• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on the Preparation and Chromaticity Coordinates Shift Mechanism of Organic White Light Top-Emitting Devices

    2016-07-12 12:49:41WANGGuanghuaZHAOHuiqiongDENGRongbinDUANYuSUNHaoZHANGXiaodanZHOUQinQIANJinmeiWANRuiminJIHuaxiaJIRongbin
    光譜學(xué)與光譜分析 2016年11期
    關(guān)鍵詞:能量轉(zhuǎn)移基色白光

    WANG Guang-hua,ZHAO Hui-qiong,DENG Rong-bin,DUAN Yu,SUN Hao,ZHANG Xiao-dan,ZHOU Qin,QIAN Jin-mei,WAN Rui-min,JI Hua-xia,JI Rong-bin

    1. Yunnan Olightek Opto-Electronic Technology Co., Ltd., Kunming 650223, China 2. Kunming Institute of Physics, Kunming 650223, China

    Research on the Preparation and Chromaticity Coordinates Shift Mechanism of Organic White Light Top-Emitting Devices

    WANG Guang-hua1,2,ZHAO Hui-qiong1,2,DENG Rong-bin1,DUAN Yu1,2,SUN Hao1,ZHANG Xiao-dan1,2,ZHOU Qin1,QIAN Jin-mei1,WAN Rui-min1,2,JI Hua-xia1,JI Rong-bin2

    1. Yunnan Olightek Opto-Electronic Technology Co., Ltd., Kunming 650223, China 2. Kunming Institute of Physics, Kunming 650223, China

    The top emission organic light-emitting devices were fabricated on the multi-layers metal anode with co-doping method in single host system. In experiment, the multilayer Al/Mo/MoO3anode on silicon are deposited, systematically analyzed the effect MoO3thickness on the reflectance and found the mechanism of the MoO3thickness variation to the reflectivity of Al/Mo/MoO3on silicon. Experimental results showed that the luminous intensity of blue, green and red appear to change according to the current density increase, and compared with the red intensity, the luminous intensity of blue and green gradually increased. The emission in this host-guest co-doping system is considered to usually involve two emission mechanisms, energy transfer and carrier trapping, and the energy transfer and carrier trapping between the host-guest should be responsible for chromaticity coordinates shift of organic white emitting light devices. In addition, through further study, it is proved the electroluminescence intensity of dopant linearly decrease with the driving voltage applied to the device by theoretical and experimental results.

    White organic light-emitting diode; Color-shift; Energy transfer; Carrier trapping

    Introduction

    Organic light-emitting diodes (OLEDs) have attracted much attention because of their particular advantages with high resolution, fast response, self-luminous, high image quality, compact size, very low power, and can be prepared on flexible substrate, to be recognized as the most ideal and the most promising next generation display technology[1-2]. White light emission is usually obtained by doping an active host material with several dyes or by using a multilayer structure with two or more emitting layers, in this case, different dopants can conceivably compete with one another under different driving conditions due to differences in the exciton energy and shifts in the recombination zone. Consequently, the color performance will vary with different driving conditions, which inevitably presents additional difficulties for lighting applications and down-conversion displays with backlight units of WOLED and color filters. For these applications, CIE coordinates variation during operation will distort the color of the illuminated object and will suffer from distortions of the pixel emitting color and non-uniform color distribution over the panel under the same driving conditions. Unfortunately, many WOLEDs, except a few with an optimized device structure design, show the variation in color with the bias voltage or current, regardless of their structures as a single layer or multilayer. Therefore, in order to demand for different lighting and displays applications, WOLED must be developed with high efficiency and long operation life, besides with high color stability. In this work, we report on efficient WOLEDs that possess one luminous layer with co-evaporation methods, and briefly discussed the chromaticity coordinates shift mechanism of white organic light emitting devices and to shed light on the rational structure design of high quality WOLEDs with small or no color shifts.

    1 Experiments

    The organic light-emitting devices are prepared on the 1 600-nm-SiO2-coated silicon substrate. Prior to the deposition, the silicon substrate was ultrasonically washed with acetone, alcohol, deionized water successively. After blowing with N2gas, the silicon substrate are placed into plasma cleaning machine to further wash, then deposited multi-layers metal anode with thermal evaporation system on substrate. Then the substrate was transferred into a vacuum chamber for film deposition, the devices were fabricated by the thermal evaporation of the organic materials on the multi-layers metal anode. The organic layers and electrode were deposited by vacuum vapor deposition at <2×10-4Pa, and the thicknesses of these deposited layers and the evaporation rate of individual material were monitored in vacuum with quartz crystal monitors. The typical device structure was metal anode (60 nm)/HIL(15 nm)/HTL(10 nm)/EML(20 nm)//ETL(15 nm)/EIL(10 nm)LiF(1 nm)/Mg∶Ag(10 nm)/ITO(35 nm), where ITO is used the out-coupling layers and encapsulation layers of top-emission organic light-emitting devices. The active area of the devices was controlled at 20 mm2. The electroluminescence spectra were measured using a PR655 spectrophotometer. The luminance-current versus voltage characteristics were measured simultaneously with a Keithley 2400 voltage-current source. All measurements were carried out at room temperature under ambient conditions.

    2 Results and discussion

    2.1 Preparation of white organic light emitting devices

    Recently, the use of MoO3as an anode buffer layer in OLEDs offers advantages such as less contamination, easy thermal deposition and energy level matching with organic molecules[3]. It has been experimentally proven that the use of MoO3and MoO3doped hole-transporting material as anode modification layers significantly reduces the operational voltage and improves the efficiency and lifetime of OLEDs. First of all, two layer structure anode was prepared on silicon substrate with high reflectivity metal Al and the electrochemical stability metal Mo, the surface of metal anode were treated by the hybrid plasma of oxygen and nitrogen with different time, the experimental results showed that according to the increasing of treating time, the metal Mo of anode gradually turned into a metal oxide at the surface, and the metal oxide layer produced additional series resistance, which lead to the driving voltage increase. At the same time, the thickness variations of oxide layer lead a change in the optical properties of the surface of the anode, such as reflectance and transmittance. In order to evaluate the effect of anode surface oxide layer change on the optical properties, in experiment, based on the transfer matrix theory and optical constants of metal and oxide molybdenum in Fig.1, the reflection of multilayer anode were numerically calculated with matlab program. From the experimental results in Fig.2, it can be seen that the reflectance of anode gradually increase with the thickness increase of MoO3layer, the reason why is that the refractive index (n) of molybdenum is higher than oxide molybdenum, but the extinction coefficient (k) of molybdenum is smaller than oxide molybdenum. Since the extinction coefficient of materials is proportional to absorption coefficient, the relation can be written as

    (1)

    Fig.1 Optical constants of molybdenum and oxide molybdenum

    the higher the extinction coefficient (k) of materials, the stronger the absorption coefficient (α), therefore, the reflectivity of multilayer anode (silicon/Al/Mo/MoO3) films increases as the MoO3thickness increases, but the MoO3thin films layers should be sufficiently thin that it contribute negligibly to the OLED series resistance. In this experiment, the MoO3thickness is preferably controlled at 1 nm.

    Fig.2 The reflectivity of multilayer anode with different MoO3 thickness

    Fig.3 The absorption and photoluminescence spectra of host or guest

    There are many approaches to realize white emission[4], e.g.,WOLEDs structures with blue/yellow (or red) emitters or red/green/blue ones, a single emission material with broad emission wavelength range or several side chains as emission moieties, blue OLEDs together with a yellow down-conversion layer, stacked WOLEDs, micro-cavity-based WOLEDs, etc. In this paper, we doped a red and green guest into a blue host as emissive layer by co-deposition to prepare WOLEDs. Fig.3 shows the absorption and photoluminescence spectra of host or guest in emissive layer. There is complex energy transfer mechanism in co-doping system of the emissive layer, the energy of host materials can be transferred to efficient guest materials, and increase luminous efficiency and operation life of WOLEDs. The energy transfer coefficient is related to the F?rster radius and the space distance among different organic molecular and the F?rster radius is directly proportional to the overlapping area between the photoluminescence spectra of host materials and absorption spectrum of guest materials, the larger the overlap area, the greater the radius[5]. It can be seen that there are overlapping between the photoluminescence spectra of host materials and absorption spectrum of green guest materials, and between the photoluminescence spectra of green materials and absorption spectrum of red materials from Fig.3, which illustrate that the energy is easy transferred among the host and guest materials. It can be seen that form the energy level diagram of host or guest in emissive layer in Fig.4, owing to the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level of the red dopant fall within that of the host, the carrier trapping is possible, and electrons and holes are respectively trapped by the low-energy dopant under a low bias voltage.

    Fig.4 The energy level diagram of host or guest in emissive layer

    2.2 Normalized electroluminescence spectra and chromaticity coordinate

    Fig.5 shows the current density-chromaticity coordinate characteristics of the white OLEDs fabricated. It can be seen that from the Fig.5, the device color coordinates CIEx gradually decreased, while the CIEy remained stable with the increase of current density. Fig.6 shows the EL spectrum for devices. As can be seen from Fig.6(a), as the current density increase, the luminous intensity of blue, green and red appear to change. And compared with the red intensity, the luminous intensity of blue and green gradually increased. As far as we know, the emission in host-guest of co-doping system is considered to involve two emission mechanisms, energy transfer and carrier trapping. For an efficient energy transfer, it requires a significant spectral overlap between the photo-luminescent (PL) spectrum of the host and the absorption spectrum of the dopant. While for efficient carrier trapping, the highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO) energy level of the dopant must fall within that of the host. There are both electron and hole trapping for red guest, electron trapping for green guest in Fig.4. In this carrier trapping controlled device, electrons and holes are respectively trapped by the low-energy dopant under a low bias and the traps are gradually filled with the increasing electric field, resulting in a faster increase of the current [this case is usually called trap charge limited current (TCLC)][6]. Until all traps are filled, the current starts to increase more slowly [known as space-charge limited current (SCLC)]. In our doping system, carrier trapping is one of key factors that brings the color stability problem in WOLEDs as the driving voltage or current increases. From the above results, we can see that the emission intensity ratio of the dopant to the host changes in device, this means there also exists a good overlap between the emission of the blue light host and the absorption of the green, or red light guest, the emission from such a WOLED system include both carrier trapping and energy transfer mechanisms, and in such a situation a large change of the EL spectra or chromaticity occurs with the driving voltage or current.

    Fig.5 The relation between the current density and chromaticity coordinate of white organic Light emitting devices

    2.3 Chromaticity coordinates shift mechanism

    In order to further systematically analyze the chromaticity coordinates shift mechanism of organic white emitting light devices, the integral area of normalized electroluminescence spectra of devices at different current density were calculated, the proportion accounting for the integral area of blue+green and red were respectively obtained, and the detailed experimental results were listed in table 1. From the table, one can see that the integral area and the proportion of normalized EL spectra of clue+green gradually increase, at the same time the integral area and the proportion of red gradually decrease according to the change of the current density from 5~100 mA·cm-2. In addition, the experimental results indicate that the variation trend of the integral red area and proportion is consistent with color coordinate values CIEX, which make out the chromaticity coordinates shift of organic white light top-emitting devices in this co-doping system is mainly related to the variation of red percentage in white normalized EL spectra, and give rise to CIEX value change with the current density increase. From the relation between the red electroluminescence intensity and drive voltage in Fig.7, it can be found that the red portion in white normalized EL spectra of OLED devices linearly decrease with the drive voltage increase.

    Fig.6 The normalized electroluminescence spectra of OLEDs at different current density

    Table 1 The Integral area of normalized electroluminescence spectra at different current density and color coordinate values

    To Table 2

    blue+green80.93969.71%320red35.16930.29%white116.10810.30640.3661blue+green85.08771.16%440red34.48328.84%white119.57010.30120.366blue+green85.11971.41%560red34.07428.59%white119.19310.29770.3665blue+green85.04971.69%680red33.58628.31%white118.63510.29630.3666blue+green85.04072.11%7100red32.89527.89white117.93510.29450.367

    Fig.7 The relation between the red electroluminescence intensity and drive voltage

    In co-doping system of single-EML WOLEDs, when the electron and hole are trapped by the low-energy dopant under the low bias or current density, the energy transfer between the host and guest can not be effectively performed, and the electroluminescence intensity of host and guest do not simultaneously proportionally increase, which bring about the chromaticity coordinates shift of organic white light top-emitting devices with the variation of voltage or current density. Some previous research results also showed that if electron and hole are trapped by dopant[7-8], the luminous intensity of dopant will be restrained at different voltage, and it is difficult to distinguish the contribution of color evolution which the electron or hole bring about, this also hinder us to further clarify the mechanism behind the problem that result in the chromaticity coordinates shift of organic white light top-emitting devices with the variation of voltage or current density. On the other hand, the dopant luminescence can be divided into two parts, one originate from the energy transfer between host-guest system, and other come from the exciton trapped by dopant, it is also difficult to distinguish which one is the predominant contribution.

    On account of the LUMO energy level of dopant is low than host, some electron trapping will come into being in dopant, so the dopant molecule captured carriers will lose opportunity to accept energy transfer and radiate. Base an the boltzmann distribution law, the specific value of the trapped electron number (Nt) by dopant at LUMO energy level and the free electron number (Nf) at LUMO energy level of host can be expressed as

    (2)

    WhereNdopantandNhostrespectively stand for the molecular number of host and dopant. If the electron charge isQ,Nfcan be described as the following equation

    Nf=jST/Q=jSL2/μVQ

    (3)

    whereLis thickness of OLEDs,μis represents the electron mobility,Vis the driving voltage applied to the device. According to the space-charge-limited currents (SCLC), the relation between the current and voltage in insulator with shallow level trap can be written as

    j∝μV2

    (4)

    Fromtheaboverelationship,itcanbeobtained

    Nf∝V

    (5)

    andtherelationbetweenthedopantmolecularnumbertrappingelectronandthedrivingvoltageappliedtothedevicecanbeacquired.Asfarasweknow,thedopantmolecularacceptingenergytransferfromhostandthecorrespondinghostmoleculararenotoverlapbetweenthemintheco-dopingsystemofsingle-EMLWOLEDswithlowdopantconcentration,wellthentheelectroluminescenceintensityofdopantisproportionaltothedopantmolecularthatcanacceptenergytransferfromhost.Forthereasonthattheelectroluminescenceintensityofdopantcanbewrittenas

    I=A-BV

    (6)

    WhereAandBis positive constant. From the above relation, it is can be found that the electroluminescence intensity of dopant linearly decrease in line with the driving voltage applied to the device, the theoretical results is completely consistent with the experimental one in Fig.5, the relation between the electroluminescence intensity of dopant and the driving voltage applied to the device is linearly fitted, it is can be seen that the fitting line is well matched with the experimental results, and obtainingAandBvalue is respectively 19.41 and 2.31 from the function.

    3 Conclusion

    In summary, the top emission organic light-emitting devices were fabricated by the thermal evaporation of the organic materials on (Al/Mo/MoO3) multi-layers anode, by doping the red and green guest into the blue host as emissive layer to prepare WOLEDs. Experimental results showed that according to the current density increase the luminous intensity of blue, green and red appear to change. Compared with the red intensity, the luminous intensity of blue and green gradually increased. And the emission in this host-guest co-doping system is considered to involve two emission mechanisms, energy transfer and carrier trapping, energy transfer and carrier trapping between the host-guest should be responsible for chromaticity coordinates shift of organic white emitting light devices, and it is proved the electroluminescence intensity of dopant linearly decrease in line with the driving voltage applied to the device by theoretical and experimental results.

    [1] Tang C W, Vanslyke S A. Appl. Phys. Lett., 1987, 51(12): 913.

    [2] Kido J, Kimura M, Nagai K. Science, 1995, 267: 1332.

    [3] Wang Fengxia, Qiao Xianfeng, Xiong Tao, et al. Organic Electronics, 2008, (9): 985.

    [4] Zhao Fangchao, Zhang Zhiqiang, Liu Yipeng, et al. Organic Electronics, 2012,(13): 1049.

    [5] Jou Jwo-Huei, Chen Po-Wei, Chen Yu-Lin, et al. Organic Electronics, 2013,(14): 47.

    [6] Du Xiaoyang, Huang Yun, Tao Silu, et al. Dyes and Pigments, 2015,(115): 149.

    [7] Lee Jonghee, Lee Joo-Won, Cho Nam Sung, et al. Current Applied Physics, 2014, (14): 84.

    [8] Kim Nam Ho, Kim You-Hyun, Yoon Ju-An, et al. Journal of Luminescence, 2013, (143): 723.

    O461.2

    A

    頂發(fā)射白光OLED器件制備及其色坐標(biāo)漂移機(jī)制研究

    王光華1,2, 趙惠瓊1,2, 鄧榮斌1, 段 瑜1,2, 孫 浩1, 張?bào)愕?,2, 周 琴1, 錢(qián)金梅1, 萬(wàn)銳敏1,2, 季華夏1, 姬榮斌2

    1. 云南北方奧雷德光電科技股份有限公司,云南 昆明 650223 2. 昆明物理研究所,云南 昆明 650223

    采用了高反射率金屬Al和電化學(xué)性能穩(wěn)定的金屬M(fèi)o,在硅基底上制備了多層結(jié)構(gòu)的 Al/Mo/MoO3陽(yáng)極,并研究了不同MoO3厚度下多層陽(yáng)極的反射率。在此基礎(chǔ)上,通過(guò)發(fā)光層共摻雜制備了頂部發(fā)光OLED器件,并對(duì)器件發(fā)光機(jī)制進(jìn)行了系統(tǒng)研究和分析。實(shí)驗(yàn)結(jié)果表明: 采用發(fā)光層共摻雜制備的頂部發(fā)光OLED器件的色坐標(biāo),隨電流密度或電壓的增加而發(fā)生漂移;OLED器件色坐標(biāo)漂移的原因是三基色發(fā)光強(qiáng)度隨電流密度的增加,逐漸偏離了形成白光(0.33, 0.33)所需三基色強(qiáng)度比例值,導(dǎo)致了OLED器件的色坐標(biāo)發(fā)生了漂移,其機(jī)制是發(fā)光層中主-客之間能量轉(zhuǎn)移和陷阱共同作用的結(jié)果。進(jìn)一步研究發(fā)現(xiàn),在不同電壓下,紅光發(fā)光強(qiáng)度隨驅(qū)動(dòng)電壓(或電流密度)增大而線性地減小。

    有機(jī)電致發(fā)光器件;色坐標(biāo)漂移;能量轉(zhuǎn)移;陷阱

    2015-11-06,

    2016-03-21)

    Foundation item: The National Natural Science Foundation of China(61604064), The General Program of Applied Basic Research (2016FB112) of Yunnan

    10.3964/j.issn.1000-0593(2016)11-3758-06

    Received: 2015-11-06; accepted: 2016-03-21

    猜你喜歡
    能量轉(zhuǎn)移基色白光
    多基色顯示系統(tǒng)基色亮度求解及討論
    念 舊
    基色與混合色
    獵熊的孩子
    基于納米金與納米銀簇間表面等離子增強(qiáng)能量轉(zhuǎn)移效應(yīng)特異性檢測(cè)microRNA
    白光LED無(wú)線通信的研究進(jìn)展
    白光(選頁(yè))
    中國(guó)房地產(chǎn)業(yè)(2016年9期)2016-03-01 01:26:18
    能量轉(zhuǎn)移型鋰電池組均衡電路的設(shè)計(jì)與研究
    K(5P)與H2的反應(yīng)碰撞和電子-振動(dòng)能量轉(zhuǎn)移
    亚洲不卡免费看| 免费人成在线观看视频色| 日韩在线高清观看一区二区三区| 成人免费观看视频高清| h日本视频在线播放| 亚洲电影在线观看av| 日韩欧美 国产精品| 成年美女黄网站色视频大全免费 | 亚洲国产精品成人久久小说| 日日爽夜夜爽网站| 欧美性感艳星| 中国国产av一级| 国产精品女同一区二区软件| 国产成人免费观看mmmm| 欧美日韩精品成人综合77777| 亚洲精品,欧美精品| 午夜av观看不卡| 久久99蜜桃精品久久| 在线看a的网站| 中文天堂在线官网| 亚洲激情五月婷婷啪啪| freevideosex欧美| 免费高清在线观看视频在线观看| 久久久久久久久大av| 成人漫画全彩无遮挡| 麻豆成人午夜福利视频| 精品视频人人做人人爽| 伊人亚洲综合成人网| 丰满人妻一区二区三区视频av| 91精品国产国语对白视频| 免费看av在线观看网站| 成年女人在线观看亚洲视频| 亚洲精品自拍成人| 成人漫画全彩无遮挡| 99热全是精品| 中文资源天堂在线| 精华霜和精华液先用哪个| 视频中文字幕在线观看| 久热久热在线精品观看| 伊人久久精品亚洲午夜| 欧美bdsm另类| 成人无遮挡网站| 特大巨黑吊av在线直播| 成人亚洲欧美一区二区av| 日本wwww免费看| 午夜福利视频精品| videos熟女内射| 亚洲国产日韩一区二区| 婷婷色综合大香蕉| 嫩草影院新地址| 国产亚洲一区二区精品| 久久毛片免费看一区二区三区| 国内少妇人妻偷人精品xxx网站| 2018国产大陆天天弄谢| 最近的中文字幕免费完整| 成年女人在线观看亚洲视频| av在线观看视频网站免费| 91久久精品国产一区二区三区| 免费黄色在线免费观看| 80岁老熟妇乱子伦牲交| 亚洲欧美精品专区久久| 青青草视频在线视频观看| 妹子高潮喷水视频| .国产精品久久| 一区二区av电影网| 一区二区三区乱码不卡18| av在线app专区| 黑丝袜美女国产一区| 国产视频内射| 看免费成人av毛片| 亚洲伊人久久精品综合| 五月天丁香电影| 黄色欧美视频在线观看| 国产女主播在线喷水免费视频网站| 丰满人妻一区二区三区视频av| 夜夜骑夜夜射夜夜干| videos熟女内射| 你懂的网址亚洲精品在线观看| 亚洲综合色惰| 国产淫片久久久久久久久| h视频一区二区三区| 欧美精品一区二区大全| 高清av免费在线| 丝袜脚勾引网站| 久久久a久久爽久久v久久| 天堂中文最新版在线下载| 五月玫瑰六月丁香| 99热全是精品| 看十八女毛片水多多多| av免费在线看不卡| 亚洲色图综合在线观看| 久久久a久久爽久久v久久| 男女免费视频国产| 国产精品欧美亚洲77777| 亚洲欧美一区二区三区国产| 国产成人freesex在线| 观看av在线不卡| 国精品久久久久久国模美| 午夜精品国产一区二区电影| 成年美女黄网站色视频大全免费 | 亚洲成人手机| 美女中出高潮动态图| 伊人亚洲综合成人网| 免费av中文字幕在线| 亚洲欧美日韩另类电影网站| 亚洲性久久影院| 日本午夜av视频| 国产成人免费无遮挡视频| 伊人久久国产一区二区| 精品人妻偷拍中文字幕| 成人影院久久| 久久久久久久大尺度免费视频| 久久久久久久久久久免费av| 高清av免费在线| 一级黄片播放器| 午夜福利,免费看| 美女主播在线视频| 我要看黄色一级片免费的| 黄色欧美视频在线观看| 亚洲av国产av综合av卡| 在线观看免费高清a一片| 久久久久久久久久久丰满| 高清午夜精品一区二区三区| 成人影院久久| 国产乱人偷精品视频| 中文字幕人妻丝袜制服| 国产亚洲欧美精品永久| 国产精品久久久久久精品古装| 女性生殖器流出的白浆| 五月玫瑰六月丁香| 免费看日本二区| 国产色爽女视频免费观看| 在线精品无人区一区二区三| 波野结衣二区三区在线| 亚洲欧美一区二区三区黑人 | 亚洲精品视频女| 亚洲国产av新网站| 美女xxoo啪啪120秒动态图| 亚洲成人手机| 国产成人aa在线观看| 亚洲成人一二三区av| 精品一区二区三卡| 成人亚洲欧美一区二区av| freevideosex欧美| 极品人妻少妇av视频| 久久久亚洲精品成人影院| 欧美日韩精品成人综合77777| 交换朋友夫妻互换小说| 成人毛片a级毛片在线播放| 美女脱内裤让男人舔精品视频| 伊人久久精品亚洲午夜| 我的老师免费观看完整版| 寂寞人妻少妇视频99o| 日本黄大片高清| 在线观看免费日韩欧美大片 | 日韩制服骚丝袜av| 日本wwww免费看| 天堂8中文在线网| 一级毛片我不卡| 亚洲欧美清纯卡通| 在线免费观看不下载黄p国产| 免费黄色在线免费观看| 亚洲精品中文字幕在线视频 | 国产免费福利视频在线观看| 街头女战士在线观看网站| 一本—道久久a久久精品蜜桃钙片| 国产精品一区二区在线不卡| 大香蕉97超碰在线| 亚洲精品乱码久久久v下载方式| 亚洲久久久国产精品| 亚洲精品自拍成人| √禁漫天堂资源中文www| 在现免费观看毛片| 涩涩av久久男人的天堂| 亚洲成色77777| 69精品国产乱码久久久| 国产日韩一区二区三区精品不卡 | 国产黄片视频在线免费观看| 观看免费一级毛片| 国产黄色免费在线视频| 日韩免费高清中文字幕av| 成人午夜精彩视频在线观看| www.色视频.com| 亚洲人与动物交配视频| 国产熟女欧美一区二区| 最近中文字幕高清免费大全6| 一个人免费看片子| 黄片无遮挡物在线观看| 一本大道久久a久久精品| 久久毛片免费看一区二区三区| 看非洲黑人一级黄片| 女性被躁到高潮视频| 男女边吃奶边做爰视频| 91成人精品电影| 国产黄色免费在线视频| 日本欧美国产在线视频| 大香蕉久久网| 青春草亚洲视频在线观看| 国产乱人偷精品视频| 男人舔奶头视频| 综合色丁香网| 又黄又爽又刺激的免费视频.| 自拍偷自拍亚洲精品老妇| 精品久久久精品久久久| 国产探花极品一区二区| 国国产精品蜜臀av免费| 成年av动漫网址| 边亲边吃奶的免费视频| 好男人视频免费观看在线| 日韩欧美一区视频在线观看 | 中文字幕久久专区| 国产精品无大码| 2021少妇久久久久久久久久久| 尾随美女入室| 一级a做视频免费观看| 欧美日韩亚洲高清精品| 亚洲真实伦在线观看| 国产在视频线精品| 欧美老熟妇乱子伦牲交| 精品午夜福利在线看| 妹子高潮喷水视频| 亚洲精品亚洲一区二区| 99久久精品国产国产毛片| 精品少妇黑人巨大在线播放| 亚洲精品国产成人久久av| 黑人巨大精品欧美一区二区蜜桃 | 你懂的网址亚洲精品在线观看| 欧美性感艳星| 久久久精品免费免费高清| 亚洲av成人精品一二三区| 水蜜桃什么品种好| 日本-黄色视频高清免费观看| 免费大片18禁| 国产在线男女| 中文精品一卡2卡3卡4更新| 久久久久久久大尺度免费视频| 中文天堂在线官网| 夜夜骑夜夜射夜夜干| 久久精品国产亚洲av涩爱| 国产国拍精品亚洲av在线观看| 久久久久久久大尺度免费视频| 久久久久久久久久久久大奶| 我要看黄色一级片免费的| 免费看光身美女| 又粗又硬又长又爽又黄的视频| 亚洲精品国产av蜜桃| 精品人妻偷拍中文字幕| 热99国产精品久久久久久7| 免费看光身美女| 国产亚洲午夜精品一区二区久久| 观看免费一级毛片| 99久久精品热视频| 午夜精品国产一区二区电影| 国产一区二区三区av在线| 国产精品久久久久久精品电影小说| 免费大片黄手机在线观看| 多毛熟女@视频| 极品少妇高潮喷水抽搐| 又大又黄又爽视频免费| 亚洲精品456在线播放app| 亚洲精品aⅴ在线观看| 在线观看免费高清a一片| 97超碰精品成人国产| 最近最新中文字幕免费大全7| 热re99久久精品国产66热6| 高清黄色对白视频在线免费看 | 亚洲国产精品一区二区三区在线| 亚洲,一卡二卡三卡| 人妻 亚洲 视频| 亚洲一级一片aⅴ在线观看| 男人狂女人下面高潮的视频| 免费人妻精品一区二区三区视频| 简卡轻食公司| 亚洲欧美精品自产自拍| 六月丁香七月| 少妇高潮的动态图| 少妇裸体淫交视频免费看高清| 免费人成在线观看视频色| 日本vs欧美在线观看视频 | av免费在线看不卡| 亚洲精品一区蜜桃| 成人国产麻豆网| 国产69精品久久久久777片| 久久99一区二区三区| 男男h啪啪无遮挡| 亚洲,欧美,日韩| √禁漫天堂资源中文www| 国产亚洲av片在线观看秒播厂| 少妇被粗大猛烈的视频| 超碰97精品在线观看| 久久免费观看电影| a 毛片基地| 99视频精品全部免费 在线| 91在线精品国自产拍蜜月| 另类亚洲欧美激情| 男女边吃奶边做爰视频| av专区在线播放| 七月丁香在线播放| 老熟女久久久| 亚洲国产av新网站| 99久久人妻综合| 午夜av观看不卡| 亚洲欧美日韩另类电影网站| 午夜日本视频在线| 亚洲欧美一区二区三区国产| 两个人的视频大全免费| av不卡在线播放| 成人亚洲欧美一区二区av| 国精品久久久久久国模美| 中文资源天堂在线| 美女xxoo啪啪120秒动态图| 久久久精品免费免费高清| av又黄又爽大尺度在线免费看| 日日啪夜夜爽| 少妇人妻久久综合中文| 久久精品国产鲁丝片午夜精品| 免费观看a级毛片全部| 在线免费观看不下载黄p国产| 高清黄色对白视频在线免费看 | 这个男人来自地球电影免费观看 | 日韩电影二区| 久久久国产一区二区| videos熟女内射| 一区二区av电影网| 国产在线一区二区三区精| 26uuu在线亚洲综合色| 妹子高潮喷水视频| 日本av免费视频播放| 久久精品国产亚洲网站| 亚洲精品视频女| 水蜜桃什么品种好| 亚洲精品视频女| 国产 精品1| 国产成人精品无人区| 国产亚洲精品久久久com| 成人亚洲欧美一区二区av| 美女福利国产在线| 三级经典国产精品| 国产免费一区二区三区四区乱码| 老司机影院毛片| 午夜福利视频精品| av福利片在线观看| 国产免费一区二区三区四区乱码| 99精国产麻豆久久婷婷| 春色校园在线视频观看| 插逼视频在线观看| 99久国产av精品国产电影| 国产精品久久久久久久电影| 国产亚洲精品久久久com| 全区人妻精品视频| 大香蕉97超碰在线| 两个人的视频大全免费| 亚洲欧美一区二区三区国产| 亚洲精品日韩在线中文字幕| 99热全是精品| 日本av免费视频播放| 热re99久久精品国产66热6| 只有这里有精品99| 国产一级毛片在线| 最黄视频免费看| 丝袜在线中文字幕| 日韩精品有码人妻一区| 高清毛片免费看| 搡女人真爽免费视频火全软件| 欧美 日韩 精品 国产| 日本vs欧美在线观看视频 | 国产精品免费大片| 午夜免费男女啪啪视频观看| 亚洲国产精品一区三区| 成人综合一区亚洲| 七月丁香在线播放| 黄色欧美视频在线观看| 欧美国产精品一级二级三级 | 啦啦啦视频在线资源免费观看| 免费大片黄手机在线观看| 日日爽夜夜爽网站| 久久国产精品大桥未久av | 22中文网久久字幕| 少妇熟女欧美另类| 欧美精品一区二区免费开放| 在线亚洲精品国产二区图片欧美 | 久久国产亚洲av麻豆专区| 国产精品.久久久| 91精品伊人久久大香线蕉| 亚洲经典国产精华液单| 一本久久精品| 午夜福利网站1000一区二区三区| 精品人妻熟女av久视频| 汤姆久久久久久久影院中文字幕| 超碰97精品在线观看| 一区在线观看完整版| 亚洲国产欧美日韩在线播放 | 日韩电影二区| 成人影院久久| 欧美日本中文国产一区发布| 少妇猛男粗大的猛烈进出视频| 成人亚洲精品一区在线观看| 亚洲va在线va天堂va国产| 国产精品久久久久久久电影| 亚洲国产精品成人久久小说| 国产极品天堂在线| 嘟嘟电影网在线观看| 免费观看a级毛片全部| 国产欧美日韩一区二区三区在线 | 丰满少妇做爰视频| 免费观看在线日韩| 日韩 亚洲 欧美在线| 亚洲精品日韩在线中文字幕| 美女视频免费永久观看网站| 九九久久精品国产亚洲av麻豆| av黄色大香蕉| 一边亲一边摸免费视频| a级片在线免费高清观看视频| 成人漫画全彩无遮挡| 十八禁网站网址无遮挡 | 两个人的视频大全免费| 免费在线观看成人毛片| 精品久久久久久久久亚洲| 中文字幕亚洲精品专区| 一级毛片 在线播放| 日本欧美视频一区| 一边亲一边摸免费视频| 蜜桃在线观看..| 亚洲情色 制服丝袜| 欧美日本中文国产一区发布| 精品久久久精品久久久| 91久久精品电影网| 国产亚洲一区二区精品| 亚洲欧美成人综合另类久久久| 乱人伦中国视频| 99久久中文字幕三级久久日本| av在线老鸭窝| 欧美少妇被猛烈插入视频| 国产毛片在线视频| 精品少妇内射三级| 国产精品一区二区性色av| 亚洲欧美一区二区三区国产| 国产 一区精品| 99热这里只有精品一区| 亚洲精品乱久久久久久| 赤兔流量卡办理| 色视频在线一区二区三区| 国产白丝娇喘喷水9色精品| 亚洲va在线va天堂va国产| 永久免费av网站大全| 最近的中文字幕免费完整| 91aial.com中文字幕在线观看| 久久久久久人妻| 99久久中文字幕三级久久日本| 国产淫语在线视频| 一级二级三级毛片免费看| 国产精品一区二区三区四区免费观看| 婷婷色综合www| 久久久久久久久久久久大奶| 亚洲精品456在线播放app| 菩萨蛮人人尽说江南好唐韦庄| 免费少妇av软件| 精华霜和精华液先用哪个| 一级av片app| 九九久久精品国产亚洲av麻豆| 日本欧美视频一区| 亚洲情色 制服丝袜| 成人亚洲精品一区在线观看| 亚洲精品日本国产第一区| 亚洲精品久久久久久婷婷小说| 特大巨黑吊av在线直播| 亚洲精品色激情综合| 国产午夜精品一二区理论片| 日日摸夜夜添夜夜爱| 免费观看在线日韩| 青春草国产在线视频| 99热国产这里只有精品6| tube8黄色片| 男女国产视频网站| 国产精品.久久久| 一本一本综合久久| 在线观看免费日韩欧美大片 | .国产精品久久| 久久久久网色| 街头女战士在线观看网站| av线在线观看网站| 国国产精品蜜臀av免费| 国产成人精品福利久久| 亚洲四区av| 亚洲精品日韩在线中文字幕| 欧美成人午夜免费资源| 又粗又硬又长又爽又黄的视频| 久久av网站| 精品国产国语对白av| 美女大奶头黄色视频| 国产精品久久久久久久久免| 日韩不卡一区二区三区视频在线| 成年女人在线观看亚洲视频| 久久精品久久精品一区二区三区| 成年美女黄网站色视频大全免费 | 国产精品99久久久久久久久| 亚洲国产最新在线播放| 亚洲av国产av综合av卡| 老熟女久久久| 激情五月婷婷亚洲| 国产黄片美女视频| 日韩 亚洲 欧美在线| 26uuu在线亚洲综合色| 国产色婷婷99| 国产综合精华液| 国产av精品麻豆| 亚洲精品第二区| 一区二区av电影网| 少妇被粗大的猛进出69影院 | 国产伦精品一区二区三区视频9| 成人综合一区亚洲| av国产精品久久久久影院| 午夜福利在线观看免费完整高清在| 亚洲欧美日韩另类电影网站| 精品久久久久久电影网| 免费看不卡的av| 热re99久久国产66热| 国产永久视频网站| 三上悠亚av全集在线观看 | 国产成人freesex在线| 欧美 亚洲 国产 日韩一| 中文欧美无线码| 国产色爽女视频免费观看| 美女xxoo啪啪120秒动态图| 人体艺术视频欧美日本| 三级国产精品片| 美女国产视频在线观看| 日韩成人伦理影院| 能在线免费看毛片的网站| 国产精品国产三级专区第一集| 久久精品国产鲁丝片午夜精品| 男女国产视频网站| 久久久久久久久久人人人人人人| 99热6这里只有精品| 国产一区二区在线观看av| 人人妻人人看人人澡| 国产免费一区二区三区四区乱码| 2022亚洲国产成人精品| av在线app专区| 青春草亚洲视频在线观看| 熟女电影av网| 免费看av在线观看网站| 国产男人的电影天堂91| 99re6热这里在线精品视频| 婷婷色综合www| 国产精品无大码| 国产成人精品一,二区| 在线观看美女被高潮喷水网站| 一级毛片黄色毛片免费观看视频| 欧美丝袜亚洲另类| 在线观看三级黄色| 中文资源天堂在线| 精品国产国语对白av| 欧美亚洲 丝袜 人妻 在线| 亚洲av在线观看美女高潮| 国产精品一区二区在线不卡| 夜夜看夜夜爽夜夜摸| 国产69精品久久久久777片| 最近最新中文字幕免费大全7| 麻豆成人av视频| 好男人视频免费观看在线| 亚洲精品乱码久久久久久按摩| 日日啪夜夜爽| 大码成人一级视频| 国产精品不卡视频一区二区| 性色avwww在线观看| 国产精品成人在线| 日本欧美视频一区| 中文字幕av电影在线播放| 日韩av不卡免费在线播放| 狠狠精品人妻久久久久久综合| 一级毛片电影观看| 国产熟女欧美一区二区| 我的老师免费观看完整版| 亚洲人成网站在线播| 国产一区亚洲一区在线观看| 午夜免费观看性视频| 综合色丁香网| 日韩欧美 国产精品| 亚洲不卡免费看| 成人18禁高潮啪啪吃奶动态图 | 久久久午夜欧美精品| 久久久国产欧美日韩av| 最近中文字幕高清免费大全6| 欧美精品人与动牲交sv欧美| 国产乱人偷精品视频| 少妇裸体淫交视频免费看高清| 午夜福利网站1000一区二区三区| 亚洲不卡免费看| 一级二级三级毛片免费看| 三级国产精品欧美在线观看| 内地一区二区视频在线| 国产日韩一区二区三区精品不卡 | 日本av免费视频播放| 久久精品熟女亚洲av麻豆精品| av卡一久久| av播播在线观看一区| 美女中出高潮动态图| 嫩草影院入口| 国产精品无大码| 精品一区二区三卡| 久久午夜福利片| 男女边吃奶边做爰视频| 亚洲精品乱久久久久久| 久久久久国产网址| 日韩 亚洲 欧美在线| 少妇人妻久久综合中文| tube8黄色片| 卡戴珊不雅视频在线播放| 亚洲精品,欧美精品| 精品视频人人做人人爽| 丰满少妇做爰视频| 美女主播在线视频| 亚洲欧美成人精品一区二区| 五月天丁香电影|