• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of Plant-Pathogenic Fungi Using Fourier Transform Infrared Spectroscopy Combined with Chemometric Analyses

    2016-07-12 12:47:54CHAIliWANGYikaiZHUFadiSHIYanxiaXIEXuewenLIBaoju
    光譜學與光譜分析 2016年11期

    CHAI A-li, WANG Yi-kai, ZHU Fa-di, SHI Yan-xia, XIE Xue-wen, LI Bao-ju*

    1. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China 2. Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing 100026, China

    Identification of Plant-Pathogenic Fungi Using Fourier Transform Infrared Spectroscopy Combined with Chemometric Analyses

    CHAI A-li1, WANG Yi-kai2, ZHU Fa-di1, SHI Yan-xia1, XIE Xue-wen1, LI Bao-ju1*

    1. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China 2. Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing 100026, China

    Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed. The present investigation aimed to create a simple but sophisticated method for the identification of plant-pathogenic fungi by Fourier transform infrared (FTIR) spectroscopy. In this study, FTIR-attenuated total reflectance (ATR) spectroscopy was used in combination with chemometric analysis for identification of important pathogenic fungi of horticultural plants. Mixtures of mycelia and spores from 27 fungal strains belonging to nine different families were collected from liquid PD or solid PDA media cultures and subjected to FTIR-ATR spectroscopy measurements. The FTIR-ATR spectra ranging from 4 000 to 400 cm-1were obtained. To classify the FTIR-ATR spectra, cluster analysis was compared with canonical vitiate analysis (CVA) in the spectral regions of 3 050~2 800 and 1 800~900 cm-1. Results showed that the identification accuracies achieved 97.53% and 99.18% for the cluster analysis and CVA analysis, respectively, demonstrating the high potential of this technique for fungal strain identification.

    Fourier transform infrared spectroscopy (FTIR); Plant-pathogenic fungi; Identification; Cluster analysis; Canonical vitiate analysis

    Introduction

    Fungi are considered as serious pathogens to many plants and can cause a severe economic damage. Early detection and identification of these pathogens is crucial for timely control. The current methods available for identification of fungi are time consuming and not always very specific. Typically, fungi cultures, DNA-based methods, and antibody-based detection schemes are used to identify fungi[1-3]. Cultural methodology is time-consuming, in some cases even for specialists, since strains must be grown in pure culture and need to be examined by microscopy[4]. Molecular biology method has been reported as one of the most rapid and sensitive methods for the identification of pathogens, but they are not yet in large-scale use due to their high costs and high requirements for skills[5]. Serological methods based on specificity of the antigen-antibody reaction in immune systems are not always highly specific[6]. Therefore, there is a need for the development of more direct, rapid, and sensitive techniques for identification of plant-pathogenic fungi.

    Fourier transform infrared (FTIR) spectroscopy has been proved to be a perfect tool for identifying microorganisms[7]. Biological molecules such as lipids, proteins, nucleic acids, polysaccharides, and phosphate-carrying compounds all generate specific FTIR spectra, which provide biochemical information regarding the molecular composition, structure, and interaction in cells. The molecular compositions and cell structures differ among different microorganisms[8]. Therefore, based on the FTIR spectra of the whole cell, single microorganisms could be identified. In the last decades, FTIR spectroscopy has successfully been applied in various fields for the identification of single cell microorganisms[9-10], such as bacteria[11-13], yeasts[14-16]and actinomycetes[17]. However, few studies have focused on the identification of multicellular fungal mycelia and spores—the important growth forms of the vast majority of fungi—based on FTIR spectroscopy. In order to obtain representative reproducible spectra of mycelia and spores mixture, the procedure established for single cells should be modified for sample preparation and measurement techniques.

    FTIR spectroscopy equipped with attenuated total reflection (ATR) is considered as one of simple, direct, flexible and sensitive technique, it offers possibility for directly investigating the chemical compositions of various materials on smooth surfaces[18-19]. This technique has been employed for discrimination of microorganisms through a very simple sample preparation[20-21]. However, fungal identification by FTIR-ATR spectroscopy is still a challenging task as vast information is made available from the microbial structure without the extraction of cell materials. The questions that originate from microfungal spectroscopic studies are as follows. (1) How to obtain representative reproducible spectra of fungal mycelia and spores mixture? (2) What information should be used for fungal spectra identification?

    Cluster analysis and canonical vitiate analysis (CVA) are two other chemometric analyses that can be used to group data objects on the basis of similarities among the samples. Cluster analysis and CVA analysis are widely recognized as powerful tools in obtaining information about relations within a dataset[22-23].

    The aim of present study was to use FTIR-ATR spectroscopy for identification of various pathogenic fungi strains of horticultural plants. Twenty seven important plants-pathogenic fungi from vegetables, flowers and fruits represent different hierarchic fungal phyla, orders and families were selected in the study in order to obtain a representative overview of the classification potential. Cluster analysis and canonical vitiate analysis (CVA) were used to classify the FTIR-ATR spectra of fungal strains.

    1 Materials and Methods

    1.1 Fungal Strains

    A total of 27 fungal strains that cause severe damages to horticultural plants were selected for this study. The 27 strains belong to nine phylogenetic families from five classes and three phyla. OnlySclerotiniasclerotiorumis a member of the phylum Ascomycota,Phytophthoracapsici,Phytophthoracactorum,PythiumaphanidermatumandPythiumdebaryanumare members of phylum Chromista, whereas the remaining 22 strains are Anamorphic fungi. The hierarchy of the fungal genera was derived from CABI databases and is given in Table 1. Strains tested were deposited in the collection of the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences.

    1.2 Mycelia Harvest

    Selected fungal strains were grown on PDA (Potato Dextrose Agar) plates at 26 ℃. A pre-culture aged 5~10 days was used for inoculation. Fungal mycelia and spores were produced using two different culture methods.

    (1) Liquid PD (Potato Dextrose) culture. A small agar plug from precultured plate was inoculated in 150 mL liquid PD medium in a 250 mL flask, and kept shaking at 200 rpm for 7~10 days after inoculation. Fungal mycelia and spores were harvested in the late log growth phase, washed thrice with sterile 0.9% saline solution to remove medium, then fungal were desiccated under vacuum (0.1 bar) for several hours, and finally pulverized in 2 mL test tubes by a ball mill.

    (2) Cellophane-overlay PDA solid culture. A small agar plug was inoculated in cellophane-overlay PDA in a 9 cm petri dish and kept static. After sufficient mycelia had developed for subsequent measurements (5~15 days), mycelia and spores were scraped off the cellophane. For each strain, mixtures of mycelia and spores were always harvested after the same number of days, frozen in liquid nitrogen, stored at -80 ℃ until freeze drying and pulverizing by a ball mill in 2 mL test tubes.

    The experiment was repeated three times, which means that mixtures of mycelia and spores from the same strains were produced in three independent experimental sets in August 2010 (PD culture), November 2011 (PD culture) and January 2012 (PDA culture), respectively. This would give information on possible effects of annual development and growth patterns on fungal spectra discrimination. Moreover, three replicates were inoculated per strain in each sets (for a total of 9 replicates per strain) in order to check for the reproducibility of fungal FTIR spectra. Samples of experiments in 2010, 2011 and 2012 were indicated by adding “a”, “b” and “c” to the strain names, whereas replicates of the same sets were indicated by adding “1”, “2” and “3” (e.g.Alternariasolania 1).

    1.3 Spectral Measurement

    Fourier transform infrared spectra were recorded using a spectrometer (Spectrum 100,Perkin-Elmer Corporation, USA) equipped with deuterated tryiglycine sulphate (DTGS) detector. The sampling station was equipped with an attenuated total reflection (ATR) accessory (PIKE technology, USA), which consisted of transfer optics within the chamber, through which infrared radiation was directed to a detachable ATR zinc selenide crystal mounted in a shallow trough for sample containment. The spectrometer system was controlled by a computer running Spectrum Version 6.0 software.

    Table 1 Hierarchy of the fungal strains included in this study

    The FTIR-ATR spectra were acquired from 4 000 to 800 cm-1with a spectra resolution of 4 cm-1. For each FTIR-ATR spectrum, a number of 64 scans were collected in transmission mode and co-added to improve the signal-to-noise ratio of the spectrum. A background measurement (air) was recorded before each measurement.

    1.4 Data Analysis

    All fungal FTIR-ATR spectra were evaluated by cluster analysis and canonical vitiate analysis (CVA). Data analysis was carried out using the SAS version 9.0 (SAS Institute Inc., USA). Firstly, the spectra were normalized. Then first derivatives with 9 smoothing points were independently vector-normalized.

    Cluster analysis was used to display similarities of fungal spectra graphically in a dendrogram. The dendrogram was constructed using Pearson’s correlation coefficient and Ward’s algorithm. The spectral distance, also calleddvalue, is a measure of the similarity of the spectra of two strains. Thedvalues between all spectra were calculated. The resulting distance matrix provided the basis for cluster analysis.

    For CVA analysis, the principal component analysis (PCA) data compression method was firstly applied to transform the data set, which consisted of a large number of inter-correlated variates (wavenumbers), into a reduced new set of variates. Then CVA analysis was performed on the resulting compressed set of spectral variates to classify the fungal spectra.

    2 Results and discussion

    2.1 Selection of Spectral Windows

    The classification of fungal spectra depends on inter- versus inter-strain spectral differences. To visualize these differences, mean FTIR-ATR spectra of fungal mycelia and spores mixtures were shown in Fig.1. As an example, one strain of the nine phylogenetic families included in this study was selected. The spectra were screened for those spectral windows that showed the most pronounced differences between the strains tested. The spectral windows were known to characteristic for certain chemical structures: [W1] 3 700~3 050 cm-1, O—H and N—H bands regions of various micromolecules; [W2] 3 050~2 800 cm-1, the fatty acid region; [W3] 1 800~1 485 cm-1, the amide Ⅰ and amide Ⅱ bands from proteins and peptides; [W4] 1 485~1 185 cm-1, the mixed regions with bands from proteins, fatty acid and phosphate compounds; [W5] 1 185~900 cm-1, the polysaccharides region; [W6] 900~800 cm-1, the true fingerprint region where most of the bands were unassigned to specific cellular compounds or functional groups. Spectral differences between the strains were especially visible in the [W2], [W3], [W4] and [W5] according to the first derivative spectra (Fig.2). Therefore, the spectra regions of 3 050~2 800 and 1 800~900 cm-1corresponding to various characteristic peaks of fungal strains were selected for cluster analysis and CVA analysis.

    Fig.1 FTIR-ATR spectra of mycelia and spores mixtures from nine fungal strains

    Mean spectra of 9 replicates (6 from liquid PD, 3 from solid PDA media cultures) per strain from 3 independent experimental sets. Subranges W2—W5 were used for classification of fungal spectra

    Fig.2 First derivatives of FTIR-ATR spectra from nine fungal strains

    3.2 Cluster Analysis of Fungal FTIR-ATR Spectra

    Cluster analysis was performed for grouping all spectra according to their spectral similarity. Strikingly, uhe cluster analysis grouped all the nine replicate spectra of each strain in separate groups, apart from a few exceptions, as will be discussed bellowed.

    In all three experiments, 25 out of 27 strains were clustered cosrectly in separate groups (Fig.3). The only two strains for which not all nine replicates were placed in one groups werePhytophthoracactorumandPythiumaphanidermatum. Specifically, five out of nineP.cactorumspectra (Fig.3:P.cactorumb3, a2, c3, b2 and a1, marked by ←1) were separated from the otherP.cactorum. Furthermore, these fiveP.cactorumspectra were grouped out of the other members of Chromista (Fig. 3:←3), e.g.Phytophthoracapsici,PythiumaphanidermatumandPythiumdebaryanum. In contract, the spectrum b1 ofP.aphanidermatum(Fig.3:←2) clustered with the rest ofP.cactorumspectra (P.cactorumc2, b1, c1 and a3). Only these 6 out of the total of 243 spectra, i.e. 2.47% of all spectra, definitely grouped to the wrong strain sub-cluster at the strains level and have to be considered wrongly classified.

    The ambiguous clustering of theP.cactorumspectra was probably caused by large differences between the nine replicate spectra, which resulted in the extraordinary high heterogeneity of 4.1 (Fig.3). This heterogeneity was much higher than that within all other strains. The variability between replicates of other strains ranged mostly below 0.2 heterogeneity in all nine replicates, only with the exception ofF.moniliforme(1.0) (Fig.3). The spectrum b1 ofP.aphanidermatumwas placed in one group with four spectra ofP.cactorum, this may be explained by the spectral distance between these two strains. The spectral distance betweenP.cactorumandP.aphanidermatumwas 0.6, which was the smallest inter-strains spectral distance of all tested strains (Table 2). The spectrum distances betweenP.cactorumand other Chromista fungal strains were relatively lower (Table 2: 0.6, 0.8, 1.1) than the rest of the distance metric, indicating that the strains within this group were compositionally more similar to one another than with the other strains.

    2.3 Canonical Vitiate Analysis of Fungal FTIR-ATR Spectra

    As an alternative classification method, CVA analysis was performed to evaluate the same set of fungal spectra. Briefly, FTIR-ATR spectra of fungal strains were subjected to PCA data compression, and followed by CVA analysis. PCA explained 95% of the total variability using the first eight principal components (PCs), whereas PC1 and PC2 were particularly representative of the spectral information and accounted for 78% of the total variance. Figure 4 shows the CVA plots for the 27 fungal strains using the first two PCs. The results showed that CVA analysis correctly assigned 99.18% of spectra to their respective groups with first two PCs, i.e. 241 of the 243 fungal spectra could be classified correctly. Only two out of nineP.cactorumspectra were misclassified toP.aphanidermatum. Moreover, the misclassified spectra ofP.cactorumandP.aphanidermatumin the CVA analysis were identical to the cluster analysis.

    Fig.3 Cluster analysis of fungal FTIR spectral from all three experiments

    (a)—(c): Indicate samples of experiments 1~3, respectively; “1—3”: Indicate replicates of the same strain. Numbers at dendrogram backbones indicate heterogeneity. Cluster analysis was done using Ward’s algorithm; spectral ranges selected were 3 050~2 800 and 1 800~900 cm-1

    Table 2 Distance measures between strains expressed as heterogeneity given for mean value of 9 replicates per strain from 3 independent experimental sets

    Notes: 1:A.brassicicola; 2:A.solani, 3:A.cucumerina;4:C.cucumernum;5:C.cassiicola;6:C.apii;7:C.canescens, 8:S.solani;9:B.cinerea;10:T.roseum;11:V.dahliae;12:P.penicillium;13:F.oxysporum;14:F.thapsinum;15:F.solani;16:F.semitectum;17:M.roridum;18:P.guepinii;19:C.orbiculare;20:P.vexans;21:A.citrullina;22:R.solani;23:S.sclerotiorum;24:P.capsici;25:P.cactorum;26:P.aphanidermatum;27:P.debaryanum

    Fig.4 CVA analysis of fungal FTIR-ATR spectra with PC1 and PC2 scores

    3 Conclusions

    In the present investigation, FTIR-ATR spectroscopy as a novel technique procedure in combination with cluster analysis and CVA analysis was evaluated for identification of important fungal pathogens that cause severe damage to horticultural plants. Few studies have successfully investigated on the identification of microfungi based on FTIR spectroscopy up till now, partly due to the preparation of living mycelia and spore cells extremely difficult. In this study, mixtures of mycelia and spores—the important growth form—from 27 fungal strains were collected from liquid PD and solid PDA media cultures and subjected to FTIR-ATR spectroscopy measurements. The classification accuracies achieved 97%~99% for both cluster and CVA analysis methods, demonstrating the high potential of this technique for fungal strains identification.

    The results obtained here can serve as a basis for the development of a database for species identification and strain characterization of fungal pathogens. Considering the simplicity, rapidity, and low cost of the method presented, FTIR-ATR spectroscopy could be developed into a routine analysis tool for identification of microfungi, as it is less time-consuming than the conventional culture method and less expensive compared to the molecular approaches.

    [1] Myint M S, Johnson Y J, Tablante N L, et al. Food Microbiol., 2006, 23(6): 599.

    [2] Hein G, Flekna G, Krassning M, et al. J. Microbiol. Methods, 2006, 66(3): 538.

    [3] Fischer G, Dott W. Int. J. Hyg. Environ. Health, 2002, 205(6): 433.

    [4] Jong S C, Davis E. Mycopathologia, 1978, 66(3): 153.

    [5] Correa A A, Toso J, Albarnaz J D, et al. J. Food Quality, 2006, 29(5):458.

    [6] Lau A, Chen S, Sleiman S, et al. Future Microbiol., 2009, 4(9): 1185.

    [7] Gupta B S, Jelle B P, Gao T. Int. J. Spectrosc., 2015, Article ID 521938.

    [8] Sivakesava S, Irudayaraj J, DebRoy C. Trans. ASAE, 2004, 73(3): 951.

    [9] Naumann D, Helm D, Labischinski H. Nature, 1991, 351(6321): 81.

    [10] Naumann A. Analyst, 2009, 134(6):1215.

    [11] Baldauf N A, Rodriguez-Romo L A, Yousef A E, et al. Appl. Spectrosc., 2006, 60(6): 592.

    [12] Li H, Tripp C P. Appl. Spectrosc., 2008, 62(9): 963.

    [13] Samuels A C, Snyder A P, Emge D K, et al., Appl. Spectrosc., 2009, 63(1): 14.

    [14] Rellini P, Roscini L, Fatichenti F, et al. FEMS Yeast Research, 2009, 9(3): 460.

    [15] Corte L, Rellini P, Roscini L, et al. Anal. Chim. Acta, 2010, 659: 258.

    [16] Wenning M, Seiler H, Scherer S. Appl. Environ. Microbiol., 2002, 68(10): 4717.

    [17] Haag H, Gremlich H U, Bergmann R, et al. J. Microbiol. Methods, 1996, 27: 157.

    [18] Kos G, Lohninger H, Krska R. Anal. Chem. 2003, 75(5): 1211.

    [19] Schmitt J, Flemming H-C. Int. Biodeter. Biodegr, 1998, 41(1): 1.

    [20] Santos C, Fraga M E, Kozakiewicz Z, et al. Res. Microbiol.,2010, 161(2): 168.

    [21] Salman A, Tsror L, Pomerantz A, et al. Spectroscopy, 2010, 24: 261.

    [22] Poulli K I, Mousdis G A, Georgiou C A. Anal. Chim. Acta, 2005, 542(2): 151.

    [23] Forina M, Oliveri P, Lanteri S, et al. Chemometr. Intell. Lab, 2008, 93(2): 132.

    O657.3

    A

    Foundation item: the National Natural Science Foundation of China (31201473), the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-IVFCAAS), and was funded by the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P.R. China

    10.3964/j.issn.1000-0593(2016)11-3764-08

    Received: 2015-10-13; accepted: 2016-03-10

    Biography: CHAI A-li, (1983—), female, associate investigator in Chinese Academy of Agricultural Sciences e-mmail: chaiali@163.com *Corresponding author e-mail: libaoju@caas.cn

    久久精品国产99精品国产亚洲性色| 中文字幕人妻熟人妻熟丝袜美| 小蜜桃在线观看免费完整版高清| 国产一级毛片七仙女欲春2| 久久精品国产自在天天线| or卡值多少钱| 日韩亚洲欧美综合| 久久人妻av系列| 久久久久国产网址| 精品国产三级普通话版| 最近中文字幕高清免费大全6| 男的添女的下面高潮视频| 亚洲av男天堂| 欧美成人a在线观看| 亚洲欧美精品综合久久99| 亚洲欧美成人精品一区二区| 2022亚洲国产成人精品| 我要看日韩黄色一级片| 少妇熟女欧美另类| 色5月婷婷丁香| 日韩人妻高清精品专区| 九九热线精品视视频播放| 欧美色视频一区免费| 国产 一区 欧美 日韩| 黄色日韩在线| 国内揄拍国产精品人妻在线| av卡一久久| 国产精品久久视频播放| 内地一区二区视频在线| 亚洲在线观看片| 不卡视频在线观看欧美| 91aial.com中文字幕在线观看| 91久久精品国产一区二区三区| 好男人在线观看高清免费视频| 国产 一区 欧美 日韩| 精品不卡国产一区二区三区| 国产精品国产三级国产av玫瑰| 毛片一级片免费看久久久久| 99久久人妻综合| 91精品一卡2卡3卡4卡| 22中文网久久字幕| 99九九线精品视频在线观看视频| 日本黄色片子视频| 日日摸夜夜添夜夜添av毛片| 日韩欧美 国产精品| 国产高清视频在线观看网站| 熟女人妻精品中文字幕| 91精品一卡2卡3卡4卡| 亚洲精品久久久久久婷婷小说 | 五月伊人婷婷丁香| 一夜夜www| 女人被狂操c到高潮| 伦精品一区二区三区| av在线观看视频网站免费| 成人特级av手机在线观看| 可以在线观看的亚洲视频| 精品久久久噜噜| 欧美三级亚洲精品| 国产精品三级大全| 久久99热6这里只有精品| 18+在线观看网站| 91午夜精品亚洲一区二区三区| a级毛片a级免费在线| 日韩 亚洲 欧美在线| 成人欧美大片| av天堂在线播放| a级毛片a级免费在线| 麻豆乱淫一区二区| 少妇高潮的动态图| 丰满人妻一区二区三区视频av| 亚洲va在线va天堂va国产| 级片在线观看| 国产一级毛片七仙女欲春2| 亚洲国产欧洲综合997久久,| 99热全是精品| 亚洲欧美日韩东京热| 成人三级黄色视频| 毛片一级片免费看久久久久| 国产色婷婷99| 久久久久久九九精品二区国产| 亚洲内射少妇av| 午夜爱爱视频在线播放| 国产伦一二天堂av在线观看| 美女大奶头视频| 69人妻影院| 干丝袜人妻中文字幕| 国产免费男女视频| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品美女特级片免费视频播放器| av专区在线播放| 男的添女的下面高潮视频| 亚洲无线在线观看| 女的被弄到高潮叫床怎么办| 波野结衣二区三区在线| 美女黄网站色视频| 秋霞在线观看毛片| 国产精品乱码一区二三区的特点| 美女国产视频在线观看| 在线免费十八禁| 天堂av国产一区二区熟女人妻| 国产乱人视频| 午夜亚洲福利在线播放| 99久久成人亚洲精品观看| 九九在线视频观看精品| 亚洲av成人av| 国产亚洲欧美98| 精品少妇黑人巨大在线播放 | 91久久精品国产一区二区成人| 高清毛片免费看| 小说图片视频综合网站| 欧美一区二区国产精品久久精品| 精品日产1卡2卡| 人人妻人人澡人人爽人人夜夜 | 日本黄大片高清| 97超视频在线观看视频| 午夜爱爱视频在线播放| 欧美激情久久久久久爽电影| 亚洲一级一片aⅴ在线观看| 1024手机看黄色片| 亚洲精华国产精华液的使用体验 | 一本精品99久久精品77| 中文字幕av成人在线电影| 中文字幕熟女人妻在线| 亚洲不卡免费看| 国产午夜福利久久久久久| 国产一区二区亚洲精品在线观看| 久久精品久久久久久久性| 日本熟妇午夜| 日韩欧美三级三区| 美女高潮的动态| 国产精品一区二区三区四区免费观看| 国产精品人妻久久久影院| 麻豆成人午夜福利视频| 黄色配什么色好看| 亚洲熟妇中文字幕五十中出| 欧美成人精品欧美一级黄| 一个人看的www免费观看视频| 我的女老师完整版在线观看| 在线免费观看不下载黄p国产| 欧美激情国产日韩精品一区| 久久久久久伊人网av| 久久九九热精品免费| 天堂av国产一区二区熟女人妻| 欧美日韩在线观看h| 麻豆国产97在线/欧美| 日韩一区二区三区影片| 婷婷亚洲欧美| 色哟哟·www| 夜夜夜夜夜久久久久| 婷婷亚洲欧美| 成年女人永久免费观看视频| 欧美另类亚洲清纯唯美| 天天躁夜夜躁狠狠久久av| 一级二级三级毛片免费看| 老司机福利观看| 高清午夜精品一区二区三区 | 国产精品乱码一区二三区的特点| 又粗又硬又长又爽又黄的视频 | 精品一区二区三区人妻视频| 久久99热这里只有精品18| 少妇猛男粗大的猛烈进出视频 | 神马国产精品三级电影在线观看| 99国产精品一区二区蜜桃av| 亚洲丝袜综合中文字幕| 国产不卡一卡二| 久久久色成人| 大香蕉久久网| 亚洲精品色激情综合| 可以在线观看的亚洲视频| 天天一区二区日本电影三级| АⅤ资源中文在线天堂| 老司机福利观看| 亚洲欧美精品自产自拍| 一夜夜www| 如何舔出高潮| 久久精品国产亚洲av天美| 国产黄色小视频在线观看| 搡老妇女老女人老熟妇| 国产精品久久久久久久久免| 特大巨黑吊av在线直播| 波多野结衣巨乳人妻| 蜜臀久久99精品久久宅男| 国产精品精品国产色婷婷| 午夜免费激情av| 国产大屁股一区二区在线视频| 一个人看的www免费观看视频| 国产一区二区在线观看日韩| 日韩av在线大香蕉| 国产精品永久免费网站| 少妇高潮的动态图| 亚洲精品成人久久久久久| 最近视频中文字幕2019在线8| 秋霞在线观看毛片| 国产精品不卡视频一区二区| 亚洲精品自拍成人| or卡值多少钱| 99热这里只有是精品在线观看| 中国美白少妇内射xxxbb| 久久99蜜桃精品久久| 免费看美女性在线毛片视频| 色视频www国产| 搞女人的毛片| 免费观看a级毛片全部| 午夜亚洲福利在线播放| 国产一级毛片在线| 91狼人影院| 国产一区二区三区av在线 | av黄色大香蕉| 国产精品1区2区在线观看.| 久久久成人免费电影| 亚洲va在线va天堂va国产| 99久久人妻综合| 精品不卡国产一区二区三区| 欧美精品国产亚洲| 少妇人妻精品综合一区二区 | 久久婷婷人人爽人人干人人爱| 亚洲aⅴ乱码一区二区在线播放| 人妻久久中文字幕网| 在线a可以看的网站| 99热只有精品国产| 国产真实乱freesex| 国产亚洲精品av在线| 91av网一区二区| 亚洲精品国产成人久久av| 久久久国产成人精品二区| 中文资源天堂在线| 国产精品国产高清国产av| 97人妻精品一区二区三区麻豆| 男女边吃奶边做爰视频| 99久国产av精品国产电影| 日本一本二区三区精品| 国语自产精品视频在线第100页| 亚洲国产精品sss在线观看| 亚洲无线在线观看| 亚洲国产色片| 联通29元200g的流量卡| 在线观看免费视频日本深夜| 亚洲欧美成人综合另类久久久 | 亚洲婷婷狠狠爱综合网| 国产69精品久久久久777片| 小蜜桃在线观看免费完整版高清| 欧美+亚洲+日韩+国产| 久久久精品94久久精品| 狂野欧美白嫩少妇大欣赏| 久久久久久久久中文| 欧美又色又爽又黄视频| 国产视频首页在线观看| 成熟少妇高潮喷水视频| 国产精品一区二区在线观看99 | 人体艺术视频欧美日本| 两个人视频免费观看高清| 国产激情偷乱视频一区二区| 波多野结衣高清作品| 国产精品蜜桃在线观看 | 一本久久中文字幕| 亚洲av二区三区四区| 深爱激情五月婷婷| 可以在线观看毛片的网站| 26uuu在线亚洲综合色| 国产精品一区www在线观看| 久久久久久久久久久免费av| a级毛片a级免费在线| 老师上课跳d突然被开到最大视频| 国产三级在线视频| 日韩 亚洲 欧美在线| 人体艺术视频欧美日本| 美女内射精品一级片tv| 亚洲国产精品合色在线| 国产精品爽爽va在线观看网站| av在线老鸭窝| 丰满的人妻完整版| 欧洲精品卡2卡3卡4卡5卡区| av国产免费在线观看| 非洲黑人性xxxx精品又粗又长| 你懂的网址亚洲精品在线观看 | 亚洲精品乱码久久久v下载方式| 麻豆久久精品国产亚洲av| 亚洲欧美成人综合另类久久久 | 91狼人影院| 99在线人妻在线中文字幕| 成人二区视频| 久久99精品国语久久久| 国产人妻一区二区三区在| 三级男女做爰猛烈吃奶摸视频| 久久综合国产亚洲精品| 国产精品人妻久久久久久| 99热只有精品国产| 丝袜喷水一区| 国产精品久久久久久精品电影| 免费看日本二区| 亚洲精品亚洲一区二区| 人妻少妇偷人精品九色| 91久久精品电影网| 99九九线精品视频在线观看视频| 欧美另类亚洲清纯唯美| 国产 一区精品| 亚洲四区av| 亚洲人成网站在线观看播放| 国产精品一及| 亚洲人成网站在线播| 亚洲真实伦在线观看| 久99久视频精品免费| 亚洲第一区二区三区不卡| av卡一久久| 国产精品乱码一区二三区的特点| 日本免费a在线| 麻豆一二三区av精品| 波多野结衣高清作品| 中文在线观看免费www的网站| www日本黄色视频网| 人妻系列 视频| 国产爱豆传媒在线观看| 男插女下体视频免费在线播放| 少妇高潮的动态图| 亚洲av第一区精品v没综合| 亚洲成av人片在线播放无| 有码 亚洲区| 男女那种视频在线观看| 国产精品一及| 国产高清三级在线| 黑人高潮一二区| 亚洲图色成人| 久久99热这里只有精品18| 一卡2卡三卡四卡精品乱码亚洲| 国产午夜精品久久久久久一区二区三区| 可以在线观看的亚洲视频| 色哟哟哟哟哟哟| 成人无遮挡网站| 白带黄色成豆腐渣| 夜夜爽天天搞| 国产黄片美女视频| 国产精品久久久久久av不卡| 欧美最新免费一区二区三区| 亚洲婷婷狠狠爱综合网| 人体艺术视频欧美日本| 日本一二三区视频观看| av.在线天堂| 一区二区三区免费毛片| 国产亚洲精品久久久久久毛片| 99久久无色码亚洲精品果冻| 夫妻性生交免费视频一级片| 美女内射精品一级片tv| 国语自产精品视频在线第100页| 亚洲av熟女| 搞女人的毛片| 女人十人毛片免费观看3o分钟| 亚洲无线观看免费| 一夜夜www| 内射极品少妇av片p| 国产精品女同一区二区软件| 亚洲,欧美,日韩| 激情 狠狠 欧美| 麻豆一二三区av精品| 男女边吃奶边做爰视频| 欧美高清成人免费视频www| 男女边吃奶边做爰视频| 欧美高清成人免费视频www| 色综合站精品国产| 亚洲精华国产精华液的使用体验 | 亚洲色图av天堂| 亚洲欧美日韩卡通动漫| 黄色日韩在线| 午夜免费激情av| 国产精品久久久久久久电影| 国产亚洲精品久久久com| 亚洲中文字幕日韩| 国产老妇伦熟女老妇高清| 亚洲第一区二区三区不卡| 美女cb高潮喷水在线观看| 在线观看免费视频日本深夜| 亚洲精品国产av成人精品| 三级男女做爰猛烈吃奶摸视频| 国产成人a∨麻豆精品| 网址你懂的国产日韩在线| 亚洲aⅴ乱码一区二区在线播放| 国产毛片a区久久久久| 丝袜美腿在线中文| 国产老妇女一区| 欧美成人一区二区免费高清观看| 成年女人看的毛片在线观看| 精品欧美国产一区二区三| 身体一侧抽搐| 精品一区二区三区视频在线| 亚洲精品乱码久久久久久按摩| 在线免费观看不下载黄p国产| 国产精品久久久久久亚洲av鲁大| 欧美丝袜亚洲另类| av.在线天堂| 亚洲高清免费不卡视频| h日本视频在线播放| 好男人视频免费观看在线| 人人妻人人澡人人爽人人夜夜 | 99久久中文字幕三级久久日本| 久久久a久久爽久久v久久| 国产成年人精品一区二区| 亚洲三级黄色毛片| 久久久久久久午夜电影| 亚洲成av人片在线播放无| 中国国产av一级| 国产午夜精品论理片| 我要搜黄色片| 欧美激情国产日韩精品一区| 69av精品久久久久久| 白带黄色成豆腐渣| 美女cb高潮喷水在线观看| 国产免费一级a男人的天堂| 一本一本综合久久| 久久欧美精品欧美久久欧美| 国产单亲对白刺激| 少妇丰满av| 尤物成人国产欧美一区二区三区| 91麻豆精品激情在线观看国产| 国产在线精品亚洲第一网站| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美精品专区久久| 女的被弄到高潮叫床怎么办| 99热网站在线观看| 亚洲欧美日韩高清在线视频| 久久久精品94久久精品| 亚洲在久久综合| 99国产精品一区二区蜜桃av| 亚洲中文字幕日韩| 日韩 亚洲 欧美在线| 人人妻人人澡欧美一区二区| 成人亚洲精品av一区二区| 色综合亚洲欧美另类图片| 日本一本二区三区精品| 久久久久久大精品| 一个人看视频在线观看www免费| 亚洲国产精品成人综合色| 在线a可以看的网站| 日本欧美国产在线视频| 亚洲激情五月婷婷啪啪| 99久国产av精品| 亚洲欧洲国产日韩| 中文字幕人妻熟人妻熟丝袜美| 亚州av有码| 国内久久婷婷六月综合欲色啪| 免费av毛片视频| 最近最新中文字幕大全电影3| 变态另类丝袜制服| 天堂av国产一区二区熟女人妻| 一级二级三级毛片免费看| 免费看光身美女| 一个人观看的视频www高清免费观看| 国产精品.久久久| 性色avwww在线观看| 免费人成在线观看视频色| or卡值多少钱| 天堂av国产一区二区熟女人妻| 狂野欧美激情性xxxx在线观看| 久久这里有精品视频免费| 久久久久久国产a免费观看| 亚洲成av人片在线播放无| av视频在线观看入口| 三级经典国产精品| 麻豆国产av国片精品| 亚洲精品亚洲一区二区| 亚洲av电影不卡..在线观看| 国产精品国产三级国产av玫瑰| 国产av麻豆久久久久久久| 在线观看美女被高潮喷水网站| 婷婷亚洲欧美| 欧美色视频一区免费| 日本-黄色视频高清免费观看| 夜夜爽天天搞| 高清午夜精品一区二区三区 | av福利片在线观看| 在线观看美女被高潮喷水网站| 亚洲最大成人中文| 男插女下体视频免费在线播放| 中文字幕av成人在线电影| 嘟嘟电影网在线观看| 日韩制服骚丝袜av| 看片在线看免费视频| 18禁在线播放成人免费| 夫妻性生交免费视频一级片| 熟女人妻精品中文字幕| www日本黄色视频网| 真实男女啪啪啪动态图| 听说在线观看完整版免费高清| 国产白丝娇喘喷水9色精品| 在现免费观看毛片| 国产真实伦视频高清在线观看| 亚洲国产精品久久男人天堂| 国产精品三级大全| 九草在线视频观看| 国产老妇伦熟女老妇高清| 亚洲乱码一区二区免费版| 久久精品国产亚洲av天美| 99在线人妻在线中文字幕| 特级一级黄色大片| 日韩高清综合在线| 22中文网久久字幕| 精品久久久久久成人av| 床上黄色一级片| 一个人看视频在线观看www免费| 日韩高清综合在线| av天堂在线播放| 直男gayav资源| 男女边吃奶边做爰视频| 色综合色国产| 亚洲国产色片| 色噜噜av男人的天堂激情| 亚洲欧美日韩高清在线视频| 天美传媒精品一区二区| 日本黄大片高清| 色视频www国产| 久久久久久久久大av| 人人妻人人看人人澡| 久久韩国三级中文字幕| 天堂中文最新版在线下载 | 22中文网久久字幕| 亚洲人成网站在线播| 一边亲一边摸免费视频| 黄色一级大片看看| 1024手机看黄色片| eeuss影院久久| 精品久久久噜噜| 校园人妻丝袜中文字幕| 日本-黄色视频高清免费观看| 国产精品一二三区在线看| 国产蜜桃级精品一区二区三区| 精品久久久久久久人妻蜜臀av| 岛国在线免费视频观看| 欧美精品一区二区大全| 99热这里只有精品一区| 国产黄a三级三级三级人| 亚洲国产精品合色在线| 成人性生交大片免费视频hd| 26uuu在线亚洲综合色| 99精品在免费线老司机午夜| 狠狠狠狠99中文字幕| 亚洲欧美精品自产自拍| 极品教师在线视频| 国产高清视频在线观看网站| 亚洲最大成人中文| 麻豆成人午夜福利视频| 国内揄拍国产精品人妻在线| 午夜视频国产福利| 一边摸一边抽搐一进一小说| 蜜臀久久99精品久久宅男| 午夜久久久久精精品| 18禁在线播放成人免费| 日本-黄色视频高清免费观看| 成人二区视频| 久久精品影院6| 亚洲最大成人中文| 午夜爱爱视频在线播放| 国产伦精品一区二区三区视频9| 看片在线看免费视频| 18禁在线无遮挡免费观看视频| 欧美又色又爽又黄视频| 丝袜喷水一区| 一夜夜www| 欧美精品一区二区大全| 亚洲精品乱码久久久v下载方式| 综合色av麻豆| 国产老妇女一区| 啦啦啦啦在线视频资源| 欧美精品国产亚洲| 免费无遮挡裸体视频| 在线免费观看不下载黄p国产| 亚洲av.av天堂| 亚洲国产日韩欧美精品在线观看| 一本久久中文字幕| 免费观看a级毛片全部| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品成人综合色| 国产三级中文精品| 最近最新中文字幕大全电影3| 日本免费a在线| 国产女主播在线喷水免费视频网站 | 欧美日韩乱码在线| 国产极品精品免费视频能看的| 国产精品久久久久久久久免| 99在线人妻在线中文字幕| 一个人看的www免费观看视频| 久久久久性生活片| 五月玫瑰六月丁香| 国产黄片美女视频| 国产视频内射| 久久精品影院6| 黄色日韩在线| 干丝袜人妻中文字幕| 少妇的逼好多水| .国产精品久久| 欧美3d第一页| 国产成人福利小说| 人体艺术视频欧美日本| 91精品国产九色| 久久久久久久午夜电影| 亚洲中文字幕日韩| 成熟少妇高潮喷水视频| 日韩强制内射视频| 国产一级毛片七仙女欲春2| 精品久久久久久成人av| 黄色视频,在线免费观看| 国产成人精品久久久久久| 九九爱精品视频在线观看| 美女xxoo啪啪120秒动态图| 悠悠久久av| 高清在线视频一区二区三区 | 给我免费播放毛片高清在线观看| 欧美日韩精品成人综合77777| 国产精品野战在线观看| 欧美成人一区二区免费高清观看| 少妇人妻一区二区三区视频| 国产av麻豆久久久久久久| 高清毛片免费观看视频网站| 亚洲精品日韩av片在线观看| 国产欧美日韩精品一区二区| 国模一区二区三区四区视频| av国产免费在线观看| 18+在线观看网站|