• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Retrieval and Analysis of Atmospheric Temperature Using a Rotational Raman Lidar Observation

    2016-07-12 12:59:08LIUYuliXIEChenboSHANGZhenZHAOMingCAOKaifaSUNYuesheng
    光譜學(xué)與光譜分析 2016年6期
    關(guān)鍵詞:探空儀平均偏差定標(biāo)

    LIU Yu-li, XIE Chen-bo, SHANG Zhen,ZHAO Ming, CAO Kai-fa, SUN Yue-sheng

    1. Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China 2. Department of Physics, Electronic Engineering Institute of PLA, Hefei 230037, China

    Retrieval and Analysis of Atmospheric Temperature Using a Rotational Raman Lidar Observation

    LIU Yu-li1,2, XIE Chen-bo1*, SHANG Zhen1,ZHAO Ming1, CAO Kai-fa1, SUN Yue-sheng2

    1. Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China 2. Department of Physics, Electronic Engineering Institute of PLA, Hefei 230037, China

    Due to the existence of the aerosol, the traditional method of measuring atmospheric temperature by using Rayleigh scattering technique has limitations in the low altitude. A pure rotational Raman lidar to get tropospheric temperature profiles is built. We carried out the atmospheric temperature observation in Beijing for two months. The atmospheric temperature profile was retrieved using the observed rotational Raman scattering signals. The effect of smooth window, calibration range and calibration constant on the retrieval precision of the atmospheric temperature was evaluated and analyzed. The results show that with the increase of smooth window, the mean absolute deviation between the lidar and radiosonde firstly decreases and then increases; in order to remove effectively the effect of random error in the return signals, while maintaining the fine vertical structure of temperature profile, it is better to choose the range between 600 and 1 200 m for smooth window. When calibration range is different, the mean absolute deviation between the lidar and radiosonde is varied, the relative variation of the deviation is about 0.07 K. When both calibration constant a and b increase or decrease, the mean deviation between the lidar and radiosonde increases; when one increases and another decreases, the mean deviation has a tendency to cancel each other out. The variance probability of a or b is not equal, and the variance of a and b is always contrary in the sign; the mean deviation is not sensitive to variance of a or b, and it is sensitive to the whole variance of a and b, about 91.7% of the mean deviation is in the range between -3 and 3 K. These results provide the theoretical basis for the selection of smooth window and calibration range in pure rotational Raman lidar data retrieval, and the reference for the error of actual temperature inversion result caused by lidar calibration constant.

    Lidar; Atmospheric temperature; Calibration constant; Error analysis

    Introduction

    The atmospheric temperature is an important meteorological parameter in atmospheric physics, weather forecasting and atmospheric environmental research. The meteorological sounding data analysis in recently several years indicated that the temperature in the lower troposphere increased obviously, the temperature in the upper troposphere and stratosphere decreased[1]. The change of atmospheric temperature distribution will also result in the changes of atmospheric physical and chemical, dynamic process and the distribution of trace elements. For example, the inversion structure of lower troposphere often inhibits the diffusion of the pollutants under the boundary layer, and causes the increasing concentration of the pollutants. So the temperature profile of troposphere is very important. By using the relationship between spectral line intensity and temperature of the N2or O2molecules, the rotational Raman lidar can measure the lower altitude atmospheric temperature, and it is hardly affected by aerosols and cirrus clouds[2], which has the highest accuracy and the simplest data processing method among four lidar methods in temperature measurement (pure rotational Raman method[2], Rayleigh method[3], differential absorption method[4], vibrational Raman method[5]). This technique of temperature measurement by a rotational Raman lidar was first proposed by Cooney in 1972[6]. In recent years, rotational Raman lidar technology has developed very quickly, both in domestic[7-9]and overseas[3,10-11]. In this paper, the measurement principle and system structure of pure rotational Raman lidar are briefly introduced. The retrieval results of atmospheric temperature profile are given. Different effects on temperature profile resulting from smooth window, calibration range and calibration constant are analyzed. Temperature inversion analysis provides not only the theoretical basis for choosing the appropriate smooth window and calibration range in pure rotational Raman lidar data retrieval, but the reference for the error of actual temperature inversion result caused by calibration constant.

    1 Measurement principle and system structure of pure rotational Raman lidar

    1.1 Measurement principle

    A 354.7 nm laser pulse is emitted in the atmosphere. The rotational Raman backscattered photon counts of N2and O2can be expressed as[7]

    (1)

    WhereCis lidar constant,N0is photon number of launched laser pulse,T′(z) is atmospheric transmission,zis the detection height,Jis the rotational quantum number,Tis temperature,βis backscatter coefficient, which can be written as

    (2)

    The implication and constant value related to physical quantities see references 7. According to Eq.(2), the pure rotational Raman spectral relative intensity of N2at different temperature is calculated, as shown in Fig.1. The spectral line intensity corresponding to high and low quantum number changes inconsistently with temperature, so atmospheric temperature can be derived from the return signals ratio of high and low-level quantum numbers of N2and O2molecules

    (3)

    WhereNJLandNJHare photon counts of low and high-level quantum numbers caused by lidar return signals, a and b are the calibration constants which can be derived by comparing the signal intensity ratio of the lidar with the temperature data obtained simultaneously by a radiosonde.

    Fig.1 Rotational Raman scattering spectrum and filter transmission for N2

    1.2 System structure

    The lidar structure is shown in Fig.2. The light source is a Nd∶YAG laser which provides a single pulse output energy of 180 mJ at the wavelength of 354.7 nm and a pulse repetition rate of 20 Hz. The laser is guided into the atmosphere by a steering mirror and the beam expander. The expander can reduce the laser beam divergence to 0.15 mrad. The backscattered light is collected by a Cassegrain telescope with diameter of 450 mm, focal length of 4m and receiving field of view of 1 mrad. After the light goes through an adjustable field stop,a collimating lens and a steering mirror, it is guided into a polychromator box. This box is made up by a series of interference filters. The central wavelengths (CWL) of the filters can be tuned by selecting angles of incidence (AOI). In this box, the light firstly passes the broadband interference filter IF0 with a transmission band of 8 nm full width at half maximum (FWHM), and this filter blocks the atmospheric background light while the elastic and both rotational Raman signals are transmitted. Secondly, the light passes the narrow band interference filter IF1, and this filter extracts elastic scattering signal of 354.7 nm used to detect the aerosol. Thirdly, the light passes the narrow band interference filter IF2, and this filter extracts rotational Raman scattering signal of 354.0 nm used to detect the temperature. Because the transmission band of IF2 is very close to the laser wavelength, we use two filters in the first rotational Raman channel. Finally, the light passes the narrow band interference filter IF3, and this filter extracts rotational Raman scattering signal of 353.0 nm used to detect the temperature. The data acquisition is performed with a Licel transient recorder. The filter parameters are listed in Table 1, and transmission curve is shown in Fig.1.

    Fig.2 Diagram of the rotational Raman lidar

    Table 1 Filter parameters

    AOI/degCWL/nmFWHM/nmPeaktransmissionIF00.0353.78.00.5IF15.5354.70.30.6IF2a6.5354.00.30.5IF2b6.5354.00.30.6IF36.1353.00.50.5

    2 Results and discussion

    The statistical temperature errors can be gotten through Eq.(3) and the error propagation theory[12]

    (4)

    Where we have assumed that errors in determining calibration constants are zero, Eq.(4) can be simplified to

    (5)

    (6)

    The tropospheric atmospheric temperature observation was conducted on the night of 2nd November 2014, in Beijing. Fig.3(a) shows a lidar measurement of the temperature profile and the simultaneous temperature profile measured by a radiosonde. Error bars in the figure include statistical temperature error only. Fig.3(b) shows deviations between the two sensors. The measurement was carried out in a clear atmosphere, and data were acquired for a 3.3 min observation time and a 5 min interval. For the calibration we chose a local radiosonde that was launched at 20:00 on 2 November 2014 in a distance of 30 km to the lidar site. Lidar data, acquired with a vertical resolution of 7.5 m, have been vertically smoothed to a final resolution of 600 m in order to reduce signal fluctuations. As can be seen from the Fig.3, tropospheric temperature decreases faster with increasing height, the lidar and radiosonde measurements appear to be in good agreement. A statistical temperature error reaches 1 K at height of 4.2 km, and 2 K at height of 7.1 km. Deviations between the two sensors are less than 2 K below 8 km. The lidar measurement results is smaller than radiosonde data below 1 km, which is associated with different overlap functions in the two

    Fig.3 (a) Temperature profile on 2 November 2014: lidar measurement (solid line) and radiosonde data (dot line); (b) Deviations between lidar and radiosonde

    rotational Raman channels and infiltrating aerosol. The lidar measurement of temperature uncertainty is bigger above 8 km, this is because the signal-to-noise ratio (SNR) decreases. This indicates that the lidar measurement of temperature distribution is reliable. To reduce the statistical error, we can increase the number of shots or smooth window.

    3 Factors affecting atmosphere temperature profile retrieval

    3.1 Smooth window

    When the calibration range of 1~7 km remains unchanged, the lidar data are smoothed with a gliding window with an average length of 300~2 000 m. The lidar measurement of temperature profile is more and more close to the radiosonde profile with the increment of smooth window. To a certain degree, the lidar measurement of temperature profile deviates from radiosonde profile at the low-level and high-level, as seen in Fig.4. This is because when the smooth window is small, the random error in the signals plays a leading role and the inversion temperature fluctuates near the radiosonde measurement value; when the smooth window is big, the random error in the signals is smoothed effectively and the spatial variation characteristics of temperature are also subsequently eliminated, then a system’s deviation between the retrieved temperature profile and the radiosonde measurement value appears. With the increase of the smooth window, the mean absolute deviation is smaller and smaller. It is easy to achieve stabilization stage for good signals, while it is difficult to reach stabilization stage for poor signals. After the stabilization stage, the mean absolute deviation begins to increase with the continued increase of smooth window, as seen in Fig.5. This is because a lidar measurement of the temperature profile deviates from radiosonde data at the low-level and high-level. When smooth window varies from 300 to 900 m, the mean absolute deviation at 20:10 decreases by 0.5 K;

    Fig.4 Temperature profiles under different smooth windows

    when smooth window varies from 900 to 2 000 m, the mean absolute deviation increases by 0.4 K. The results show that, to remove effectively the effect of random error in the return signals, while maintaining the vertical structure of temperature profile, it is better to choose the range between 600 and 1 200 m for smooth window, and the signals can’t be smoothly unlimitedly. This is the selection range of smooth window when pulse number is 4 000 shots. If the pulse number increases, the smooth window should be appropriate reduced.

    Fig.5 Mean absolute deviations under different smooth windows

    3.2 Calibration range

    Because the overlap funcuions in the two rotational Raman channels at low-level are different and the SNR is relatively small at high-level, we choose a middle range to calibrate. The SNR of this range is larger, and the signal is better. If we choose a calibration lowest altitude of 0.5 km and toppest altitude of 6,7 and 8 km respectively for 20:10 set of data, mean absolute deviation between lidar and radiosonde in the height range between 1 and 8 km is 0.59,0.53,0.54 K respectively shown in Fig.6, so we choose 7 km as the toppest altitude. When the toppest altitude is 7 km, the lowest altitude is 0.5,1,2 km respectively, mean absolute deviation in the height range between 1 and 8 km is 0.53,0.52 and 0.58 K respectively, so we choose 1 km as the lowest altitude. When the calibration range is in the range between 1 and 7 km for this set of data, the mean absolute deviation is the smallest, so choosing 1 to 7 km as the calibration range. Therefore, the calibration constanta=878.13,b=-3.19 can be obtained. When calibration range is different, the mean absolute deviation between the lidar and radiosonde is varied, the relative variation of the deviation is about 0.07 K.

    3.3 Calibration constant

    To estimate the influence of calibration constant on the retrieval precision of temperature, we have studied the variance of calibration constant. The radiosonde was launched at 20:00 on 2 November 2014, and a period of data (measurement time during 19:20 to 20:40) which is close in time to the radiosonde measurement was selected. Under the same smooth window and calibration range, the calibration constant a,relative error of a,the calibration constant b and relative error of b are shown in Table 2.

    Fig.6 Deviation profiles under different calibration ranges

    Table 2 a,b, and relative error of a and b on November 2, 2014

    timearelativeerror/%brelativeerror/%19:20916.423.5-3.33-3.419:25810.51-8.4-2.948.819:30839.63-5.1-3.055.519:35877.83-0.8-3.181.319:40881.65-0.4-3.210.419:45882.22-0.3-3.210.619:50845.53-4.5-3.084.719:55894.451.1-3.26-1.020:00853.84-3.5-3.113.520:05862.85-2.5-3.142.520:10878.26-0.8-3.191.020:15902.882.0-3.29-2.020:20926.304.7-3.39-5.020:25893.811.0-3.26-1.120:30997.4012.7-3.65-13.120:35859.82-2.9-3.142.820:40882.38-0.3-3.220.2

    As can be seen from Table 2, the calibration constants of each set of data are changing. This is mostly due to lidar system parameters such as the output laser wavelength,energy and detecting unit performance changing during the observation period, the differences of SNR of the Raman signals within the scope of calibration height, and the differences of measurement values between lidar and radiosonde in time and space during the calibration period. The variance of a is 4.7%, the variance of b is 4.9%. The variances of a and b is all greater than 4%. Next, we analyze the effect of the variance of a,b on temperature profile and the probability of mean deviation falling into the range between -3 and 3 K when both a and b change within 4%. Nine atmospheric temperature profiles are derived when b don’t change and a change by 4% with a step length of 1%, and when a don’t change and b change by 4% with a step length of 1% as shown in Figs.7—8. When a increases, the temperature profile moves to the right, and the temperature increases; when b increases, the temperature profile also moves to the right, and the temperature also increases. With the increase of a or b, the mean deviation between the lidar and radiosonde is a linear distribution, and the standard deviation between the lidar and radiosonde is the parabola shape as shown in Figs.9—10. When a increases to 4%, the mean deviation increases by 10.36 K, and the standard deviation increases by 0.14 K;

    Fig.7 Temperature profiles with b constant and a variable

    Fig.8 Temperature profiles with a constant and b variable

    when b increases to 4%, the mean deviation increases by 9.43 K, and the standard deviation increases by 0.36 K. The mean deviation caused by the variance of a is greater than b, so the variance of a is more likely to cause the translation of profile. The standard deviation caused by the variance of b is greater than a, so the variance of b is more likely to lead to the change of profile shape.

    Fig.9 Mean deviation between the lidar and radiosonde versus a or b

    Fig.10 Standard deviation between the lidar and radiosonde versus a or b

    When a changes -4%, -3%, -2%, -1%, 0, 1%, 2%, 3%, 4% and b also changes -4%, -3%, -2%, -1%, 0, 1%, 2%, 3%, 4%, respectively, there are 81 kinds of combinations, and 81 atmospheric temperature profiles are retrieved as shown in Fig.11. The middle profiles are dense, both profiles are thin. When both a and b increase to 4%, the retrieved temperature profile is the right-most line, and the mean deviation between lidar and radiosonde is about 20.9 K. When both a and b decrease to 4%, the retrieved temperature profile is the left-most line, and the mean deviation is about -19.4 K. When a increases to 4% and b decreases to 4%, or a decreases to 4% and b increases to 4%, the retrieved temperature profile is in the middle position, close to the radiosonde profile, and the mean deviation is about 0.5 K, -0.1 K, respectively. When both a and b increase or decrease, the retrieved temperature profile is away from radiosonde profile, and the deviation is bigger and bigger; When one increases and another decreases, the retrieved temperature profile is close to the radiosonde profile, and the deviation has a tendency to cancel each other out. Fig.12 shows a ratio between the number of deviations within a certain temperature range and the total number of deviations for the variance within 4% for both a and b. It can be seen that the changing tendency of three different time deviation weight curves are consistent and they are approximately a normal distribution. When both a and b change within 4%, 27% of the mean deviations are in the range between -3 and 3 K. This is a statistical rule when the variance probabilities of a and b are equal. if the variance probabilities of a and b are not equal, and the probability of the mean deviation falling into the range between -3 and 3 K should be multiplied by a weighting factor.

    Fig.11 Temperature profiles for the variance within 4% for both a and b

    Fig.12 Ratio between the number of deviations within a certain temperature range and the total number of deviations for the variance within 4% for both a and b

    Fig.13 can be plotted according to Table 2. As can be seen from the Fig.13, the majority of the variance of a is -3%, and the majority of variance of b is 3%, the variance probabilities of a and b are not equal. It can be seen from Eq.(4) that the variance of 1% for calibration constant a leads to temperature error of 1%, the variance of 1% for b leads to temperature error range between 1% and 0.85% at altitudes of 1~8 km. By Table 2, you can also see that the variances of a and b are always contrary in sign, a positive and a negative. Through the analysis of the above, we know that the deviation has a tendency to cancel each other out when the variances of a and b are contrary in sign. By the whole variance of a and b, we can see where is the approximate range of mean deviation.

    Fig.13 Ratio between the number of errors within a certain relative error range and the total number of errors for a or b

    Fig.14 Retrieved temperature profiles on November 16,17, 21 using calibration constant on November 13

    Under the same smooth window and calibration range, the 16th,17th and 21th calibration constant a,b, the relative error of a and b which is relative to the 13th calibration constant, retrieved the mean deviation between the lidar and radiosonde using the 13th calibration constant are shown in Tables 3—5.

    Table 3 a,b, relative error of a and b, and mean deviation on 16 November 2014

    As shown in Tables 3—5, both the variance of a and b may be very large, but no matter how large the variance of a or b is, their whole variance is basically in the range between -1% and 1%, so the mean deviation is essentially in the range between -3 and 3 K. Through data analysis for 16, 17, 21 November, about 91.7% of mean deviations are in the range between -3 and 3 K by calculation. The statistical regularity is right under the continuous observation, clear atmosphere and the same calibration range. If the calibration range is different, or light path adjusts, or the sky has cloud, the statistical regularity is not established.

    Table 4 a,b, relative error of a and b, and mean deviation on 17 November 2014

    Table 5 a,b, relative error of a and b, and mean deviation on 21 November 2014

    4 Conclusions

    The atmospheric temperature profile was retrieved by pure rotational Raman backscattering return signals. The statistical error is smaller than1K below 4.2 km and 2 K below 7.1 km, and deviations between the lidar and radiosonde are less than 2 K below 8 km with a laser energy of 180 mJ, averaged pulse number of 4 000 and smooth window of 600 m. The retrieval results of the atmospheric temperature are associated with smooth window, calibration range and calibration constant. When smooth window varies from 300 to 2 000 m, the mean absolute deviation between the lidar and radiosonde firstly decreases by 0.5 K and then increases by 0.4 K, so the smooth window can only choose values between a certain range. The calibration range of 1~7 km is chosen according to the smallest mean absolute deviation. Variance of calibration constant a or b leads to not only the translation of temperature profile, but the change of temperature profile shape, and the effect of b on profile shape is larger than a; When both a and b increase or decrease, the mean deviation between the lidar and radiosonde increases; when one increases and another decreases, the mean deviation has a tendency to cancel each other out. When the variance probabilities of a and b are equal and both a and b change within 4%, 27% of the mean deviation are in the range between -3 and 3 K. In fact the variance probability of a or b is not equal, their whole variance basically tends to the range between -1% and 1%, and about 91.7% of the mean deviations are in the range between -3 and 3 K. The analysis of these errors can be used as references for the selection of smooth window, calibration range and the error of actual temperature inversion results caused by lidar calibration constant.

    [1] Ding Yi-hui. China’s Climate Change: Science, Impact, Orientation and Countermeasures Study. Beijing: China Environmental Science Press, 2009.

    [2] Achtert P, Khaplanov M, Khosrawi F, et al. Atmos. Meas. Tech., 2013, 6: 91.

    [3] Chen W N, Tsao C C, Nee J B. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66: 39.

    生活垃圾焚燒時(shí)產(chǎn)生的NOx通常為300~400 mg/m3,其中約90%為NO,且以燃料型NO為主。燃料中的氮生成氮氧化物的途徑大致如下[1]:

    [4] Korb C L, Weng C Y. Appl. Opt., 1983, 22: 3759.

    [5] Wu Yong-hua, Li Tao, Zhou Jun. Chinese Journal of Atmospheric Sciences, 2002, 26(5): 702.

    [6] Cooney J A. J. Appl. Meteorol., 1972, 11(1): 108.

    [7] Jia Jing-yu, Yi Fan. Appl. Opt., 2014, 53(24): 5330.

    [8] Chen S, Qiu Z, Zhang Y, et al. J. Quant. Spectrosc. Radiat. Transfer., 2011, 112: 304.

    [10] Imaki M, Kawai H, Kato T, et al. Japanese Journal of Applied Physics, 2012, 51(4): 052401.

    [11] Hammann E, Behrendt A, Mounier F L. Atmospheric Chemistry and Physics, 2015, 15(3): 2867.

    [12] Russell P B, Swissler T J, McCormick M P. Appl. Opt., 1979, 18(22): 3783.

    *通訊聯(lián)系人

    TN958.98

    A

    基于純轉(zhuǎn)動(dòng)拉曼譜線激光雷達(dá)的大氣溫度反演分析

    劉玉麗1,2,謝晨波1*,尚 震1,趙 明1,曹開法1,孫越勝2

    1. 中國科學(xué)院安徽光學(xué)精密機(jī)械研究所大氣成分與光學(xué)重點(diǎn)實(shí)驗(yàn)室,安徽 合肥 230031 2. 解放軍電子工程學(xué)院物理教研室,安徽 合肥 230037

    由于氣溶膠的影響,傳統(tǒng)的瑞利散射法測量低空大氣溫度有一定的局限,為此開展了純轉(zhuǎn)動(dòng)拉曼法測量低空大氣溫度。利用純轉(zhuǎn)動(dòng)拉曼激光雷達(dá)在北京進(jìn)行了2個(gè)月的大氣溫度觀測,由觀測數(shù)據(jù)反演了溫度廓線。在基于N2和O2的純轉(zhuǎn)動(dòng)拉曼譜線特征進(jìn)行大氣溫度反演過程中,分析了平滑窗口、定標(biāo)范圍和定標(biāo)常數(shù)對溫度反演精度的影響。結(jié)果顯示隨著平滑窗口的增大,雷達(dá)和無線電探空儀測量的溫度之間的平均絕對偏差先減小后增加,為有效去除信號中隨機(jī)誤差的影響,同時(shí)保留溫度廓線的垂直結(jié)構(gòu),平滑窗口應(yīng)選擇600~1 200 m比較好。定標(biāo)范圍不同,雷達(dá)和無線電探空儀測量的溫度之間的平均絕對偏差就不同,相對變化約為0.07 K。當(dāng)定標(biāo)常數(shù)a,b都增大或都減小時(shí),雷達(dá)和無線電探空儀測量的溫度之間的平均偏差增大,當(dāng)一個(gè)增大另一個(gè)減小時(shí),平均偏差相互抵消; a,b的變化不是等幾率的,在符號上總是相反的; 平均偏差對a的變化不敏感,對b的變化也不敏感,對a與b的整體變化敏感,約91.7%平均偏差落入-3~3 K之間。該研究分析結(jié)果對純轉(zhuǎn)動(dòng)拉曼激光雷達(dá)數(shù)據(jù)反演中涉及的平滑窗口、定標(biāo)范圍的選擇提供了理論依據(jù),對激光雷達(dá)定標(biāo)常數(shù)造成實(shí)際溫度反演結(jié)果的誤差提供了參考。

    激光雷達(dá); 大氣溫度; 定標(biāo)常數(shù); 誤差分析

    2015-09-16,

    2015-12-08)

    Foundation item: the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation, Chinese Academy of Sciences (2013JJ01); National Natural Science Foundation of China (41005014, 41205020); China Special Fund for Meteorological Research in the Public Interest (GYHY201206037); the Key Research Program of the Chinese Academy of Sciences (KJZD-EW-TZ-G06-01); the Wanjiang Center for Development of Emerging Industrial Technology (12Z0104074)

    10.3964/j.issn.1000-0593(2016)06-1978-09

    Received: 2015-09-16; accepted: 2015-12-08

    Biography: LIU Yu-li,(1979—), Electronic Engineering Institute of PLA, Department of Physics, lecturer e-mail: 13956989561@139.com *Corresponding author e-mail: cbxie@aiofm.ac.cn

    猜你喜歡
    探空儀平均偏差定標(biāo)
    河北地方性震級量規(guī)函數(shù)與方位角校正值研究1
    銀川站探空儀換型平行觀測數(shù)據(jù)對比分析
    我國為世界大豆精準(zhǔn)選種“定標(biāo)”
    探空儀換型平行觀測數(shù)據(jù)對比分析
    基于恒星的電離層成像儀在軌幾何定標(biāo)
    FY-3C/VIRR西北太平洋區(qū)域海表溫度精度評估?
    基于角反射器的機(jī)載毫米波云雷達(dá)外定標(biāo)實(shí)驗(yàn)
    4m直徑均勻擴(kuò)展定標(biāo)光源
    秒級探空數(shù)據(jù)隨機(jī)誤差評估
    脛前動(dòng)脈穿刺可行性及心肺流轉(zhuǎn)下脛前動(dòng)脈與橈動(dòng)脈壓力監(jiān)測的一致性研究
    噜噜噜噜噜久久久久久91| 色哟哟·www| 国内揄拍国产精品人妻在线| 日韩制服骚丝袜av| 国产亚洲91精品色在线| 人人妻人人添人人爽欧美一区卜 | 99热6这里只有精品| 综合色丁香网| 久久午夜福利片| 夜夜骑夜夜射夜夜干| 男人爽女人下面视频在线观看| 成年av动漫网址| 日韩视频在线欧美| 国产精品麻豆人妻色哟哟久久| 久久精品国产a三级三级三级| av线在线观看网站| 99热这里只有是精品在线观看| 久久久久久久精品精品| 亚洲欧美日韩卡通动漫| 久久99热这里只频精品6学生| 一级毛片久久久久久久久女| 欧美精品国产亚洲| 99热网站在线观看| 国产 一区精品| 男的添女的下面高潮视频| 亚洲av中文字字幕乱码综合| 亚洲国产日韩一区二区| 九九在线视频观看精品| 大话2 男鬼变身卡| 纵有疾风起免费观看全集完整版| 另类亚洲欧美激情| 欧美xxⅹ黑人| 男女下面进入的视频免费午夜| 激情五月婷婷亚洲| 97热精品久久久久久| 国产黄色视频一区二区在线观看| 国产精品国产三级国产专区5o| 精品亚洲成a人片在线观看 | 日韩制服骚丝袜av| 精华霜和精华液先用哪个| 精品一区二区免费观看| 日本色播在线视频| 91久久精品电影网| 午夜福利网站1000一区二区三区| 午夜福利在线观看免费完整高清在| 伊人久久精品亚洲午夜| 成人高潮视频无遮挡免费网站| 性高湖久久久久久久久免费观看| 精品熟女少妇av免费看| 午夜福利在线在线| 边亲边吃奶的免费视频| 女人久久www免费人成看片| 99精国产麻豆久久婷婷| 一区在线观看完整版| 大陆偷拍与自拍| 一个人看视频在线观看www免费| 中文字幕久久专区| 亚洲人成网站高清观看| 成年女人在线观看亚洲视频| 丝瓜视频免费看黄片| 欧美日韩亚洲高清精品| 国产精品嫩草影院av在线观看| 18禁在线无遮挡免费观看视频| 精品久久国产蜜桃| 国内揄拍国产精品人妻在线| 欧美xxⅹ黑人| 亚洲精品乱码久久久久久按摩| 亚洲精品乱码久久久久久按摩| 十八禁网站网址无遮挡 | 联通29元200g的流量卡| 亚洲精华国产精华液的使用体验| 赤兔流量卡办理| 国产亚洲av片在线观看秒播厂| 99热这里只有精品一区| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久av不卡| 男男h啪啪无遮挡| 人妻系列 视频| 成人综合一区亚洲| 插逼视频在线观看| 亚洲伊人久久精品综合| 国产av国产精品国产| 免费在线观看成人毛片| av在线app专区| 99国产精品免费福利视频| 国产永久视频网站| 日本午夜av视频| 一本—道久久a久久精品蜜桃钙片| 一边亲一边摸免费视频| 狂野欧美激情性xxxx在线观看| 舔av片在线| 91精品国产国语对白视频| 免费观看的影片在线观看| 午夜福利影视在线免费观看| 最近的中文字幕免费完整| 狂野欧美激情性bbbbbb| 亚洲精品成人av观看孕妇| 又爽又黄a免费视频| 成人美女网站在线观看视频| 日韩成人伦理影院| 岛国毛片在线播放| 男女啪啪激烈高潮av片| 国产一区二区在线观看日韩| av.在线天堂| 男女下面进入的视频免费午夜| 久久韩国三级中文字幕| 极品教师在线视频| 国产伦精品一区二区三区四那| 免费观看av网站的网址| 久久久成人免费电影| 伦理电影免费视频| 校园人妻丝袜中文字幕| 国产免费一区二区三区四区乱码| 高清不卡的av网站| 久久6这里有精品| 日韩欧美精品免费久久| 成年免费大片在线观看| 久久精品熟女亚洲av麻豆精品| 在线精品无人区一区二区三 | 久久这里有精品视频免费| 成人无遮挡网站| 少妇的逼好多水| 18禁裸乳无遮挡免费网站照片| 久久久久性生活片| 国产成人a区在线观看| 五月开心婷婷网| 免费看日本二区| 国产无遮挡羞羞视频在线观看| 80岁老熟妇乱子伦牲交| 纵有疾风起免费观看全集完整版| 自拍欧美九色日韩亚洲蝌蚪91 | 色婷婷av一区二区三区视频| 久久影院123| 日韩免费高清中文字幕av| 丝瓜视频免费看黄片| 色网站视频免费| 亚洲伊人久久精品综合| 高清欧美精品videossex| 国产免费又黄又爽又色| 国产精品一区二区性色av| 亚州av有码| 一区二区三区乱码不卡18| 又爽又黄a免费视频| 九草在线视频观看| 亚洲欧美日韩无卡精品| 欧美国产精品一级二级三级 | 一边亲一边摸免费视频| 美女cb高潮喷水在线观看| 国产精品嫩草影院av在线观看| 尤物成人国产欧美一区二区三区| 伦理电影大哥的女人| 久久99热这里只有精品18| 观看美女的网站| 免费看av在线观看网站| 久久毛片免费看一区二区三区| 三级经典国产精品| 国产乱人视频| 直男gayav资源| 久久久久网色| 一级黄片播放器| 中文字幕免费在线视频6| 少妇精品久久久久久久| 午夜福利在线观看免费完整高清在| 在线观看免费日韩欧美大片 | 国产精品久久久久久精品古装| 国产又色又爽无遮挡免| 女性生殖器流出的白浆| 午夜日本视频在线| 成人特级av手机在线观看| 欧美精品亚洲一区二区| 午夜视频国产福利| 成人毛片60女人毛片免费| 亚洲精品,欧美精品| 高清日韩中文字幕在线| av一本久久久久| 永久网站在线| 国产精品一区二区性色av| 草草在线视频免费看| 日韩精品有码人妻一区| 嫩草影院新地址| 久久久久久久久久久丰满| 国产精品.久久久| 亚洲精品视频女| 欧美性感艳星| 美女视频免费永久观看网站| 亚洲中文av在线| 色吧在线观看| 国内精品宾馆在线| 精品视频人人做人人爽| 婷婷色麻豆天堂久久| 成人影院久久| 国产乱来视频区| 精品久久久噜噜| 久久久亚洲精品成人影院| 在线观看美女被高潮喷水网站| 亚洲成人一二三区av| .国产精品久久| 精品久久久久久电影网| 少妇猛男粗大的猛烈进出视频| 性色av一级| 亚洲国产毛片av蜜桃av| 亚洲成色77777| 少妇人妻 视频| 卡戴珊不雅视频在线播放| 国产老妇伦熟女老妇高清| 2018国产大陆天天弄谢| 国内精品宾馆在线| 亚洲精品国产av蜜桃| 久久国产精品男人的天堂亚洲 | 男女边摸边吃奶| 天堂8中文在线网| 中文字幕免费在线视频6| 欧美区成人在线视频| 亚洲自偷自拍三级| 国产乱来视频区| 亚洲久久久国产精品| 少妇被粗大猛烈的视频| 午夜免费鲁丝| 久久久a久久爽久久v久久| 91久久精品电影网| 综合色丁香网| 久久久久久久久久久丰满| 国产精品久久久久久久电影| 最新中文字幕久久久久| 大码成人一级视频| 视频中文字幕在线观看| 国产人妻一区二区三区在| 日日啪夜夜爽| a级一级毛片免费在线观看| 国产毛片在线视频| 国产免费福利视频在线观看| 午夜福利在线在线| av又黄又爽大尺度在线免费看| 色婷婷久久久亚洲欧美| 日韩视频在线欧美| 在线天堂最新版资源| 日韩大片免费观看网站| 老司机影院成人| 久久婷婷青草| 免费高清在线观看视频在线观看| 97在线视频观看| 国语对白做爰xxxⅹ性视频网站| 欧美日韩精品成人综合77777| 免费播放大片免费观看视频在线观看| 久久青草综合色| 久久精品久久久久久久性| 内射极品少妇av片p| 国产精品无大码| 99九九线精品视频在线观看视频| 久久精品国产a三级三级三级| 日韩欧美 国产精品| 亚洲av电影在线观看一区二区三区| 韩国高清视频一区二区三区| 国产在线视频一区二区| 少妇丰满av| 精品久久久精品久久久| 小蜜桃在线观看免费完整版高清| 美女主播在线视频| 欧美zozozo另类| 热re99久久精品国产66热6| kizo精华| 国产精品国产三级专区第一集| 久久国产亚洲av麻豆专区| 欧美成人午夜免费资源| 大陆偷拍与自拍| 搡女人真爽免费视频火全软件| 国产乱人视频| 一级片'在线观看视频| 国产免费一区二区三区四区乱码| 多毛熟女@视频| 成人18禁高潮啪啪吃奶动态图 | 久久久久久久亚洲中文字幕| 精品亚洲成国产av| 国产高潮美女av| av又黄又爽大尺度在线免费看| 久久久久网色| 在现免费观看毛片| 成人综合一区亚洲| 国产有黄有色有爽视频| 久久影院123| 老熟女久久久| 22中文网久久字幕| 久久 成人 亚洲| 久久精品国产鲁丝片午夜精品| 肉色欧美久久久久久久蜜桃| 九色成人免费人妻av| 男女啪啪激烈高潮av片| 久久精品久久久久久噜噜老黄| 久久久久国产网址| 五月伊人婷婷丁香| 97热精品久久久久久| 免费人成在线观看视频色| 日本午夜av视频| 男人和女人高潮做爰伦理| 日韩一区二区视频免费看| 1000部很黄的大片| 国产精品免费大片| 99热全是精品| 99re6热这里在线精品视频| 欧美日韩精品成人综合77777| 日韩亚洲欧美综合| 免费大片黄手机在线观看| 亚洲av福利一区| 18禁动态无遮挡网站| 两个人的视频大全免费| 亚洲精品久久午夜乱码| 国产大屁股一区二区在线视频| 2022亚洲国产成人精品| 在线观看美女被高潮喷水网站| 最近中文字幕高清免费大全6| 国产精品成人在线| 久久97久久精品| 成人午夜精彩视频在线观看| 亚洲综合色惰| 一级av片app| 制服丝袜香蕉在线| 久久久久久久精品精品| 久久久久久久久久久丰满| 国产极品天堂在线| 国产亚洲精品久久久com| 国产成人午夜福利电影在线观看| 成人黄色视频免费在线看| 大片免费播放器 马上看| 最近最新中文字幕大全电影3| 在线看a的网站| 高清不卡的av网站| 国产在线男女| 亚州av有码| 免费看av在线观看网站| 最近中文字幕2019免费版| 九九久久精品国产亚洲av麻豆| 男男h啪啪无遮挡| 在线免费十八禁| 国产成人精品婷婷| 欧美zozozo另类| 亚洲丝袜综合中文字幕| 日本色播在线视频| 亚洲精品第二区| 国产在线免费精品| 国国产精品蜜臀av免费| 老师上课跳d突然被开到最大视频| 国内少妇人妻偷人精品xxx网站| 99九九线精品视频在线观看视频| 黄色视频在线播放观看不卡| 爱豆传媒免费全集在线观看| 日本爱情动作片www.在线观看| 国产91av在线免费观看| 国产极品天堂在线| 毛片一级片免费看久久久久| 久久精品熟女亚洲av麻豆精品| 天天躁夜夜躁狠狠久久av| 久久午夜福利片| 久久鲁丝午夜福利片| 自拍欧美九色日韩亚洲蝌蚪91 | 中文字幕精品免费在线观看视频 | 欧美日本视频| 免费不卡的大黄色大毛片视频在线观看| 久热久热在线精品观看| 国产精品一区二区性色av| 综合色丁香网| 成年女人在线观看亚洲视频| 在线观看一区二区三区| 久久久久久久精品精品| 久久99精品国语久久久| 久久久久人妻精品一区果冻| 天堂俺去俺来也www色官网| 久久久久国产网址| www.色视频.com| 成年人午夜在线观看视频| 久久鲁丝午夜福利片| 国产高清国产精品国产三级 | 夜夜看夜夜爽夜夜摸| 国产一区亚洲一区在线观看| 国产美女午夜福利| 五月开心婷婷网| 99久久中文字幕三级久久日本| 精品久久久精品久久久| 久热这里只有精品99| 国产乱人视频| 国产伦精品一区二区三区四那| 免费大片黄手机在线观看| 又大又黄又爽视频免费| 中文字幕精品免费在线观看视频 | 国产av一区二区精品久久 | 亚洲国产精品一区三区| 国产欧美日韩一区二区三区在线 | 欧美3d第一页| 性高湖久久久久久久久免费观看| 十分钟在线观看高清视频www | 毛片女人毛片| 少妇高潮的动态图| 久久久久人妻精品一区果冻| 亚洲av成人精品一区久久| 在线观看一区二区三区| 人妻少妇偷人精品九色| 99国产精品免费福利视频| 97超视频在线观看视频| 国产精品嫩草影院av在线观看| 搡老乐熟女国产| 激情 狠狠 欧美| 九九爱精品视频在线观看| 午夜福利在线在线| 天美传媒精品一区二区| 亚洲国产精品国产精品| 我的老师免费观看完整版| 精品国产露脸久久av麻豆| 黄片wwwwww| 国产片特级美女逼逼视频| a级一级毛片免费在线观看| 日韩不卡一区二区三区视频在线| 亚洲色图综合在线观看| 精品一品国产午夜福利视频| 美女国产视频在线观看| 成年av动漫网址| 亚洲真实伦在线观看| 我要看黄色一级片免费的| 日日摸夜夜添夜夜添av毛片| 久久99蜜桃精品久久| 欧美xxxx黑人xx丫x性爽| 老师上课跳d突然被开到最大视频| 少妇 在线观看| 国产精品人妻久久久久久| 日日撸夜夜添| 色视频www国产| 女人久久www免费人成看片| 啦啦啦在线观看免费高清www| 久久精品久久久久久久性| 亚洲精品,欧美精品| 人妻系列 视频| 永久免费av网站大全| 久久国内精品自在自线图片| 熟女电影av网| 中文字幕精品免费在线观看视频 | 国产精品偷伦视频观看了| 最近2019中文字幕mv第一页| 边亲边吃奶的免费视频| 亚洲四区av| 欧美日韩综合久久久久久| 最近中文字幕高清免费大全6| 蜜桃在线观看..| 有码 亚洲区| 国产精品麻豆人妻色哟哟久久| av免费在线看不卡| 亚洲精品国产av蜜桃| 欧美精品一区二区免费开放| 国产亚洲一区二区精品| 午夜日本视频在线| 欧美精品亚洲一区二区| 国产女主播在线喷水免费视频网站| 国产亚洲精品久久久com| 最近中文字幕2019免费版| 中文字幕av成人在线电影| 国产av码专区亚洲av| 青春草亚洲视频在线观看| 精品亚洲成国产av| 男女下面进入的视频免费午夜| 超碰97精品在线观看| 婷婷色麻豆天堂久久| 黄色视频在线播放观看不卡| 精品人妻偷拍中文字幕| 国产精品99久久99久久久不卡 | 国产精品一及| 又爽又黄a免费视频| 人妻夜夜爽99麻豆av| 美女主播在线视频| 国产成人精品婷婷| 80岁老熟妇乱子伦牲交| 日本猛色少妇xxxxx猛交久久| 内地一区二区视频在线| 亚洲成人中文字幕在线播放| 亚洲精品乱码久久久v下载方式| 少妇被粗大猛烈的视频| 极品教师在线视频| 久久99热这里只有精品18| 99久久人妻综合| 一级毛片 在线播放| 成人美女网站在线观看视频| 久久国产亚洲av麻豆专区| 人妻 亚洲 视频| av播播在线观看一区| 免费av不卡在线播放| 日本色播在线视频| 99久久综合免费| 久久婷婷青草| 五月伊人婷婷丁香| 亚洲婷婷狠狠爱综合网| 乱码一卡2卡4卡精品| 久久精品人妻少妇| 精华霜和精华液先用哪个| 草草在线视频免费看| 久久 成人 亚洲| 在线亚洲精品国产二区图片欧美 | 日本黄色片子视频| 永久免费av网站大全| 久久精品久久精品一区二区三区| 美女中出高潮动态图| 久久久久久伊人网av| 91精品国产九色| 午夜福利高清视频| 97热精品久久久久久| 十八禁网站网址无遮挡 | 青春草亚洲视频在线观看| 日本欧美视频一区| 亚洲av.av天堂| 久久久久久久大尺度免费视频| 纵有疾风起免费观看全集完整版| 久久久久精品性色| 亚洲精品日韩av片在线观看| 乱码一卡2卡4卡精品| 噜噜噜噜噜久久久久久91| 黄色配什么色好看| 国产精品熟女久久久久浪| 午夜福利在线在线| 亚洲图色成人| 精品久久国产蜜桃| 久久久久国产网址| 久久久色成人| 黄片无遮挡物在线观看| 特大巨黑吊av在线直播| 日韩中文字幕视频在线看片 | 国产成人a∨麻豆精品| 身体一侧抽搐| 亚洲成人一二三区av| 亚洲av.av天堂| 在线播放无遮挡| 嫩草影院入口| 22中文网久久字幕| 亚洲精品国产av蜜桃| 国产精品国产三级国产av玫瑰| 赤兔流量卡办理| 91久久精品国产一区二区成人| 国产成人精品久久久久久| 韩国高清视频一区二区三区| 99热网站在线观看| 国产又色又爽无遮挡免| 六月丁香七月| 91久久精品电影网| 亚洲国产成人一精品久久久| 啦啦啦在线观看免费高清www| 国产在线视频一区二区| 日本欧美国产在线视频| 国产精品无大码| 亚洲第一av免费看| 国精品久久久久久国模美| 边亲边吃奶的免费视频| 女的被弄到高潮叫床怎么办| 亚洲av福利一区| 久久精品国产亚洲av涩爱| 日本一二三区视频观看| 在线观看免费日韩欧美大片 | 18禁动态无遮挡网站| 一边亲一边摸免费视频| 国产欧美亚洲国产| 毛片女人毛片| 国产真实伦视频高清在线观看| 老师上课跳d突然被开到最大视频| 国产视频首页在线观看| 国产男女超爽视频在线观看| 欧美xxxx性猛交bbbb| 亚洲美女视频黄频| 国产精品不卡视频一区二区| 精品久久久精品久久久| 亚洲精品,欧美精品| 又爽又黄a免费视频| 欧美一区二区亚洲| av.在线天堂| av不卡在线播放| 在线天堂最新版资源| 激情五月婷婷亚洲| 亚洲aⅴ乱码一区二区在线播放| 18+在线观看网站| 国产精品精品国产色婷婷| 欧美人与善性xxx| 久久97久久精品| 日韩国内少妇激情av| 日韩成人av中文字幕在线观看| 在线观看免费视频网站a站| 成人国产av品久久久| 亚洲精品国产色婷婷电影| 国产av一区二区精品久久 | 最近的中文字幕免费完整| 久久久亚洲精品成人影院| 最近2019中文字幕mv第一页| 午夜福利高清视频| 三级国产精品片| 亚洲精品色激情综合| 在线精品无人区一区二区三 | 黄片无遮挡物在线观看| 中文字幕久久专区| 91久久精品国产一区二区成人| 婷婷色麻豆天堂久久| 老师上课跳d突然被开到最大视频| 久久综合国产亚洲精品| 永久网站在线| 久久久久久久大尺度免费视频| 男女国产视频网站| 九九在线视频观看精品| 国产69精品久久久久777片| 大码成人一级视频| 九草在线视频观看| 久久精品国产亚洲网站| 国产男人的电影天堂91| 国产在线免费精品| 免费黄色在线免费观看| 99久久中文字幕三级久久日本| 久久久久久久久久成人| 成年人午夜在线观看视频| 久久久久精品久久久久真实原创| 国产午夜精品一二区理论片| 插阴视频在线观看视频| 欧美日韩视频精品一区| 免费人成在线观看视频色| 欧美成人a在线观看| 免费人妻精品一区二区三区视频| 一级爰片在线观看|