• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Application of THz Spectroscopy and GA-BP in Methanol Concentration Detection

    2016-07-12 12:49:52TANHongyingZHENGDezhongLIXueXUZhengxia
    光譜學與光譜分析 2016年11期
    關(guān)鍵詞:光譜法赫茲時域

    TAN Hong-ying,ZHENG De-zhong,LI Xue,XU Zheng-xia

    Hebei Provincial Key Laboratory on Measurement Technology and Instrumentation, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China

    The Application of THz Spectroscopy and GA-BP in Methanol Concentration Detection

    TAN Hong-ying,ZHENG De-zhong,LI Xue,XU Zheng-xia

    Hebei Provincial Key Laboratory on Measurement Technology and Instrumentation, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China

    At ambient temperature and atmospheric pressure, making use of a photoconductive-antenna terahertz time-domain spectrograph and a self-designed air chamber, the terahertz time-domain spectroscopy (THz-TDS) technique test of methanol gas in the range of 0.1~3.0 THz shows that the methanol gas has no obvious absorption peaks in the range of 0.1~3.0 THz and has obvious absorption peaks in the range of 0.1~1.0 THz. In order to improve the determination accuracy of the concentration of the methanol gas, the author detected 15 groups of methanol gas with different concentrations on the basis of the relationship between the strengths of 15 characteristic absorption peaks of different locations and the concentration of the methanol gas, and obtained the difference curve of the of the characteristic absorption peaks. Based on the function approximation of BP neural network, the author optimized the initial weights and biases of the BP neural network by using the GA the genetic algorithm, which has higher rate of convergence to prevent from getting into local optimum easily, and constructed the mathematical model with the purpose of predicting the methanol gas concentration. The test results show that the neural network is applicable to predict methanol gas in the volume concentration range of 0.028 3~0.424 6 m3·L-1, the average relative standard deviation of the 2 sets of samples is 1.7%, the average recovery rate is 98%, the error precision of the neural network is 10-1, and correlation coefficient of the measured values and the predicted values is 0.996 77. The test basically achieved ideal predicted results. The research results obtained experimental data of methanol gas in the terahertz frequency band and found that the method of combining terahertz time-domain spectroscopy with GA-BP neural network can effectively detect the volume concentration of methanol gas, and provided a new method for the detection of concentration of methanol gas.

    Spectroscopy; Terahertz time-domain spectroscopy; Genetic algorithm; BP neural network; Methanol

    Introduction

    Terahertz ray is in the far-infrared band, and it can realize nondestructive recognition for its little damage when it penetrates samples. Furthermore, because terahertz ray locates between infrared spectrum and microwave, both the electromagnetic wave amplitude and phase can be acquired when the broadband terahertz pulses are used to irradiate samples. Therefore, in recent years there are many researches scholars home and abroad used terahertz waves to detect organic molecules because the electromagnetic waves of this wave band can obtain the absorption spectrums of pure rotational transitions and vibration-rotation transitions of molecules. For example, John C. Pearson[1]et al. analyzed rotation spectrum in ground-state methanol, J. P. Laib[2]et al. conducted the experiment of terahertz absorption curve on alkanes such as pentane; and in China, for instance, Zhao Hui[3]et al. analyzed characteristics of 1,3-dinitrobenzene in terahertz band, Hou Dibo[4]et al. analyzed the absorption coefficient and refractive index of endosulfan in the range of 0.1~3.0 THz. The research results demonstrate that the terahertz time-domain spectroscopy can be applied to detect organic substances. In terahertz-spectroscopy tests on organic gases, however, owing to the interference by gases such as H2O and CO2, the experimental cannot provide obvious results and relatively big errors[5-6]of predicted gas concentration were existing. Furthermore, based on the literature[7-8], a C—H…O of methanol has a hydrogen bond, and the vibration of the intermolecular hydrogen bonds can easily leads to characteristic absorptions in terahertz band. Based on the reason above, regarding methanol, which is a kind of organic gases, as the experimental subject, this thesis obtains the characteristic absorption spectrum of methanol gas in the range of 0.1~3.0 THz through experiments by using photoconductive-antenna terahertz spectrograph that is produced by the BATOP Company and employs the improved GA-BP neural network to give predictions of methanol gas concentration.

    1 The Experiment Principle and the Modeling Theory

    1.1 The Experiment Principle

    Figure 1 shows the schematic light path diagram of the test system. The femtosecond laser pulse that is emitted by a photoconductive antenna is divided into two beams of light by a beam splitter. One of the beams goes through a chopper of 33 kHz with its repetition frequency being reset to 33kHz, and the beam of light forms a pump beam after reflected by a retroreflector of one-dimensional translation platform. Then the beam passes through a specimen chamber. The other beam of light is called the probe beam, which passes through a light path of the same length as the former beams passes through without moving through the air chamber, and converges together with the pump beam in the detector. The detector can simultaneously acquire the terahertz reflected light that passed through the gas which needs to be measured and the terahertz pulse that did not pass through the chamber, and that causes a difference signal. The relationship of strength and time of the terahertz electric field can be output after disposed by a postpositional signal current amplifier and a lock-in amplifier. After transformed with Fourier, the relationship can provide the relationship of amplitude and phase, and a signal of terahertz time-domain spectroscopy of the sample to be tested can be obtained in the end.

    Fig.1 Principle picture of experimental optical path

    A photoconductive-antenna terahertz spectrograph with its spectral range between 0.1~3.0 THz is chosen as an experimental device. An organic glass cylinder works as an air chamber, which has air guide pipelines on both ends, and the material of the windows on its two sides is polytetrafluoroethylene with the thickness of 2 mm. The air chamber possesses good transparency and low absorption rate[9]to terahertz waves. The appearance of the chamber is shown as Figure 2. In the experiment, the spectrum resolution is equal or lesser than 10 GHz, and the scan times are less than 50.

    Fig.2 Air chamber

    Methanol gas is chosen as the sample while N2is chosen as the reference gas. Introduce methanol gases of 100~1 500 mL respectively into the air chamber with its volume of 3.532 5×10-3m3, and conduct the experiment 15 times in the same conditions. The experiment is conducted at ambient temperature and atmospheric pressure, and uses N2to flush the chamber at the speed of 10 m3·s-1for 5 minutes before every beginning of the experiment.

    2.2 The Modeling Theory

    The BP neural network, which comprises the forward propagation process and the back propagation process[9], has strong abilities of fault-tolerance, adaptive and self-learning[10]. The three-layer BP neural network comprises the input layer, the single hidden layer and the output layer[11]. The structure of the neural network is shown in Figure 3.

    Fig.3 The single hidden layer BP neural network

    In the input layer,

    qk=f(netk)k=1,2,…,l

    (1)

    (2)

    Intheoutputlayer,

    yj=f(netk)j=1,2,…,m

    (3)

    (4)

    Theformulasabovejointlyconstitutethemathematicalmodelofthethree-layerBPperceptron.Nevertheless,theBPneuralnetworkisonlyappropriateforgradientdescentoflocalareas.Therefore,thenetworklacksofcomprehensiveandgetsintoalocaloptimumextremumeasily[12-13].ButtheGAisaglobaloptionalalgorithmthatisbasedontherandomsearchofthetheoryofbiologicalevolution,anditcanoptimizetheinitialweightvaluesandthresholdvaluesoftheBPnetworkintraining.Sothealgorithmcanpreventthenetworkfromgettingintolocalminimumsandensurethenetworktopossessreasonableconvergencespeed[14].

    TheindividualselectionprobabilityoftheGAisshowninthefollowingformula,

    (5)

    Thefiindicates the match value of the individuali, andfiis measured by squared error andE. The expression is,

    E(i)=∑p∑k(Vk-Tk)2

    (6)

    Intheexpression,theiis the chromosome number; thekis the input node number; thepis the learning sample number; theTkis the output signal. Then use the cross operation and the mutation operation to insert a new individual into the species group and calculate the evaluation function. It ends if it find the satisfactory individual otherwise, it is proceed with the cross operation and the mutation operation until find the optimal individual decoding in the species group.

    2 The Experiment Results and the Analysis

    2.1 The Experiment Results

    The experimental curve of methanol gas of 0.028 3 mL·m-3is shown in Figure 4. From Figure 4, the terahertz spectrogram of the methanol in the range of 0~1.0 THz has 15 absorption peaks, the number of which is close to the 17 terahertz peaks that reported in the literature[15]. Substract the reference spectrum of N2and the spectrum of the methanol sample, remove baselines and background noises, and use Lorentz fit to obtain the fitting curve the methanol gas that is shown in Figure 5. Under same experimental conditions, successively input methanol gases in the range of 0.028 3~0.424 6 m3·L-1, observe the results, which show that the locations of the absorption peaks are accordant while the peak heights and the absorption intensities are different. To facilitate comparison, put the fitting curves of absorption peaks in the location 0.245 4 THz of 5 kinds of methanol gases with different concentrations in one diagram. As shown in Figure 6, peak heights are correlative with volume concentrations, and higher concentration of methanol gas has, the higher peak height is, namely absorption efficiency is higher.

    Fig.4 Experimental curve of CH3OH(0.028 3 mL·m-3)

    Fig.5 Experimental fitting of CH3OH(0.028 3 mL·m-3)

    2.2 Analysis and the Identification of the GA-BP Neural Network

    In the BP network, the height of peaks is the input and the concentration data is the output. The first 3 groups of samples are training sets, and the last 2 groups of samples are test sets. In the process of network training, input is the absorption intensities that correspond to 15 characteristic peaks, and the output is a predicted concentration of the sample. Set the number of hidden-layer nodes to 13, the number of maximum training times to 5 000, the learning efficiency to 0.05, the noiseless training error to 10-1.

    Fig.6 THz spectra of methanol at different concentrations

    In the GA, set the number of species groups to 50, the hereditary algebra to 100, and the crossover rate and the mutation rate are 0.95 and 0.005 respectively. After computation, we can get the changing curve of fitness that is shown as Figure 7 and the optimal fitness that is 2.505×10-3.

    Fig.7 Relationship curve of fitness and genetic generation

    After the training, we can obtain the mean square error curve that is shown as Figure 8. The result of linear regression analysis of the network output value and expected value is shown as Figure 9, and the correlation coefficient is 0.996 77, which demonstrates!the degree of fitting of network output value and expected value is high. The two values are basically concord, and the results prove that the network is competent to predict methanol concentrations accurately.

    From Figure 9, the more sample points a location has, the better the approximation effect is. Although the terahertz spectrum test on methanol gases is affected by numerous interfering factors, the GA-BP algorithm can utilize the ability of fast searching in the negative gradient direction of the BP algorithm and the global-optimization characteristic of the GA algorithm, and the GA-BP algorithm is a timesaving and reliable prediction technique with excellent abilities of adaptive, fault-tolerance and self-learning. The algorithm is qualified to deal with multi-factor conditions and data processing with imprecise information in predicting methanol concentrations. Based on GA-BP neural network, the author acquired data results of predicted sample concentrations. The results are shown in Table 1.

    Fig.8 Neural network training mean variance curve

    Fig.9 Linear regression analysis of neural network

    Table 1 Neural network forecast results

    SampleRealconcentration/(L·m-3)EstimatingconcentrationRecovery/%Averagerecovery/%RelativestandarderrorAveragerelativestandarderror10.11320.109897981.881.7020.14150.140099981.521.70

    From Table 1, prediction of test samples by using a well-trained neural network can provide us results that are shown in Table 1. The actual concentrations of the 2 groups are 0.113 2 and 0.141 5 L·m-3. The recoveries are 97% and 99% and the relative standard deviations are 88% and 1.52%. The recovery of 2 groups of forecast samples is 98%, and the average relative standard deviation is 1.70%.

    3 Conclusion

    The thesis acquires the absorption spectrum of methanol gases in spectral range between 0.1~3.0 THz with the experimental methods and 15 apparent absorption peaks. The thesis establishes the GA-BP neural network model according to the pertinence of absorption intensities and concentrations of 5 groups of methanol gases with different concentrations at the same location. The results of predicting are: the average relative standard deviation of the 2 groups of test samples is 1.70%, and the average relative standard deviation is 1.70%. The results of neural network training are: the error precision of measured value and expected value reaches 10-1, and the correlation coefficient is 0.996 77. The test basically achieved ideal predicted results. The method can be used to detect methanol gases in the range of 0.028 3~0.141 5 m3·L-1, and it can provide with new ideas in detecting concentrations of volatile organic contaminants in the environment.

    [1] Pearson J C, Yu S, Drouin B J. Journal of Molecular Spectroscopy, 2012, 280(4): 119.

    [2] Laib J P, Mittleman D M. Journal of Infrared Millimeter & Terahertz Waves, 2010, 31(9): 1015.

    [3] Zhao Hui, Wang Gao, Ma Tiehua. Spectroscopy and Spectral Analysis, 2012, 32(4): 902.

    [4] Hou Dibo, Yue Feiheng, Kang Xusheng, et al. Spectroscopy and Spectral Analysis, 2012, 32(5): 1170.

    [5] Andersen J. Journal of Chemical Physics, 2014, 140(9): 1964.

    [6] Ohno K, Shimoaka T, Akai N, et al. Journal of Chemical Physics, 2008, 112: 7342.

    [7] Laurette S, Treizebre A, Bocquet B. 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Groningen, The Netherlands, 2010. 1964.

    [8] Gan Tingting, Zhang Yujun, Zhao Nanjing, et al. Spectroscopy and Spectral Analysis, 2015, 35(1).

    [9] Xiao Wei Li, Sung Jin Cho, Seok Tae Kim, Journal of Optics Communications, 2014, 315: 147.

    [10] Lei Meng, Li Ming, Wu Nan, et al. Spectroscopy and Spectral Analysis, 2013, 33(1): 65.

    [11] Atlas Khan, Jie Yang, Wei Wu. Journal of Neurocomputing, 2014,128: 113.

    [12] Luo Yong, Chen Shu-wei, He Xiao-juan, et al. International Journal of Computational Intelligence Systems, 2013, 6(6): 1108.

    [13] Wang Jing, Jing Yuanshu, Huang Wenjiang, et al. Spectroscopy and Spectral Analysis, 2015, 35(6): 1649.

    [14] Duan Qianqian, Yang Genke, Pan Changchun, et al. The Scientific World Journal, 2014.

    [15] Ma Chunqian, Xu Xiangdong, Ding Lian, et al. Spectroscopy and Spectral Analysis, 2014, 34(4): 952.

    O433

    A

    太赫茲光譜法和GA-BP在甲醇濃度檢測的應用

    談宏瑩,鄭德忠,李 雪,徐正俠

    燕山大學電氣工程學院河北省測試計量技術(shù)及儀器重點實驗室,河北 秦皇島 066004

    在常溫常壓下,利用光電導天線式太赫茲時域光譜儀和自行設(shè)計的氣室,在0.1~3.0 THz范圍內(nèi)對甲醇氣體進行太赫茲時域光譜測試,測試結(jié)果表明,甲醇氣體在1.0~3.0 THz沒有明顯的吸收峰,但是在0.1~1.0 THz波段存在明顯的吸收峰。為了準確測定甲醇氣體的濃度,根據(jù)甲醇氣體在0.1~1.0 THz范圍內(nèi)的15處不同的位置處的特征吸收峰強度和甲醇氣體濃度的關(guān)系,對十五組不同濃度的甲醇氣體進行檢測,獲得了在特征吸收峰處的差異曲線?;谡`差反向傳播(BP)神經(jīng)網(wǎng)絡的函數(shù)逼近特點,并利用遺傳算法(GA)收斂速度較快,不宜陷入局部極值的優(yōu)點,采用GA優(yōu)化BP神經(jīng)網(wǎng)絡的初始的權(quán)值和閾值,構(gòu)建了以預測甲醇濃度為目的的數(shù)學模型。結(jié)果表明,該網(wǎng)絡模型適用于體積濃度范圍為0.028 3~0.424 6 m3·L-1的甲醇的濃度預測,兩組樣本的平均相對標準誤差為1.7%,平均回收率為98%,神經(jīng)網(wǎng)絡誤差精度10-1,實測值與期望值的相關(guān)系數(shù)為0.996 77,基本達到理想預測結(jié)果。本成果不僅獲得了甲醇氣體在太赫茲頻段的實驗數(shù)據(jù),而且發(fā)現(xiàn)太赫茲時域光譜法和GA-BP神經(jīng)網(wǎng)絡相結(jié)合的方法能有效地檢測甲醇氣體的體積濃度,為檢測甲醇氣體濃度提供新的方法。

    光譜學: 太赫茲時域光譜: 遺傳算法: 誤差反向傳播神經(jīng)網(wǎng)絡: 甲醇

    2015-09-08,

    2016-01-20)

    Foundation item: Young Scientistis Fund of the National Natural Science Foundation of China (51408528)

    10.3964/j.issn.1000-0593(2016)11-3752-06

    Received: 2015-09-08; accepted: 2016-01-20

    Biography: TAN Hong-ying, (1979—), female, PhD, Yanshan University e-mail: sumeertree@163.com

    猜你喜歡
    光譜法赫茲時域
    基于時域信號的三電平逆變器復合故障診斷
    基于雙頻聯(lián)合處理的太赫茲InISAR成像方法
    雷達學報(2018年1期)2018-04-04 01:56:56
    太赫茲低頻段隨機粗糙金屬板散射特性研究
    雷達學報(2018年1期)2018-04-04 01:56:48
    太赫茲信息超材料與超表面
    雷達學報(2018年1期)2018-04-04 01:56:44
    直讀光譜法測定熱作模具鋼中硫的不確定度評定
    基于極大似然準則與滾動時域估計的自適應UKF算法
    紅外光譜法研究TPU/SEBS的相容性
    中國塑料(2016年10期)2016-06-27 06:35:22
    原子熒光光譜法測定麥味地黃丸中砷和汞
    中成藥(2016年8期)2016-05-17 06:08:22
    基于時域逆濾波的寬帶脈沖聲生成技術(shù)
    原子熒光光譜法測定銅精礦中鉍的不確定度
    男女无遮挡免费网站观看| 国产精品久久久久久av不卡| 日韩一本色道免费dvd| videosex国产| 狠狠婷婷综合久久久久久88av| 97在线人人人人妻| 熟女人妻精品中文字幕| 一级黄片播放器| av国产久精品久网站免费入址| 大香蕉97超碰在线| 成人漫画全彩无遮挡| 日本爱情动作片www.在线观看| 亚洲国产精品专区欧美| 色哟哟·www| 青春草亚洲视频在线观看| 最近2019中文字幕mv第一页| 三级国产精品片| av专区在线播放| 永久网站在线| 日韩av免费高清视频| 日日爽夜夜爽网站| 久热久热在线精品观看| 欧美老熟妇乱子伦牲交| 黄片无遮挡物在线观看| 亚洲精品久久午夜乱码| 国产一级毛片在线| 精品少妇黑人巨大在线播放| 日本色播在线视频| 久久 成人 亚洲| 热99国产精品久久久久久7| 国产在线一区二区三区精| 精品酒店卫生间| 男人操女人黄网站| xxxhd国产人妻xxx| 亚洲精品国产av蜜桃| 高清视频免费观看一区二区| 国产 一区精品| 中国国产av一级| 欧美日韩av久久| 日本欧美视频一区| 人妻夜夜爽99麻豆av| 日日撸夜夜添| 亚洲高清免费不卡视频| 涩涩av久久男人的天堂| 男女免费视频国产| 一级a做视频免费观看| av有码第一页| 精品国产一区二区久久| 亚洲高清免费不卡视频| 亚洲美女搞黄在线观看| 欧美激情极品国产一区二区三区 | freevideosex欧美| 亚洲精品国产色婷婷电影| 狂野欧美白嫩少妇大欣赏| av在线老鸭窝| 国产免费一级a男人的天堂| 成人国产av品久久久| 日韩一区二区视频免费看| 大话2 男鬼变身卡| 国产亚洲午夜精品一区二区久久| 麻豆精品久久久久久蜜桃| 97超碰精品成人国产| a级毛片在线看网站| 午夜久久久在线观看| 婷婷色综合www| 日日啪夜夜爽| 国产精品久久久久久久电影| 2018国产大陆天天弄谢| 99热全是精品| 国产在线视频一区二区| 日本av免费视频播放| 国产精品一区二区在线不卡| 国产精品久久久久久久久免| 欧美激情极品国产一区二区三区 | 日日爽夜夜爽网站| av在线老鸭窝| 亚洲av国产av综合av卡| 日韩成人av中文字幕在线观看| 国产视频内射| 久久久国产精品麻豆| 少妇人妻 视频| 毛片一级片免费看久久久久| tube8黄色片| 国产熟女欧美一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕精品免费在线观看视频 | 男女免费视频国产| 国产片内射在线| 久久人人爽人人片av| 秋霞伦理黄片| 亚洲av欧美aⅴ国产| 激情五月婷婷亚洲| 99热全是精品| 久久久国产精品麻豆| 少妇人妻久久综合中文| 婷婷色综合www| 天天影视国产精品| 中文天堂在线官网| 一级二级三级毛片免费看| 狂野欧美激情性bbbbbb| 亚洲久久久国产精品| 日本午夜av视频| 欧美日韩视频高清一区二区三区二| 人妻系列 视频| 国产伦理片在线播放av一区| 亚洲怡红院男人天堂| 18禁在线无遮挡免费观看视频| 熟妇人妻不卡中文字幕| 精品国产露脸久久av麻豆| 色婷婷av一区二区三区视频| 丝袜脚勾引网站| 精品一品国产午夜福利视频| 免费人妻精品一区二区三区视频| xxxhd国产人妻xxx| 乱码一卡2卡4卡精品| 制服丝袜香蕉在线| 成人影院久久| 熟妇人妻不卡中文字幕| 国产高清不卡午夜福利| 黑人高潮一二区| 免费日韩欧美在线观看| kizo精华| 久久久久精品久久久久真实原创| 亚洲综合精品二区| 日韩欧美一区视频在线观看| 国产精品成人在线| 18禁在线无遮挡免费观看视频| 又黄又爽又刺激的免费视频.| 最近中文字幕2019免费版| 国产精品国产三级国产av玫瑰| 夜夜骑夜夜射夜夜干| 日韩视频在线欧美| 91国产中文字幕| 国产成人免费无遮挡视频| 老熟女久久久| freevideosex欧美| 精品国产国语对白av| 亚洲第一av免费看| 一级,二级,三级黄色视频| 搡老乐熟女国产| 婷婷成人精品国产| 狠狠婷婷综合久久久久久88av| 有码 亚洲区| 狂野欧美白嫩少妇大欣赏| 亚洲久久久国产精品| 亚洲国产av新网站| av女优亚洲男人天堂| 97超碰精品成人国产| 国产熟女午夜一区二区三区 | 亚洲欧美一区二区三区黑人 | 亚洲国产欧美在线一区| 国产精品久久久久久精品古装| 成人亚洲精品一区在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产日韩欧美视频二区| 日韩成人伦理影院| 国产永久视频网站| 日韩三级伦理在线观看| 婷婷色综合www| 国产高清三级在线| 少妇丰满av| 永久网站在线| 欧美人与善性xxx| 男的添女的下面高潮视频| 国产免费现黄频在线看| 国产免费现黄频在线看| 亚洲av欧美aⅴ国产| 国产成人免费观看mmmm| 制服诱惑二区| 成人国产av品久久久| 蜜桃久久精品国产亚洲av| 成年女人在线观看亚洲视频| 观看av在线不卡| av国产久精品久网站免费入址| 亚洲av成人精品一区久久| 满18在线观看网站| 熟女av电影| 欧美日韩视频精品一区| 日韩成人av中文字幕在线观看| 亚洲国产精品国产精品| 全区人妻精品视频| 18禁在线播放成人免费| 精品亚洲成a人片在线观看| 国产永久视频网站| 亚洲婷婷狠狠爱综合网| 91精品一卡2卡3卡4卡| 搡女人真爽免费视频火全软件| 老司机影院成人| 亚洲精品久久成人aⅴ小说 | 成人无遮挡网站| 久久久久网色| 激情五月婷婷亚洲| 欧美日韩视频高清一区二区三区二| 中文乱码字字幕精品一区二区三区| 国产一级毛片在线| 国产淫语在线视频| 国产精品一区二区在线观看99| 最新的欧美精品一区二区| 国产 一区精品| 一级二级三级毛片免费看| 国产 精品1| 男人添女人高潮全过程视频| 亚洲第一区二区三区不卡| 国产成人免费观看mmmm| 亚洲成人手机| 日韩一区二区三区影片| 日韩欧美一区视频在线观看| 成年美女黄网站色视频大全免费 | 美女国产高潮福利片在线看| 国产色婷婷99| 永久网站在线| 亚洲av.av天堂| 国产av国产精品国产| 水蜜桃什么品种好| 女人久久www免费人成看片| 大码成人一级视频| 99热这里只有是精品在线观看| 日韩欧美一区视频在线观看| 超碰97精品在线观看| 美女视频免费永久观看网站| 国产高清三级在线| 午夜福利在线观看免费完整高清在| 少妇丰满av| 色视频在线一区二区三区| 日韩一区二区三区影片| 尾随美女入室| a级毛片在线看网站| 亚洲av福利一区| 大片免费播放器 马上看| 熟妇人妻不卡中文字幕| 久久精品人人爽人人爽视色| 成人国产麻豆网| 人人澡人人妻人| 蜜桃国产av成人99| 看免费成人av毛片| 美女主播在线视频| 黑人欧美特级aaaaaa片| 三级国产精品片| 久久久欧美国产精品| 婷婷色麻豆天堂久久| 欧美少妇被猛烈插入视频| 水蜜桃什么品种好| 亚洲精品久久成人aⅴ小说 | xxx大片免费视频| 国产精品蜜桃在线观看| 成人亚洲精品一区在线观看| 久久久久人妻精品一区果冻| 丝袜喷水一区| 国产精品成人在线| 亚洲欧美日韩另类电影网站| 永久免费av网站大全| 日日爽夜夜爽网站| 91精品三级在线观看| 少妇的逼好多水| 婷婷成人精品国产| 免费高清在线观看视频在线观看| 亚洲精品av麻豆狂野| 少妇被粗大的猛进出69影院 | 午夜福利在线观看免费完整高清在| xxx大片免费视频| 最近手机中文字幕大全| 亚洲精品乱码久久久v下载方式| 久久国产精品大桥未久av| 在线观看三级黄色| 99热6这里只有精品| 免费大片黄手机在线观看| 最新中文字幕久久久久| 夜夜骑夜夜射夜夜干| 国产淫语在线视频| 成人毛片a级毛片在线播放| av又黄又爽大尺度在线免费看| 青春草国产在线视频| 考比视频在线观看| 日本与韩国留学比较| 亚洲精品av麻豆狂野| 亚洲精品乱码久久久v下载方式| 性高湖久久久久久久久免费观看| 色婷婷av一区二区三区视频| 日韩免费高清中文字幕av| 久久久久网色| 国产免费一区二区三区四区乱码| 亚洲图色成人| 交换朋友夫妻互换小说| 99九九线精品视频在线观看视频| 丝袜在线中文字幕| 大香蕉久久网| 高清av免费在线| 蜜桃国产av成人99| 精品酒店卫生间| 久久人人爽人人爽人人片va| 简卡轻食公司| 免费看不卡的av| 26uuu在线亚洲综合色| 国产在视频线精品| 久久久欧美国产精品| 精品国产乱码久久久久久小说| 在线播放无遮挡| 黄色配什么色好看| 桃花免费在线播放| 老司机影院成人| 蜜桃在线观看..| 亚洲天堂av无毛| 老司机亚洲免费影院| 另类亚洲欧美激情| 日韩不卡一区二区三区视频在线| 狂野欧美白嫩少妇大欣赏| 在线播放无遮挡| 日本wwww免费看| 国产精品国产三级国产专区5o| 国产男女超爽视频在线观看| 久久人人爽人人爽人人片va| 热re99久久精品国产66热6| 人人妻人人澡人人爽人人夜夜| 国产一区亚洲一区在线观看| 飞空精品影院首页| 寂寞人妻少妇视频99o| 午夜免费鲁丝| 欧美精品高潮呻吟av久久| 人妻夜夜爽99麻豆av| 男女高潮啪啪啪动态图| 18禁动态无遮挡网站| 久久精品国产亚洲av天美| 亚洲国产成人一精品久久久| 国产精品.久久久| av又黄又爽大尺度在线免费看| 亚洲欧美日韩另类电影网站| 国产精品一区二区三区四区免费观看| 七月丁香在线播放| 精品一区二区三区视频在线| 国产成人一区二区在线| 精品一区二区免费观看| 国产精品99久久99久久久不卡 | 国产精品一区二区三区四区免费观看| xxx大片免费视频| 亚洲成人一二三区av| 精品酒店卫生间| xxx大片免费视频| 少妇人妻精品综合一区二区| 日韩熟女老妇一区二区性免费视频| 欧美另类一区| 女的被弄到高潮叫床怎么办| 你懂的网址亚洲精品在线观看| 在线观看国产h片| 91精品国产九色| 国产免费一级a男人的天堂| 亚洲,一卡二卡三卡| 久久狼人影院| 欧美日韩精品成人综合77777| 国语对白做爰xxxⅹ性视频网站| 精品一区二区三卡| 欧美精品一区二区免费开放| 精品国产国语对白av| 日韩成人伦理影院| 草草在线视频免费看| 99久久精品国产国产毛片| 91精品一卡2卡3卡4卡| 婷婷色综合大香蕉| 午夜91福利影院| 精品人妻在线不人妻| 26uuu在线亚洲综合色| 在线 av 中文字幕| 日韩,欧美,国产一区二区三区| 亚洲精品乱久久久久久| 在线观看www视频免费| 插逼视频在线观看| 成人18禁高潮啪啪吃奶动态图 | 少妇高潮的动态图| 国产精品欧美亚洲77777| 欧美 日韩 精品 国产| 两个人的视频大全免费| 久久 成人 亚洲| 男人添女人高潮全过程视频| 少妇丰满av| 午夜激情av网站| 久久久国产精品麻豆| 91久久精品国产一区二区三区| 丝瓜视频免费看黄片| 99国产精品免费福利视频| 成人手机av| 99久久精品国产国产毛片| 中国美白少妇内射xxxbb| 日本vs欧美在线观看视频| 午夜老司机福利剧场| 中文字幕亚洲精品专区| 国产免费福利视频在线观看| 亚洲精品色激情综合| 高清欧美精品videossex| 亚洲丝袜综合中文字幕| 少妇人妻 视频| 九色亚洲精品在线播放| 亚洲中文av在线| 亚洲精品国产色婷婷电影| 国产日韩欧美亚洲二区| 亚洲精品,欧美精品| 春色校园在线视频观看| 国产午夜精品一二区理论片| 日本vs欧美在线观看视频| 麻豆乱淫一区二区| 欧美日韩综合久久久久久| 成人18禁高潮啪啪吃奶动态图 | 麻豆成人av视频| xxx大片免费视频| 国产欧美日韩一区二区三区在线 | 午夜福利影视在线免费观看| 日日摸夜夜添夜夜添av毛片| av又黄又爽大尺度在线免费看| 18禁观看日本| 只有这里有精品99| 我的女老师完整版在线观看| av在线观看视频网站免费| 国产精品99久久99久久久不卡 | 美女大奶头黄色视频| 精品卡一卡二卡四卡免费| 天天影视国产精品| 高清午夜精品一区二区三区| 亚洲精品av麻豆狂野| 欧美精品高潮呻吟av久久| 亚洲怡红院男人天堂| 在线 av 中文字幕| 全区人妻精品视频| 久久97久久精品| av在线老鸭窝| 日本与韩国留学比较| 亚洲av免费高清在线观看| 久久97久久精品| 黑人巨大精品欧美一区二区蜜桃 | .国产精品久久| 少妇被粗大猛烈的视频| 国产精品国产三级国产专区5o| 久久99一区二区三区| 国产成人a∨麻豆精品| 考比视频在线观看| 国产成人免费观看mmmm| 一边摸一边做爽爽视频免费| 精品熟女少妇av免费看| 成人漫画全彩无遮挡| 少妇被粗大的猛进出69影院 | 国产黄频视频在线观看| 免费日韩欧美在线观看| 亚洲第一区二区三区不卡| 亚洲四区av| 寂寞人妻少妇视频99o| 美女cb高潮喷水在线观看| 看十八女毛片水多多多| 免费大片18禁| 天天影视国产精品| 久久人妻熟女aⅴ| 成人影院久久| 精品久久蜜臀av无| 免费看av在线观看网站| 蜜桃国产av成人99| 欧美激情极品国产一区二区三区 | 成人毛片a级毛片在线播放| 精品久久国产蜜桃| 亚洲精品456在线播放app| 九九在线视频观看精品| 日韩中文字幕视频在线看片| 在线免费观看不下载黄p国产| videosex国产| 日日撸夜夜添| 99九九在线精品视频| 多毛熟女@视频| 伊人久久国产一区二区| freevideosex欧美| 青青草视频在线视频观看| 成年女人在线观看亚洲视频| 又粗又硬又长又爽又黄的视频| 国产日韩欧美亚洲二区| 最黄视频免费看| 国产69精品久久久久777片| 亚洲精品视频女| 九色亚洲精品在线播放| 99视频精品全部免费 在线| 一本—道久久a久久精品蜜桃钙片| 自线自在国产av| 少妇被粗大猛烈的视频| 婷婷成人精品国产| 国产永久视频网站| 女性被躁到高潮视频| 狠狠婷婷综合久久久久久88av| 热re99久久国产66热| 国产成人精品在线电影| 校园人妻丝袜中文字幕| 少妇的逼水好多| 免费久久久久久久精品成人欧美视频 | 亚洲内射少妇av| 一个人免费看片子| 最近最新中文字幕免费大全7| 人人妻人人添人人爽欧美一区卜| 在线观看www视频免费| 久久热精品热| 久久国内精品自在自线图片| 免费看光身美女| 美女xxoo啪啪120秒动态图| 欧美变态另类bdsm刘玥| 一级毛片电影观看| 久久久欧美国产精品| 黑人猛操日本美女一级片| 欧美97在线视频| 2018国产大陆天天弄谢| 两个人免费观看高清视频| 国产精品偷伦视频观看了| 中文字幕av电影在线播放| 国产无遮挡羞羞视频在线观看| 母亲3免费完整高清在线观看 | 91精品伊人久久大香线蕉| 尾随美女入室| 免费大片18禁| 欧美变态另类bdsm刘玥| 大码成人一级视频| 天天影视国产精品| 国产欧美另类精品又又久久亚洲欧美| 中文字幕人妻熟人妻熟丝袜美| 精品一区二区免费观看| 精品亚洲成a人片在线观看| 成人国语在线视频| 免费看av在线观看网站| 中文字幕人妻丝袜制服| 免费大片18禁| 亚洲图色成人| 国产精品国产三级专区第一集| 国产欧美另类精品又又久久亚洲欧美| av天堂久久9| 午夜精品国产一区二区电影| 亚洲欧美一区二区三区黑人 | av线在线观看网站| 国产av精品麻豆| 国产亚洲午夜精品一区二区久久| 狠狠婷婷综合久久久久久88av| 亚洲精品日韩av片在线观看| 91精品国产国语对白视频| 中文字幕亚洲精品专区| 亚洲精品一二三| 国产欧美另类精品又又久久亚洲欧美| 欧美3d第一页| 狠狠婷婷综合久久久久久88av| 亚洲色图综合在线观看| 五月开心婷婷网| 国产综合精华液| 国产精品99久久久久久久久| 久久综合国产亚洲精品| 亚洲国产日韩一区二区| 精品少妇内射三级| 99国产综合亚洲精品| av不卡在线播放| 天天躁夜夜躁狠狠久久av| 国产 精品1| 国产午夜精品久久久久久一区二区三区| 午夜激情福利司机影院| 91精品三级在线观看| 91精品伊人久久大香线蕉| 久久av网站| 一区二区三区四区激情视频| 欧美激情国产日韩精品一区| 亚洲欧美日韩卡通动漫| 日韩,欧美,国产一区二区三区| 国产欧美日韩综合在线一区二区| 麻豆精品久久久久久蜜桃| 免费av不卡在线播放| 啦啦啦在线观看免费高清www| 亚洲av在线观看美女高潮| 日韩伦理黄色片| 亚洲国产精品国产精品| 亚洲内射少妇av| 国产伦理片在线播放av一区| av国产精品久久久久影院| 波野结衣二区三区在线| 国产精品嫩草影院av在线观看| 黑丝袜美女国产一区| 最后的刺客免费高清国语| 看免费成人av毛片| 国产高清有码在线观看视频| 亚洲av二区三区四区| 亚洲婷婷狠狠爱综合网| 满18在线观看网站| 亚洲精品日本国产第一区| 黑丝袜美女国产一区| 下体分泌物呈黄色| 日本与韩国留学比较| 在线 av 中文字幕| 日本-黄色视频高清免费观看| 日韩欧美精品免费久久| 日本黄色日本黄色录像| 91精品伊人久久大香线蕉| 久久女婷五月综合色啪小说| 久久国产亚洲av麻豆专区| 午夜福利视频在线观看免费| 久久久久久久久大av| 国产高清三级在线| 自拍欧美九色日韩亚洲蝌蚪91| 18禁动态无遮挡网站| 男人操女人黄网站| 日韩一区二区三区影片| 22中文网久久字幕| 婷婷色av中文字幕| 精品久久久久久电影网| 日韩欧美一区视频在线观看| 观看美女的网站| 久久鲁丝午夜福利片| 亚洲综合精品二区| 日本-黄色视频高清免费观看| 简卡轻食公司| 2022亚洲国产成人精品| 国产69精品久久久久777片| 精品久久久久久久久亚洲| 中文字幕制服av| 一级毛片 在线播放| kizo精华| 久久国产亚洲av麻豆专区| 日本黄大片高清| 亚洲人与动物交配视频| 亚洲色图 男人天堂 中文字幕 | 王馨瑶露胸无遮挡在线观看| 22中文网久久字幕| 亚洲五月色婷婷综合|