲 欧美在线| 热99在线观看视频| 欧美不卡视频在线免费观看| 国产精品久久久久久久久免| 亚洲七黄色美女视频| 色综合亚洲欧美另类图片| 国产精品一区二区性色av| 日韩欧美在线乱码| 欧美高清性xxxxhd video| 一区福利在线观看| 99热这里只有是精品50| 国产精品一区www在线观看| 色哟哟·www| 人人妻人人澡人人爽人人夜夜 | 亚洲激情五月婷婷啪啪| 俄罗斯特黄特色一大片| 欧美激情久久久久久爽电影| videossex国产| videossex国产| 99热这里只有精品一区| 99热全是精品| 日韩制服骚丝袜av| 日本色播在线视频| 午夜福利在线观看免费完整高清在 | 亚洲精品成人久久久久久| 亚洲av二区三区四区| 久久久久久久久中文| 国产在线精品亚洲第一网站| 午夜福利成人在线免费观看| 在现免费观看毛片| 最后的刺客免费高清国语| 九色成人免费人妻av| 日韩中字成人| 亚洲一区二区三区色噜噜| 国内精品宾馆在线| 中文在线观看免费www的网站| 乱人视频在线观看| 热99在线观看视频| 国产精品99久久久久久久久| 久久精品国产亚洲网站| 精品久久久久久久久av| 精品一区二区三区视频在线| 欧美日本视频| 在线观看一区二区三区| 插阴视频在线观看视频| 麻豆一二三区av精品| 国产爱豆传媒在线观看| 国产欧美日韩精品亚洲av| 日本与韩国留学比较| 成人毛片a级毛片在线播放| 国产高清不卡午夜福利| 在线播放无遮挡| 国产色爽女视频免费观看| 一级黄片播放器| 激情 狠狠 欧美| 国产成人精品久久久久久| 99热这里只有是精品在线观看| 九九久久精品国产亚洲av麻豆| 大香蕉久久网| 国内久久婷婷六月综合欲色啪| 精品久久久久久成人av| 亚洲国产日韩欧美精品在线观看| 不卡一级毛片| 久久精品国产99精品国产亚洲性色| 精品久久久久久久久久久久久| 欧美激情国产日韩精品一区| 又爽又黄a免费视频| 少妇熟女aⅴ在线视频| 男人舔奶头视频| 我要看日韩黄色一级片| 国产精品永久免费网站| 国产乱人视频| 亚洲婷婷狠狠爱综合网| 国产亚洲精品综合一区在线观看| 久久亚洲精品不卡| 乱人视频在线观看| 欧美色欧美亚洲另类二区| 一个人看视频在线观看www免费| 久久婷婷人人爽人人干人人爱| 午夜老司机福利剧场| 一级毛片aaaaaa免费看小| 亚洲精品在线观看二区| 91久久精品国产一区二区成人| 国产大屁股一区二区在线视频| 国产爱豆传媒在线观看| 免费搜索国产男女视频| 午夜免费男女啪啪视频观看 | 久久九九热精品免费| 国产在线男女| 菩萨蛮人人尽说江南好唐韦庄 | 我的女老师完整版在线观看| 亚洲一区高清亚洲精品| 小说图片视频综合网站| 亚洲无线在线观看| 精品午夜福利视频在线观看一区| 国产色爽女视频免费观看| 嫩草影院入口| aaaaa片日本免费| 久久天躁狠狠躁夜夜2o2o| 如何舔出高潮| 看免费成人av毛片| 蜜臀久久99精品久久宅男| 色哟哟·www| 国产人妻一区二区三区在| 国内久久婷婷六月综合欲色啪| 特级一级黄色大片| 91av网一区二区| 深爱激情五月婷婷| 日本黄色片子视频| 男女那种视频在线观看| 欧美激情久久久久久爽电影| 此物有八面人人有两片| 久久午夜福利片| 久久久久久大精品| 最近在线观看免费完整版| 午夜久久久久精精品| 亚洲av二区三区四区| 国产不卡一卡二| 观看美女的网站| 国产精品一二三区在线看| 欧美高清成人免费视频www| 大型黄色视频在线免费观看| 99久久九九国产精品国产免费| 国产高清视频在线观看网站| 亚洲久久久久久中文字幕| 两个人的视频大全免费| 天天躁日日操中文字幕| 日韩成人伦理影院| 波多野结衣高清作品| 久久久国产成人精品二区| 成人特级黄色片久久久久久久| 日韩强制内射视频| 亚洲国产精品国产精品| 午夜影院日韩av| 春色校园在线视频观看| 搡老熟女国产l中国老女人| 99国产极品粉嫩在线观看| 身体一侧抽搐| 精品不卡国产一区二区三区| 亚洲乱码一区二区免费版| 中国国产av一级| 好男人在线观看高清免费视频| 日本三级黄在线观看| 美女cb高潮喷水在线观看| 亚洲图色成人| 色综合色国产| 成人毛片a级毛片在线播放| 日本精品一区二区三区蜜桃| 给我免费播放毛片高清在线观看| 老师上课跳d突然被开到最大视频| 国产精品1区2区在线观看.| 精品国产三级普通话版| 毛片一级片免费看久久久久| 免费黄网站久久成人精品| 99久久九九国产精品国产免费| eeuss影院久久| 欧美zozozo另类| 校园春色视频在线观看| 亚洲av二区三区四区| 精品一区二区免费观看| 欧美成人一区二区免费高清观看| 亚洲av不卡在线观看| h日本视频在线播放| 国产高清激情床上av| 久久久久久久久久黄片| 国产不卡一卡二| 欧美日韩乱码在线| 男人狂女人下面高潮的视频| 欧美日韩国产亚洲二区| 日韩精品青青久久久久久| 日韩欧美免费精品| 日本三级黄在线观看| 寂寞人妻少妇视频99o| 91久久精品国产一区二区三区| 99热6这里只有精品| 亚洲精品乱码久久久v下载方式| 中国美白少妇内射xxxbb| 91久久精品电影网| 免费电影在线观看免费观看| 久久久国产成人免费| 国产精品野战在线观看| 久久久午夜欧美精品| 床上黄色一级片| 亚洲国产精品成人综合色| 最近2019中文字幕mv第一页| 亚洲精品国产成人久久av| 免费高清视频大片| 啦啦啦啦在线视频资源| 91狼人影院| 国产精品无大码| 一边摸一边抽搐一进一小说| a级一级毛片免费在线观看| 精品人妻视频免费看| 夜夜爽天天搞| 又黄又爽又刺激的免费视频.| ponron亚洲| 日韩欧美免费精品| 欧美成人精品欧美一级黄| 两性午夜刺激爽爽歪歪视频在线观看| 国产真实伦视频高清在线观看| 狠狠狠狠99中文字幕| 午夜影院日韩av| 综合色av麻豆| aaaaa片日本免费| h日本视频在线播放| 久久中文看片网| 久久精品综合一区二区三区| 在线免费观看不下载黄p国产| 99久久精品一区二区三区| av天堂在线播放| 观看美女的网站| 直男gayav资源| 久久精品91蜜桃| a级毛片免费高清观看在线播放| 99热这里只有是精品在线观看| 日日摸夜夜添夜夜添av毛片| 欧美一区二区国产精品久久精品| 国产探花在线观看一区二区| 十八禁网站免费在线| 99久久成人亚洲精品观看| 18禁黄网站禁片免费观看直播| 秋霞在线观看毛片| 国产一级毛片七仙女欲春2| 卡戴珊不雅视频在线播放| 午夜爱爱视频在线播放| 亚洲av中文字字幕乱码综合| 日本五十路高清| av视频在线观看入口| 又爽又黄a免费视频| 国产女主播在线喷水免费视频网站 | 午夜福利在线观看免费完整高清在 | 久久中文看片网| 精品久久久久久成人av| 一a级毛片在线观看| 日韩 亚洲 欧美在线| 国产探花极品一区二区| 91麻豆精品激情在线观看国产| 老司机影院成人| 成人精品一区二区免费| 色哟哟哟哟哟哟| videossex国产| 人妻制服诱惑在线中文字幕| 两个人视频免费观看高清| 在线播放无遮挡| 久久久久久国产a免费观看| 午夜精品一区二区三区免费看| 日韩制服骚丝袜av| 亚洲国产精品久久男人天堂| 国产精品av视频在线免费观看| 男人狂女人下面高潮的视频| 久久国产乱子免费精品| 国产精品伦人一区二区| 欧美日韩在线观看h| 狂野欧美白嫩少妇大欣赏| 悠悠久久av| 国产亚洲精品久久久com| 日本成人三级电影网站| 俺也久久电影网| 成人亚洲欧美一区二区av| 免费人成视频x8x8入口观看| 精品福利观看| 狠狠狠狠99中文字幕| 亚洲性久久影院| 亚洲最大成人av| 真人做人爱边吃奶动态| 亚洲精品国产成人久久av| 日日摸夜夜添夜夜添小说| 欧美精品国产亚洲| 可以在线观看毛片的网站| 国产一区亚洲一区在线观看| 精品久久久噜噜| 国产精品免费一区二区三区在线| 国产大屁股一区二区在线视频| 久久99热这里只有精品18| 女的被弄到高潮叫床怎么办| 亚洲精品日韩av片在线观看| 国产v大片淫在线免费观看| 村上凉子中文字幕在线| 97超级碰碰碰精品色视频在线观看| 国产乱人视频| 国产成人aa在线观看| 国产精品综合久久久久久久免费| 国产人妻一区二区三区在| 91久久精品电影网| 狂野欧美白嫩少妇大欣赏| 22中文网久久字幕| 亚洲四区av| 亚洲国产高清在线一区二区三| 性色avwww在线观看| 欧美最新免费一区二区三区| 一本久久中文字幕| 亚洲一区二区三区色噜噜| 日本欧美国产在线视频| 老熟妇仑乱视频hdxx| 好男人在线观看高清免费视频| 色哟哟哟哟哟哟| 1024手机看黄色片| 一区二区三区高清视频在线| 成人av在线播放网站| 两个人的视频大全免费| 国产麻豆成人av免费视频| 久久热精品热| 亚洲成a人片在线一区二区| 2021天堂中文幕一二区在线观| 欧美丝袜亚洲另类| 欧美国产日韩亚洲一区| 久久精品国产清高在天天线| 精品久久久久久久久久免费视频| 亚洲熟妇熟女久久| 看黄色毛片网站| 久久久久久大精品| 国产伦一二天堂av在线观看| 22中文网久久字幕| 简卡轻食公司| av中文乱码字幕在线| 成年免费大片在线观看| 91av网一区二区| 色av中文字幕| 99久久精品热视频| 精品久久久久久久久久免费视频| 精品久久国产蜜桃| 亚洲精华国产精华液的使用体验 | 精品无人区乱码1区二区| 日产精品乱码卡一卡2卡三| 最新在线观看一区二区三区| 欧美日韩精品成人综合77777| 一卡2卡三卡四卡精品乱码亚洲| 热99在线观看视频| 十八禁国产超污无遮挡网站| 亚洲精品粉嫩美女一区| 亚洲人成网站在线观看播放| 一个人免费在线观看电影| 日本熟妇午夜| 99国产精品一区二区蜜桃av| 亚洲av二区三区四区| 久久久久国内视频| 人妻夜夜爽99麻豆av| 国产成人aa在线观看| 国产av在哪里看| 美女高潮的动态| 3wmmmm亚洲av在线观看| 一本精品99久久精品77| 国产av不卡久久| 日韩一区二区视频免费看| 国产精品爽爽va在线观看网站| 亚洲性久久影院| 亚洲av熟女| 欧美最新免费一区二区三区| 国产精品嫩草影院av在线观看| 国产精品综合久久久久久久免费| 99热这里只有是精品在线观看| 搡老岳熟女国产| 亚洲不卡免费看| 美女黄网站色视频| 真人做人爱边吃奶动态| 国产黄色小视频在线观看| 三级经典国产精品| 男人的好看免费观看在线视频| 身体一侧抽搐| 欧美色欧美亚洲另类二区| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久久久免| 日韩欧美一区二区三区在线观看| 免费观看精品视频网站| 久久久精品欧美日韩精品| 伊人久久精品亚洲午夜| 亚洲婷婷狠狠爱综合网| 亚洲成人久久性| 免费在线观看成人毛片| 看非洲黑人一级黄片| 直男gayav资源| 天堂动漫精品| 国产精品不卡视频一区二区| 丝袜美腿在线中文| 亚洲电影在线观看av| 精品人妻熟女av久视频| 日本色播在线视频| 国产aⅴ精品一区二区三区波| АⅤ资源中文在线天堂| 中文资源天堂在线| 亚洲欧美日韩卡通动漫| 夜夜看夜夜爽夜夜摸| 亚洲成人久久爱视频| 无遮挡黄片免费观看| 亚洲人成网站在线播| 久久久久久久久大av| 日韩在线高清观看一区二区三区| 我要看日韩黄色一级片| 网址你懂的国产日韩在线| 俺也久久电影网| 久久热精品热| 免费av毛片视频| 欧美3d第一页| 久久久午夜欧美精品| 99在线视频只有这里精品首页| 三级男女做爰猛烈吃奶摸视频| 69人妻影院| 欧美日韩国产亚洲二区| 偷拍熟女少妇极品色| 久久久久免费精品人妻一区二区| 亚洲精品国产成人久久av| 国产激情偷乱视频一区二区| 国产男人的电影天堂91| 国产在线精品亚洲第一网站| av免费在线看不卡| 中文字幕人妻熟人妻熟丝袜美| 国产午夜精品久久久久久一区二区三区 | 精品欧美国产一区二区三| 精品不卡国产一区二区三区| 免费搜索国产男女视频| 色综合色国产| 亚洲欧美清纯卡通| 亚洲av中文av极速乱| 老司机福利观看| 深夜精品福利| 搡老熟女国产l中国老女人| 亚洲aⅴ乱码一区二区在线播放| 精品熟女少妇av免费看| 三级毛片av免费| 久久精品久久久久久噜噜老黄 | 中文字幕免费在线视频6| 99热只有精品国产| 国产亚洲精品综合一区在线观看| 91久久精品国产一区二区成人| 国产成人精品久久久久久| 久久99热6这里只有精品| 日本 av在线| 国产探花在线观看一区二区| 日本a在线网址| 中文亚洲av片在线观看爽| 乱系列少妇在线播放| 久久国产乱子免费精品| 精品一区二区三区av网在线观看| 日韩欧美免费精品| 欧美日韩一区二区视频在线观看视频在线 | 美女内射精品一级片tv| 天天躁夜夜躁狠狠久久av| 成人亚洲精品av一区二区| 亚洲熟妇中文字幕五十中出| 熟妇人妻久久中文字幕3abv| 免费观看的影片在线观看| av天堂在线播放| 99久久成人亚洲精品观看| 九九热线精品视视频播放| 精品福利观看| 狂野欧美白嫩少妇大欣赏| 国内揄拍国产精品人妻在线| 一级毛片aaaaaa免费看小| av在线播放精品| av在线蜜桃| 极品教师在线视频| 久久人人爽人人爽人人片va| 国产免费男女视频| 99久国产av精品国产电影| 欧美日韩在线观看h| 国产在线精品亚洲第一网站| 国产精品女同一区二区软件| 在线天堂最新版资源| 国产精品一二三区在线看| 高清日韩中文字幕在线| 中国美白少妇内射xxxbb| 高清毛片免费观看视频网站| 蜜臀久久99精品久久宅男| 午夜久久久久精精品| 听说在线观看完整版免费高清| 九九在线视频观看精品| 最新在线观看一区二区三区| 国产成年人精品一区二区| 欧美+日韩+精品| 久久国内精品自在自线图片| 国产真实伦视频高清在线观看| 国产成人a区在线观看| 日本爱情动作片www.在线观看 | 麻豆av噜噜一区二区三区| 97超视频在线观看视频| 成人永久免费在线观看视频| 给我免费播放毛片高清在线观看| 搡老岳熟女国产| 一级毛片aaaaaa免费看小| 卡戴珊不雅视频在线播放| 久久精品人妻少妇| 日本在线视频免费播放| 中国国产av一级| 成人特级黄色片久久久久久久| 欧美3d第一页| 久久精品影院6| 老熟妇乱子伦视频在线观看| 午夜激情欧美在线| 国产精品一及| 亚洲丝袜综合中文字幕| 国产一区二区三区在线臀色熟女| 不卡视频在线观看欧美| 高清午夜精品一区二区三区 | 91av网一区二区| 亚洲图色成人| 久久精品国产清高在天天线| 一级毛片aaaaaa免费看小| 免费大片18禁| 三级男女做爰猛烈吃奶摸视频| 1024手机看黄色片| 婷婷精品国产亚洲av在线| 一进一出抽搐动态| 亚洲精品在线观看二区| 久久久国产成人精品二区| 亚洲av.av天堂| 波多野结衣巨乳人妻| 一区二区三区四区激情视频 | 国产伦在线观看视频一区| 欧美激情在线99| 变态另类成人亚洲欧美熟女| 亚洲精品国产av成人精品 | 人妻少妇偷人精品九色| 人人妻人人澡欧美一区二区| 成年女人毛片免费观看观看9| 热99在线观看视频| 精品久久久噜噜| 欧美一区二区国产精品久久精品| 99久久九九国产精品国产免费| 国产欧美日韩一区二区精品| 91av网一区二区| 国产久久久一区二区三区| 国产精品一及| 精品久久久噜噜| 一夜夜www| 亚洲成人av在线免费| 国产精品嫩草影院av在线观看| 亚洲激情五月婷婷啪啪| 国产精品一区www在线观看| 男女啪啪激烈高潮av片| 1024手机看黄色片| 2021天堂中文幕一二区在线观| 又爽又黄a免费视频| 国产成人福利小说| 搞女人的毛片| 亚洲精品久久国产高清桃花| av天堂在线播放| 国产aⅴ精品一区二区三区波| 国产av不卡久久| 伦精品一区二区三区|