• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on the Preparation and Chromaticity Coordinates Shift Mechanism of Organic White Light Top-Emitting Devices

    2016-07-12 12:49:41WANGGuanghuaZHAOHuiqiongDENGRongbinDUANYuSUNHaoZHANGXiaodanZHOUQinQIANJinmeiWANRuiminJIHuaxiaJIRongbin
    光譜學(xué)與光譜分析 2016年11期
    關(guān)鍵詞:能量轉(zhuǎn)移基色白光

    WANG Guang-hua,ZHAO Hui-qiong,DENG Rong-bin,DUAN Yu,SUN Hao,ZHANG Xiao-dan,ZHOU Qin,QIAN Jin-mei,WAN Rui-min,JI Hua-xia,JI Rong-bin

    1. Yunnan Olightek Opto-Electronic Technology Co., Ltd., Kunming 650223, China 2. Kunming Institute of Physics, Kunming 650223, China

    Research on the Preparation and Chromaticity Coordinates Shift Mechanism of Organic White Light Top-Emitting Devices

    WANG Guang-hua1,2,ZHAO Hui-qiong1,2,DENG Rong-bin1,DUAN Yu1,2,SUN Hao1,ZHANG Xiao-dan1,2,ZHOU Qin1,QIAN Jin-mei1,WAN Rui-min1,2,JI Hua-xia1,JI Rong-bin2

    1. Yunnan Olightek Opto-Electronic Technology Co., Ltd., Kunming 650223, China 2. Kunming Institute of Physics, Kunming 650223, China

    The top emission organic light-emitting devices were fabricated on the multi-layers metal anode with co-doping method in single host system. In experiment, the multilayer Al/Mo/MoO3anode on silicon are deposited, systematically analyzed the effect MoO3thickness on the reflectance and found the mechanism of the MoO3thickness variation to the reflectivity of Al/Mo/MoO3on silicon. Experimental results showed that the luminous intensity of blue, green and red appear to change according to the current density increase, and compared with the red intensity, the luminous intensity of blue and green gradually increased. The emission in this host-guest co-doping system is considered to usually involve two emission mechanisms, energy transfer and carrier trapping, and the energy transfer and carrier trapping between the host-guest should be responsible for chromaticity coordinates shift of organic white emitting light devices. In addition, through further study, it is proved the electroluminescence intensity of dopant linearly decrease with the driving voltage applied to the device by theoretical and experimental results.

    White organic light-emitting diode; Color-shift; Energy transfer; Carrier trapping

    Introduction

    Organic light-emitting diodes (OLEDs) have attracted much attention because of their particular advantages with high resolution, fast response, self-luminous, high image quality, compact size, very low power, and can be prepared on flexible substrate, to be recognized as the most ideal and the most promising next generation display technology[1-2]. White light emission is usually obtained by doping an active host material with several dyes or by using a multilayer structure with two or more emitting layers, in this case, different dopants can conceivably compete with one another under different driving conditions due to differences in the exciton energy and shifts in the recombination zone. Consequently, the color performance will vary with different driving conditions, which inevitably presents additional difficulties for lighting applications and down-conversion displays with backlight units of WOLED and color filters. For these applications, CIE coordinates variation during operation will distort the color of the illuminated object and will suffer from distortions of the pixel emitting color and non-uniform color distribution over the panel under the same driving conditions. Unfortunately, many WOLEDs, except a few with an optimized device structure design, show the variation in color with the bias voltage or current, regardless of their structures as a single layer or multilayer. Therefore, in order to demand for different lighting and displays applications, WOLED must be developed with high efficiency and long operation life, besides with high color stability. In this work, we report on efficient WOLEDs that possess one luminous layer with co-evaporation methods, and briefly discussed the chromaticity coordinates shift mechanism of white organic light emitting devices and to shed light on the rational structure design of high quality WOLEDs with small or no color shifts.

    1 Experiments

    The organic light-emitting devices are prepared on the 1 600-nm-SiO2-coated silicon substrate. Prior to the deposition, the silicon substrate was ultrasonically washed with acetone, alcohol, deionized water successively. After blowing with N2gas, the silicon substrate are placed into plasma cleaning machine to further wash, then deposited multi-layers metal anode with thermal evaporation system on substrate. Then the substrate was transferred into a vacuum chamber for film deposition, the devices were fabricated by the thermal evaporation of the organic materials on the multi-layers metal anode. The organic layers and electrode were deposited by vacuum vapor deposition at <2×10-4Pa, and the thicknesses of these deposited layers and the evaporation rate of individual material were monitored in vacuum with quartz crystal monitors. The typical device structure was metal anode (60 nm)/HIL(15 nm)/HTL(10 nm)/EML(20 nm)//ETL(15 nm)/EIL(10 nm)LiF(1 nm)/Mg∶Ag(10 nm)/ITO(35 nm), where ITO is used the out-coupling layers and encapsulation layers of top-emission organic light-emitting devices. The active area of the devices was controlled at 20 mm2. The electroluminescence spectra were measured using a PR655 spectrophotometer. The luminance-current versus voltage characteristics were measured simultaneously with a Keithley 2400 voltage-current source. All measurements were carried out at room temperature under ambient conditions.

    2 Results and discussion

    2.1 Preparation of white organic light emitting devices

    Recently, the use of MoO3as an anode buffer layer in OLEDs offers advantages such as less contamination, easy thermal deposition and energy level matching with organic molecules[3]. It has been experimentally proven that the use of MoO3and MoO3doped hole-transporting material as anode modification layers significantly reduces the operational voltage and improves the efficiency and lifetime of OLEDs. First of all, two layer structure anode was prepared on silicon substrate with high reflectivity metal Al and the electrochemical stability metal Mo, the surface of metal anode were treated by the hybrid plasma of oxygen and nitrogen with different time, the experimental results showed that according to the increasing of treating time, the metal Mo of anode gradually turned into a metal oxide at the surface, and the metal oxide layer produced additional series resistance, which lead to the driving voltage increase. At the same time, the thickness variations of oxide layer lead a change in the optical properties of the surface of the anode, such as reflectance and transmittance. In order to evaluate the effect of anode surface oxide layer change on the optical properties, in experiment, based on the transfer matrix theory and optical constants of metal and oxide molybdenum in Fig.1, the reflection of multilayer anode were numerically calculated with matlab program. From the experimental results in Fig.2, it can be seen that the reflectance of anode gradually increase with the thickness increase of MoO3layer, the reason why is that the refractive index (n) of molybdenum is higher than oxide molybdenum, but the extinction coefficient (k) of molybdenum is smaller than oxide molybdenum. Since the extinction coefficient of materials is proportional to absorption coefficient, the relation can be written as

    (1)

    Fig.1 Optical constants of molybdenum and oxide molybdenum

    the higher the extinction coefficient (k) of materials, the stronger the absorption coefficient (α), therefore, the reflectivity of multilayer anode (silicon/Al/Mo/MoO3) films increases as the MoO3thickness increases, but the MoO3thin films layers should be sufficiently thin that it contribute negligibly to the OLED series resistance. In this experiment, the MoO3thickness is preferably controlled at 1 nm.

    Fig.2 The reflectivity of multilayer anode with different MoO3 thickness

    Fig.3 The absorption and photoluminescence spectra of host or guest

    There are many approaches to realize white emission[4], e.g.,WOLEDs structures with blue/yellow (or red) emitters or red/green/blue ones, a single emission material with broad emission wavelength range or several side chains as emission moieties, blue OLEDs together with a yellow down-conversion layer, stacked WOLEDs, micro-cavity-based WOLEDs, etc. In this paper, we doped a red and green guest into a blue host as emissive layer by co-deposition to prepare WOLEDs. Fig.3 shows the absorption and photoluminescence spectra of host or guest in emissive layer. There is complex energy transfer mechanism in co-doping system of the emissive layer, the energy of host materials can be transferred to efficient guest materials, and increase luminous efficiency and operation life of WOLEDs. The energy transfer coefficient is related to the F?rster radius and the space distance among different organic molecular and the F?rster radius is directly proportional to the overlapping area between the photoluminescence spectra of host materials and absorption spectrum of guest materials, the larger the overlap area, the greater the radius[5]. It can be seen that there are overlapping between the photoluminescence spectra of host materials and absorption spectrum of green guest materials, and between the photoluminescence spectra of green materials and absorption spectrum of red materials from Fig.3, which illustrate that the energy is easy transferred among the host and guest materials. It can be seen that form the energy level diagram of host or guest in emissive layer in Fig.4, owing to the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level of the red dopant fall within that of the host, the carrier trapping is possible, and electrons and holes are respectively trapped by the low-energy dopant under a low bias voltage.

    Fig.4 The energy level diagram of host or guest in emissive layer

    2.2 Normalized electroluminescence spectra and chromaticity coordinate

    Fig.5 shows the current density-chromaticity coordinate characteristics of the white OLEDs fabricated. It can be seen that from the Fig.5, the device color coordinates CIEx gradually decreased, while the CIEy remained stable with the increase of current density. Fig.6 shows the EL spectrum for devices. As can be seen from Fig.6(a), as the current density increase, the luminous intensity of blue, green and red appear to change. And compared with the red intensity, the luminous intensity of blue and green gradually increased. As far as we know, the emission in host-guest of co-doping system is considered to involve two emission mechanisms, energy transfer and carrier trapping. For an efficient energy transfer, it requires a significant spectral overlap between the photo-luminescent (PL) spectrum of the host and the absorption spectrum of the dopant. While for efficient carrier trapping, the highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO) energy level of the dopant must fall within that of the host. There are both electron and hole trapping for red guest, electron trapping for green guest in Fig.4. In this carrier trapping controlled device, electrons and holes are respectively trapped by the low-energy dopant under a low bias and the traps are gradually filled with the increasing electric field, resulting in a faster increase of the current [this case is usually called trap charge limited current (TCLC)][6]. Until all traps are filled, the current starts to increase more slowly [known as space-charge limited current (SCLC)]. In our doping system, carrier trapping is one of key factors that brings the color stability problem in WOLEDs as the driving voltage or current increases. From the above results, we can see that the emission intensity ratio of the dopant to the host changes in device, this means there also exists a good overlap between the emission of the blue light host and the absorption of the green, or red light guest, the emission from such a WOLED system include both carrier trapping and energy transfer mechanisms, and in such a situation a large change of the EL spectra or chromaticity occurs with the driving voltage or current.

    Fig.5 The relation between the current density and chromaticity coordinate of white organic Light emitting devices

    2.3 Chromaticity coordinates shift mechanism

    In order to further systematically analyze the chromaticity coordinates shift mechanism of organic white emitting light devices, the integral area of normalized electroluminescence spectra of devices at different current density were calculated, the proportion accounting for the integral area of blue+green and red were respectively obtained, and the detailed experimental results were listed in table 1. From the table, one can see that the integral area and the proportion of normalized EL spectra of clue+green gradually increase, at the same time the integral area and the proportion of red gradually decrease according to the change of the current density from 5~100 mA·cm-2. In addition, the experimental results indicate that the variation trend of the integral red area and proportion is consistent with color coordinate values CIEX, which make out the chromaticity coordinates shift of organic white light top-emitting devices in this co-doping system is mainly related to the variation of red percentage in white normalized EL spectra, and give rise to CIEX value change with the current density increase. From the relation between the red electroluminescence intensity and drive voltage in Fig.7, it can be found that the red portion in white normalized EL spectra of OLED devices linearly decrease with the drive voltage increase.

    Fig.6 The normalized electroluminescence spectra of OLEDs at different current density

    Table 1 The Integral area of normalized electroluminescence spectra at different current density and color coordinate values

    To Table 2

    blue+green80.93969.71%320red35.16930.29%white116.10810.30640.3661blue+green85.08771.16%440red34.48328.84%white119.57010.30120.366blue+green85.11971.41%560red34.07428.59%white119.19310.29770.3665blue+green85.04971.69%680red33.58628.31%white118.63510.29630.3666blue+green85.04072.11%7100red32.89527.89white117.93510.29450.367

    Fig.7 The relation between the red electroluminescence intensity and drive voltage

    In co-doping system of single-EML WOLEDs, when the electron and hole are trapped by the low-energy dopant under the low bias or current density, the energy transfer between the host and guest can not be effectively performed, and the electroluminescence intensity of host and guest do not simultaneously proportionally increase, which bring about the chromaticity coordinates shift of organic white light top-emitting devices with the variation of voltage or current density. Some previous research results also showed that if electron and hole are trapped by dopant[7-8], the luminous intensity of dopant will be restrained at different voltage, and it is difficult to distinguish the contribution of color evolution which the electron or hole bring about, this also hinder us to further clarify the mechanism behind the problem that result in the chromaticity coordinates shift of organic white light top-emitting devices with the variation of voltage or current density. On the other hand, the dopant luminescence can be divided into two parts, one originate from the energy transfer between host-guest system, and other come from the exciton trapped by dopant, it is also difficult to distinguish which one is the predominant contribution.

    On account of the LUMO energy level of dopant is low than host, some electron trapping will come into being in dopant, so the dopant molecule captured carriers will lose opportunity to accept energy transfer and radiate. Base an the boltzmann distribution law, the specific value of the trapped electron number (Nt) by dopant at LUMO energy level and the free electron number (Nf) at LUMO energy level of host can be expressed as

    (2)

    WhereNdopantandNhostrespectively stand for the molecular number of host and dopant. If the electron charge isQ,Nfcan be described as the following equation

    Nf=jST/Q=jSL2/μVQ

    (3)

    whereLis thickness of OLEDs,μis represents the electron mobility,Vis the driving voltage applied to the device. According to the space-charge-limited currents (SCLC), the relation between the current and voltage in insulator with shallow level trap can be written as

    j∝μV2

    (4)

    Fromtheaboverelationship,itcanbeobtained

    Nf∝V

    (5)

    andtherelationbetweenthedopantmolecularnumbertrappingelectronandthedrivingvoltageappliedtothedevicecanbeacquired.Asfarasweknow,thedopantmolecularacceptingenergytransferfromhostandthecorrespondinghostmoleculararenotoverlapbetweenthemintheco-dopingsystemofsingle-EMLWOLEDswithlowdopantconcentration,wellthentheelectroluminescenceintensityofdopantisproportionaltothedopantmolecularthatcanacceptenergytransferfromhost.Forthereasonthattheelectroluminescenceintensityofdopantcanbewrittenas

    I=A-BV

    (6)

    WhereAandBis positive constant. From the above relation, it is can be found that the electroluminescence intensity of dopant linearly decrease in line with the driving voltage applied to the device, the theoretical results is completely consistent with the experimental one in Fig.5, the relation between the electroluminescence intensity of dopant and the driving voltage applied to the device is linearly fitted, it is can be seen that the fitting line is well matched with the experimental results, and obtainingAandBvalue is respectively 19.41 and 2.31 from the function.

    3 Conclusion

    In summary, the top emission organic light-emitting devices were fabricated by the thermal evaporation of the organic materials on (Al/Mo/MoO3) multi-layers anode, by doping the red and green guest into the blue host as emissive layer to prepare WOLEDs. Experimental results showed that according to the current density increase the luminous intensity of blue, green and red appear to change. Compared with the red intensity, the luminous intensity of blue and green gradually increased. And the emission in this host-guest co-doping system is considered to involve two emission mechanisms, energy transfer and carrier trapping, energy transfer and carrier trapping between the host-guest should be responsible for chromaticity coordinates shift of organic white emitting light devices, and it is proved the electroluminescence intensity of dopant linearly decrease in line with the driving voltage applied to the device by theoretical and experimental results.

    [1] Tang C W, Vanslyke S A. Appl. Phys. Lett., 1987, 51(12): 913.

    [2] Kido J, Kimura M, Nagai K. Science, 1995, 267: 1332.

    [3] Wang Fengxia, Qiao Xianfeng, Xiong Tao, et al. Organic Electronics, 2008, (9): 985.

    [4] Zhao Fangchao, Zhang Zhiqiang, Liu Yipeng, et al. Organic Electronics, 2012,(13): 1049.

    [5] Jou Jwo-Huei, Chen Po-Wei, Chen Yu-Lin, et al. Organic Electronics, 2013,(14): 47.

    [6] Du Xiaoyang, Huang Yun, Tao Silu, et al. Dyes and Pigments, 2015,(115): 149.

    [7] Lee Jonghee, Lee Joo-Won, Cho Nam Sung, et al. Current Applied Physics, 2014, (14): 84.

    [8] Kim Nam Ho, Kim You-Hyun, Yoon Ju-An, et al. Journal of Luminescence, 2013, (143): 723.

    O461.2

    A

    頂發(fā)射白光OLED器件制備及其色坐標(biāo)漂移機(jī)制研究

    王光華1,2, 趙惠瓊1,2, 鄧榮斌1, 段 瑜1,2, 孫 浩1, 張?bào)愕?,2, 周 琴1, 錢(qián)金梅1, 萬(wàn)銳敏1,2, 季華夏1, 姬榮斌2

    1. 云南北方奧雷德光電科技股份有限公司,云南 昆明 650223 2. 昆明物理研究所,云南 昆明 650223

    采用了高反射率金屬Al和電化學(xué)性能穩(wěn)定的金屬M(fèi)o,在硅基底上制備了多層結(jié)構(gòu)的 Al/Mo/MoO3陽(yáng)極,并研究了不同MoO3厚度下多層陽(yáng)極的反射率。在此基礎(chǔ)上,通過(guò)發(fā)光層共摻雜制備了頂部發(fā)光OLED器件,并對(duì)器件發(fā)光機(jī)制進(jìn)行了系統(tǒng)研究和分析。實(shí)驗(yàn)結(jié)果表明: 采用發(fā)光層共摻雜制備的頂部發(fā)光OLED器件的色坐標(biāo),隨電流密度或電壓的增加而發(fā)生漂移;OLED器件色坐標(biāo)漂移的原因是三基色發(fā)光強(qiáng)度隨電流密度的增加,逐漸偏離了形成白光(0.33, 0.33)所需三基色強(qiáng)度比例值,導(dǎo)致了OLED器件的色坐標(biāo)發(fā)生了漂移,其機(jī)制是發(fā)光層中主-客之間能量轉(zhuǎn)移和陷阱共同作用的結(jié)果。進(jìn)一步研究發(fā)現(xiàn),在不同電壓下,紅光發(fā)光強(qiáng)度隨驅(qū)動(dòng)電壓(或電流密度)增大而線性地減小。

    有機(jī)電致發(fā)光器件;色坐標(biāo)漂移;能量轉(zhuǎn)移;陷阱

    2015-11-06,

    2016-03-21)

    Foundation item: The National Natural Science Foundation of China(61604064), The General Program of Applied Basic Research (2016FB112) of Yunnan

    10.3964/j.issn.1000-0593(2016)11-3758-06

    Received: 2015-11-06; accepted: 2016-03-21

    猜你喜歡
    能量轉(zhuǎn)移基色白光
    多基色顯示系統(tǒng)基色亮度求解及討論
    念 舊
    基色與混合色
    獵熊的孩子
    基于納米金與納米銀簇間表面等離子增強(qiáng)能量轉(zhuǎn)移效應(yīng)特異性檢測(cè)microRNA
    白光LED無(wú)線通信的研究進(jìn)展
    白光(選頁(yè))
    中國(guó)房地產(chǎn)業(yè)(2016年9期)2016-03-01 01:26:18
    能量轉(zhuǎn)移型鋰電池組均衡電路的設(shè)計(jì)與研究
    K(5P)與H2的反應(yīng)碰撞和電子-振動(dòng)能量轉(zhuǎn)移
    免费观看精品视频网站| 欧美精品一区二区大全| 国产精品蜜桃在线观看| 一级毛片久久久久久久久女| 2021天堂中文幕一二区在线观| 久久久a久久爽久久v久久| 亚洲欧美日韩卡通动漫| 久久精品久久久久久噜噜老黄 | 亚洲,欧美,日韩| 午夜久久久久精精品| 女的被弄到高潮叫床怎么办| 男插女下体视频免费在线播放| 嫩草影院精品99| 亚洲av男天堂| 久久精品人妻少妇| 在线a可以看的网站| 精品不卡国产一区二区三区| 大香蕉久久网| 久久久久久久久久成人| 日韩欧美在线乱码| 91狼人影院| 久久精品国产亚洲av涩爱| 人妻制服诱惑在线中文字幕| 少妇熟女aⅴ在线视频| 免费看光身美女| 日韩,欧美,国产一区二区三区 | 亚洲精品色激情综合| 国产欧美另类精品又又久久亚洲欧美| 国产成人免费观看mmmm| 亚洲欧洲日产国产| 观看美女的网站| 亚洲aⅴ乱码一区二区在线播放| 1024手机看黄色片| 韩国高清视频一区二区三区| 国产91av在线免费观看| 老女人水多毛片| 看片在线看免费视频| 欧美+日韩+精品| 小蜜桃在线观看免费完整版高清| 在线播放无遮挡| 色5月婷婷丁香| 久久久久久久久久成人| 在线a可以看的网站| 亚洲第一区二区三区不卡| 只有这里有精品99| av免费观看日本| 久久精品国产自在天天线| 久久这里只有精品中国| 久久亚洲精品不卡| 天堂√8在线中文| 亚洲国产欧美人成| 免费看美女性在线毛片视频| 91精品伊人久久大香线蕉| 久久国内精品自在自线图片| 99热这里只有是精品在线观看| 中文字幕免费在线视频6| 在线播放国产精品三级| 国产精品电影一区二区三区| 欧美人与善性xxx| av天堂中文字幕网| 午夜福利在线观看免费完整高清在| 国产一级毛片七仙女欲春2| 欧美一区二区精品小视频在线| 汤姆久久久久久久影院中文字幕 | 尤物成人国产欧美一区二区三区| 亚洲在线观看片| 99久国产av精品| 伊人久久精品亚洲午夜| 长腿黑丝高跟| 神马国产精品三级电影在线观看| 久久久久久久久久久免费av| 日日摸夜夜添夜夜添av毛片| 国产成人午夜福利电影在线观看| 国产探花极品一区二区| 亚洲经典国产精华液单| 成人毛片60女人毛片免费| 亚洲精品,欧美精品| 国产成人精品一,二区| 一本久久精品| 亚洲最大成人手机在线| 国产中年淑女户外野战色| 九九爱精品视频在线观看| 亚洲在线自拍视频| 国产乱人偷精品视频| 国产免费又黄又爽又色| 看黄色毛片网站| 日韩成人伦理影院| 亚洲色图av天堂| 国产午夜福利久久久久久| 天天躁夜夜躁狠狠久久av| 少妇被粗大猛烈的视频| 亚洲内射少妇av| 日本av手机在线免费观看| 亚洲高清免费不卡视频| 简卡轻食公司| 热99re8久久精品国产| 久久草成人影院| 天堂影院成人在线观看| 久久久精品大字幕| 中国美白少妇内射xxxbb| 在线a可以看的网站| 我的老师免费观看完整版| 国产三级在线视频| 国产精品av视频在线免费观看| 亚洲18禁久久av| 深爱激情五月婷婷| 97热精品久久久久久| 少妇熟女欧美另类| 精品久久久久久成人av| 精品久久久噜噜| 国产成人一区二区在线| 免费av不卡在线播放| 日韩人妻高清精品专区| 男人舔女人下体高潮全视频| 中文精品一卡2卡3卡4更新| 偷拍熟女少妇极品色| 一级毛片我不卡| 51国产日韩欧美| 亚洲精品乱码久久久v下载方式| 一级毛片aaaaaa免费看小| 两性午夜刺激爽爽歪歪视频在线观看| 全区人妻精品视频| av播播在线观看一区| 七月丁香在线播放| 国产精品精品国产色婷婷| 亚洲精品影视一区二区三区av| 精品一区二区三区视频在线| 啦啦啦啦在线视频资源| 中文字幕人妻熟人妻熟丝袜美| a级一级毛片免费在线观看| 亚洲经典国产精华液单| 亚洲精品自拍成人| 久久国产乱子免费精品| 国产一区亚洲一区在线观看| 在线观看美女被高潮喷水网站| 18禁裸乳无遮挡免费网站照片| 一级黄片播放器| 国产又黄又爽又无遮挡在线| 免费一级毛片在线播放高清视频| 一级黄色大片毛片| 少妇人妻一区二区三区视频| 久久精品影院6| 一个人观看的视频www高清免费观看| 欧美xxxx性猛交bbbb| 乱码一卡2卡4卡精品| 内射极品少妇av片p| 成人毛片a级毛片在线播放| 亚洲美女视频黄频| 有码 亚洲区| 精品久久久久久久末码| 久久精品国产亚洲网站| 国产又黄又爽又无遮挡在线| 欧美日韩国产亚洲二区| 国产老妇女一区| 国产精品国产三级专区第一集| 最近最新中文字幕免费大全7| 日韩成人av中文字幕在线观看| 欧美xxxx性猛交bbbb| 午夜久久久久精精品| 免费看光身美女| 寂寞人妻少妇视频99o| 欧美bdsm另类| 欧美性感艳星| 简卡轻食公司| 国产综合懂色| 国内精品一区二区在线观看| 国产爱豆传媒在线观看| 亚洲伊人久久精品综合 | 欧美成人一区二区免费高清观看| 人妻少妇偷人精品九色| 久久精品国产亚洲av天美| 人人妻人人看人人澡| 国产精品久久久久久久电影| 久久精品国产自在天天线| 国产高清国产精品国产三级 | 国产精品蜜桃在线观看| 国产在线男女| 在线天堂最新版资源| 日本午夜av视频| 99九九线精品视频在线观看视频| 亚洲国产色片| 男女那种视频在线观看| 国内精品一区二区在线观看| 日产精品乱码卡一卡2卡三| 高清av免费在线| 乱系列少妇在线播放| 久久人妻av系列| 欧美激情久久久久久爽电影| 五月玫瑰六月丁香| 岛国在线免费视频观看| 国产精品国产三级国产专区5o | 国产精品一区二区三区四区久久| 国产亚洲精品久久久com| 老女人水多毛片| 亚洲最大成人中文| 久久99蜜桃精品久久| 91久久精品国产一区二区三区| 毛片女人毛片| 国产精品永久免费网站| 不卡视频在线观看欧美| 亚洲激情五月婷婷啪啪| 国产亚洲午夜精品一区二区久久 | 日产精品乱码卡一卡2卡三| 激情 狠狠 欧美| 在线免费十八禁| 男女那种视频在线观看| 一级黄色大片毛片| 97人妻精品一区二区三区麻豆| 一级毛片电影观看 | 国产精品野战在线观看| 插逼视频在线观看| 婷婷六月久久综合丁香| 国产免费视频播放在线视频 | 亚洲av电影不卡..在线观看| 伦精品一区二区三区| 黄片无遮挡物在线观看| 日韩三级伦理在线观看| 亚洲精品国产av成人精品| 日韩高清综合在线| 久久久国产成人精品二区| 久久精品国产99精品国产亚洲性色| 中文在线观看免费www的网站| 伊人久久精品亚洲午夜| 波多野结衣高清无吗| 97在线视频观看| 男人和女人高潮做爰伦理| 久久人妻av系列| 欧美区成人在线视频| 亚洲av.av天堂| 亚洲五月天丁香| 国产精品伦人一区二区| 久久久久免费精品人妻一区二区| 欧美又色又爽又黄视频| 国产精品三级大全| 乱系列少妇在线播放| 免费人成在线观看视频色| 国产午夜福利久久久久久| 精品一区二区免费观看| 成人无遮挡网站| 久久精品国产鲁丝片午夜精品| av天堂中文字幕网| 国产精品久久久久久精品电影| 免费搜索国产男女视频| 直男gayav资源| 国产av码专区亚洲av| 在线免费观看的www视频| 亚洲欧美日韩高清专用| 可以在线观看毛片的网站| 日韩人妻高清精品专区| 99九九线精品视频在线观看视频| 成年免费大片在线观看| 亚洲,欧美,日韩| 日本午夜av视频| 能在线免费看毛片的网站| 乱码一卡2卡4卡精品| 亚洲国产高清在线一区二区三| av又黄又爽大尺度在线免费看 | 国产亚洲av片在线观看秒播厂 | 看片在线看免费视频| 神马国产精品三级电影在线观看| 舔av片在线| 国产亚洲一区二区精品| 国产成人一区二区在线| 久久精品国产自在天天线| 毛片一级片免费看久久久久| 日韩欧美国产在线观看| av.在线天堂| 一边亲一边摸免费视频| 国产成人aa在线观看| 久久久欧美国产精品| 自拍偷自拍亚洲精品老妇| 一夜夜www| 亚洲人成网站在线播| 国产黄片美女视频| 热99在线观看视频| 国产免费视频播放在线视频 | 午夜免费男女啪啪视频观看| 中文欧美无线码| 青青草视频在线视频观看| 免费看日本二区| 久久久久国产网址| 精品国产三级普通话版| 一夜夜www| 亚洲图色成人| 国产精品久久久久久久电影| av免费在线看不卡| 2021少妇久久久久久久久久久| 天堂av国产一区二区熟女人妻| 婷婷色麻豆天堂久久 | 免费一级毛片在线播放高清视频| 亚洲精品乱码久久久久久按摩| 亚洲国产欧美人成| 成人鲁丝片一二三区免费| 日本熟妇午夜| eeuss影院久久| 一级毛片我不卡| 国产色婷婷99| 亚洲av中文av极速乱| 毛片一级片免费看久久久久| 国产又黄又爽又无遮挡在线| 麻豆久久精品国产亚洲av| 麻豆国产97在线/欧美| 国产中年淑女户外野战色| 免费看光身美女| 亚洲欧洲国产日韩| 亚洲精品国产av成人精品| 联通29元200g的流量卡| 久久欧美精品欧美久久欧美| 亚洲精品国产成人久久av| 人妻系列 视频| 伊人久久精品亚洲午夜| 亚洲一区高清亚洲精品| 欧美人与善性xxx| 91av网一区二区| 偷拍熟女少妇极品色| 女的被弄到高潮叫床怎么办| 亚洲电影在线观看av| 久久久久久大精品| 国产视频内射| 日韩,欧美,国产一区二区三区 | 精品欧美国产一区二区三| 国产午夜精品一二区理论片| 少妇被粗大猛烈的视频| 久久婷婷人人爽人人干人人爱| 午夜福利在线观看吧| 别揉我奶头 嗯啊视频| 天堂中文最新版在线下载 | 午夜免费激情av| 亚洲av成人精品一区久久| 边亲边吃奶的免费视频| or卡值多少钱| 国产一级毛片在线| 最近中文字幕2019免费版| 亚洲av福利一区| 啦啦啦啦在线视频资源| 欧美日韩综合久久久久久| 床上黄色一级片| 青春草国产在线视频| 欧美最新免费一区二区三区| 高清av免费在线| 99热这里只有是精品在线观看| 亚洲在久久综合| 亚洲av成人av| 干丝袜人妻中文字幕| 在线观看66精品国产| 色哟哟·www| 亚洲精品456在线播放app| 国产av码专区亚洲av| 深爱激情五月婷婷| 国产精品麻豆人妻色哟哟久久 | 欧美又色又爽又黄视频| 69av精品久久久久久| 真实男女啪啪啪动态图| 91午夜精品亚洲一区二区三区| 久久久久久久午夜电影| 中文字幕制服av| 三级经典国产精品| 久久亚洲精品不卡| 禁无遮挡网站| 尾随美女入室| 搡女人真爽免费视频火全软件| 麻豆成人午夜福利视频| 国产精品乱码一区二三区的特点| 日韩制服骚丝袜av| 最近2019中文字幕mv第一页| 久久久久国产网址| 长腿黑丝高跟| 啦啦啦啦在线视频资源| 全区人妻精品视频| 国产一区二区亚洲精品在线观看| 国产单亲对白刺激| 九九在线视频观看精品| 亚洲精品国产成人久久av| 国产在线一区二区三区精 | 乱人视频在线观看| 国产精品永久免费网站| 麻豆久久精品国产亚洲av| 久久精品久久精品一区二区三区| 亚洲人成网站高清观看| av播播在线观看一区| 春色校园在线视频观看| 国产又色又爽无遮挡免| 免费av毛片视频| 人妻系列 视频| 99视频精品全部免费 在线| 国产亚洲最大av| 亚洲图色成人| 自拍偷自拍亚洲精品老妇| 国产亚洲av嫩草精品影院| 久久鲁丝午夜福利片| 国产黄a三级三级三级人| 中文字幕免费在线视频6| 亚洲精品自拍成人| 男插女下体视频免费在线播放| 伦精品一区二区三区| 国产精品久久久久久精品电影| 99热这里只有是精品在线观看| 1000部很黄的大片| 亚洲aⅴ乱码一区二区在线播放| 成人午夜精彩视频在线观看| 久久99蜜桃精品久久| 亚洲最大成人手机在线| 不卡视频在线观看欧美| 国产成人福利小说| 99久久人妻综合| 亚洲av中文av极速乱| 日本一二三区视频观看| 久久鲁丝午夜福利片| or卡值多少钱| 久久久久久久亚洲中文字幕| 五月伊人婷婷丁香| 在现免费观看毛片| 黄色一级大片看看| 国产成人福利小说| 亚洲图色成人| 久久99蜜桃精品久久| 最近手机中文字幕大全| 日本一本二区三区精品| 国产精品无大码| 国产片特级美女逼逼视频| 成人亚洲欧美一区二区av| 校园人妻丝袜中文字幕| 真实男女啪啪啪动态图| 寂寞人妻少妇视频99o| 亚洲aⅴ乱码一区二区在线播放| 可以在线观看毛片的网站| 亚洲av成人精品一二三区| 欧美3d第一页| 亚洲电影在线观看av| av卡一久久| 中文资源天堂在线| 国产高清视频在线观看网站| 中文字幕亚洲精品专区| 亚洲av中文av极速乱| 男人和女人高潮做爰伦理| 色综合色国产| 91久久精品国产一区二区三区| 亚洲在线自拍视频| 婷婷色综合大香蕉| 三级毛片av免费| 大话2 男鬼变身卡| 一区二区三区乱码不卡18| 欧美不卡视频在线免费观看| 国产一区二区在线av高清观看| 天堂影院成人在线观看| 亚洲精品成人久久久久久| 在线免费观看不下载黄p国产| 久久精品91蜜桃| 六月丁香七月| 日韩,欧美,国产一区二区三区 | 成人美女网站在线观看视频| 热99在线观看视频| 建设人人有责人人尽责人人享有的 | 成人特级av手机在线观看| 99热这里只有是精品50| 亚洲美女视频黄频| 欧美3d第一页| 又粗又爽又猛毛片免费看| av国产久精品久网站免费入址| 国产精品99久久久久久久久| 九九热线精品视视频播放| 男女那种视频在线观看| 日本色播在线视频| 两个人视频免费观看高清| 中文字幕亚洲精品专区| 人人妻人人看人人澡| 国产欧美另类精品又又久久亚洲欧美| 欧美另类亚洲清纯唯美| 国产午夜精品久久久久久一区二区三区| 能在线免费观看的黄片| 亚洲欧美精品自产自拍| 能在线免费看毛片的网站| 精品酒店卫生间| 69人妻影院| 国产精品不卡视频一区二区| 国产精品,欧美在线| 蜜桃久久精品国产亚洲av| 精品人妻视频免费看| 中文字幕精品亚洲无线码一区| 亚洲中文字幕一区二区三区有码在线看| 久久午夜福利片| 日韩成人伦理影院| 长腿黑丝高跟| 久久精品国产鲁丝片午夜精品| 免费播放大片免费观看视频在线观看 | 一本一本综合久久| 插逼视频在线观看| av卡一久久| 国产白丝娇喘喷水9色精品| 天美传媒精品一区二区| 18+在线观看网站| 国产男人的电影天堂91| 国产一区有黄有色的免费视频 | 国产高潮美女av| 免费观看的影片在线观看| 亚洲av二区三区四区| 亚洲欧美日韩卡通动漫| 欧美人与善性xxx| 超碰av人人做人人爽久久| 在线播放无遮挡| 激情 狠狠 欧美| 午夜视频国产福利| 国产亚洲午夜精品一区二区久久 | 超碰av人人做人人爽久久| 中文资源天堂在线| 成人漫画全彩无遮挡| 亚洲av中文字字幕乱码综合| 亚洲内射少妇av| 国产淫语在线视频| 中文精品一卡2卡3卡4更新| 精品久久久噜噜| 国产精品一区二区三区四区久久| 丝袜喷水一区| 我的女老师完整版在线观看| 99久久成人亚洲精品观看| 免费av毛片视频| 亚洲精品一区蜜桃| 美女国产视频在线观看| 在线播放国产精品三级| 九九久久精品国产亚洲av麻豆| 高清在线视频一区二区三区 | 日本一二三区视频观看| 日本黄色视频三级网站网址| 日本一二三区视频观看| 九九在线视频观看精品| 一本久久精品| 永久网站在线| 美女cb高潮喷水在线观看| 亚洲电影在线观看av| 1024手机看黄色片| 91午夜精品亚洲一区二区三区| 亚洲人与动物交配视频| 男人舔奶头视频| 秋霞在线观看毛片| 欧美日本亚洲视频在线播放| 麻豆乱淫一区二区| 国产午夜精品久久久久久一区二区三区| 国产精品国产三级国产专区5o | 女人被狂操c到高潮| 国产 一区精品| 国产精品蜜桃在线观看| 午夜a级毛片| 高清毛片免费看| 色吧在线观看| 日本一本二区三区精品| 97超视频在线观看视频| 亚洲在线观看片| 一边亲一边摸免费视频| 精品久久久久久久人妻蜜臀av| 欧美性感艳星| 亚洲最大成人中文| 性插视频无遮挡在线免费观看| 精品国产一区二区三区久久久樱花 | 色视频www国产| 久久久午夜欧美精品| 午夜激情福利司机影院| 久久热精品热| 99热6这里只有精品| 亚洲精品,欧美精品| 日本黄色片子视频| 3wmmmm亚洲av在线观看| 欧美高清性xxxxhd video| 国产私拍福利视频在线观看| 欧美一级a爱片免费观看看| 成年女人永久免费观看视频| 小蜜桃在线观看免费完整版高清| 丰满乱子伦码专区| 波多野结衣巨乳人妻| 国国产精品蜜臀av免费| 国产伦精品一区二区三区四那| 男女国产视频网站| 久久久久免费精品人妻一区二区| 久久6这里有精品| 老司机影院毛片| 久久国内精品自在自线图片| 一区二区三区高清视频在线| 51国产日韩欧美| 精品人妻视频免费看| 欧美成人午夜免费资源| 国产精品国产三级国产av玫瑰| 亚洲丝袜综合中文字幕| 国产高清国产精品国产三级 | 寂寞人妻少妇视频99o| 能在线免费观看的黄片| 日韩精品青青久久久久久| 三级国产精品片| 日韩中字成人| 午夜久久久久精精品| 又粗又硬又长又爽又黄的视频| 亚洲丝袜综合中文字幕| a级毛片免费高清观看在线播放| 国产成人一区二区在线| 视频中文字幕在线观看| 国产白丝娇喘喷水9色精品| 亚洲欧美清纯卡通| 一区二区三区高清视频在线| 少妇人妻精品综合一区二区| 婷婷色综合大香蕉| 国产乱人偷精品视频| 色吧在线观看| 天堂av国产一区二区熟女人妻| 在线观看美女被高潮喷水网站| 99久久九九国产精品国产免费| 日韩高清综合在线| 永久免费av网站大全| 51国产日韩欧美| 中文欧美无线码| 别揉我奶头 嗯啊视频| 五月玫瑰六月丁香| 成人午夜精彩视频在线观看| 青青草视频在线视频观看| 国内精品一区二区在线观看| 最后的刺客免费高清国语| 中文天堂在线官网| 久久精品国产99精品国产亚洲性色|