• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distinguishing the Rare Spectra with the Unbalanced Classification Method Based on Mutual Information

    2016-07-12 12:48:55LIUZhongbaoRENJuanjuanKONGXiao
    光譜學與光譜分析 2016年11期
    關鍵詞:互信息天文臺中國科學院

    LIU Zhong-bao, REN Juan-juan, KONG Xiao

    1. School of Computer and Control Engineering, North University of China, Taiyuan 030051, China 2. Key Laboratory of Optical Astronomy, NAOC, Chinese Academy of Sciences, Beijing 100012, China 3. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

    Distinguishing the Rare Spectra with the Unbalanced Classification Method Based on Mutual Information

    LIU Zhong-bao1*, REN Juan-juan2, KONG Xiao3

    1. School of Computer and Control Engineering, North University of China, Taiyuan 030051, China 2. Key Laboratory of Optical Astronomy, NAOC, Chinese Academy of Sciences, Beijing 100012, China 3. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

    Distinguishing the rare spectra from the majority of stellar spectra is one of quite important issues in astronomy. As the size of the rare spectra is much smaller than the majority of the spectra, many traditional classifiers can’t work effectively because they only focus on the classification accuracy and have not paid enough attentions on the rare spectra. In view of this, the relationship between the decision tree and mutual information is discussed on the basis of summarizing the traditional classifiers, and the cost-free decision tree based on mutual information is proposed in this paper to improve the performance of distinguishing the rare spectra. In the experiment, we investigate the performance of the proposed method on the K-type, F-type, G-type, M-type datasets from Sloan Digital Sky Survey (SDSS), Data Release 8. It can be concluded that the proposed method can complete the rare spectra distinguishing task compared with several traditional classifiers.

    Unbalanced classification; Mutual information; Rare spectra; Decision tree

    Introduction

    Stellar spectral classification is an important research area in astronomy. Many effective classification methods are proposed by researchers. Wavelet transform is utilized for spectral analysis by Starck[1]; BP neural network is utilized to classify the spectra by Gulati[2]; A novel stellar spectral classification method based on principal component analysis (PCA) and neural network is proposed by Bailer-Jones[3]; Sparse representation and dictionary learning are used to stellar spectral classification by Hernandez[4]; Monte Carlo local outlier factor (MCLOF) algorithm is utilized to find the unusual stellar spectra from the large-scale spectral dataset[5]; Weighted frequent pattern tree is constructed by Cai[6]to mine the stellar spectra association rule; Locally linear embedding (LLE) is used to classify the stellar spectra by Bu[7]; Gray proposes an expert computer program MKCLASS designed to classify stellar spectra on the MK spectral classification system[8]; Isometric feature map (ISOMAP) and support vector machine (SVM) are utilized for stellar spectral classification by Bu[9]; Self-organizing map is applied to stellar spectral classification by Bazarghan[10]; Principal component analysis and nearest neighbor algorithm are successively used to extract the spectral feature and classify the stellar spectra by Dan[11]; The advantages of the cover algorithm and kernel technique are utilized to classify the celestial spectra by Yang[12]; The data warehouse is used to classify the spectra from galaxy by Sun[13]; PCA and Bayesian algorithm are successively used for feature extraction and spectral classification by Liu[14]; A series of stellar spectral classification methods based on manifold-based discriminant analysis (MDA)[15]are proposed by Liu[16-17].

    The above spectral classification methods aim to maximize the classification accuracy, and therefore, they can’t deal with the unbalanced classification problem. The unbalance data refers to the wide gap in quantity between the data. The unbalanced problem exists in the stellar spectral classification. For example, in rare spectra recognition, many traditional classifiers misclassify the rare spectra to the majority, although their classification accuracies are high, they can’t satisfy our expectation. In view of this, the unbalanced classification problem has been widely concerned by many researchers. In unbalanced classification, the rare spectra are paid more attention than the majority, and the cost of misclassifying the rare spectra is much greater. Therefore, the unbalanced classification problem is related to cost-sensitive learning. Cost-sensitive classification overcomes the shortages of many traditional classifiers always focusing on the classification accuracy, tries to reduce the high-cost misclassification by assigning different costs to various misclassifications. The premise of cost-sensitive classification is the misclassified cost should be given in advance to ensure the classification results reliable. But in practice, it is difficult to give the precise misclassified costs, and meanwhile, the hypothesis of all the misclassified costs of traditional classifiers are the same is not valid when dealing with the unbalanced classification problem, and therefore, the reliability can’t be satisfied. In view of this, the relationship between the decision tree and the mutual information is discussed on the basis of summarizing the traditional classifiers, and then the cost-free decision tree based on mutual information is proposed to improve the classification efficiency of the rare spectra.

    The rest of this paper is organized as follows. In Section 2, the unbalanced classification method based on mutual information is proposed; The experiments on the SDSS dataset are provided in Section 3; Section 4 conclude our work.

    1 The unbalanced classification method based on mutual information

    1.1 Background Knowledge

    (1) Entropy

    SupposeDis the dataset andCis the class set. The entropy can be defined as follows.

    (1)

    where |C| denotes the number of classes, Pr(ci) denotes the probability of the classciin the datasetD.

    (2) Information gain

    SupportAiis the attribute ofDwithνvalues.Dcan be divided into several disjoint subsetsD1,D2,…,Dν. The entropy ofDcan be defined as follows.

    (2)

    The information gain of the attributeAiis

    gain(D,Ai)=entropy(D)-entropy(Ai,D)

    (3)

    (3) Information gain ratio

    The information gain prefers to choose the attributes with more values. In order to solve such preference problem, information gain ratio is proposed.

    (4)

    wheresdenotes the possible value of the attributeAi,Didenotes theith subset with the attributeAi.

    1.2 Construction of the decision tree

    The decision tree is one of the important data mining methods, which can determine which class the data belonged to by the classification criterion in a tree structure. The decision tree is easy to understand and its classification performance is quite well, and therefore, it is widely used in practice. The general process of the decision tree is as follows. Firstly, the data used for training are seen as the root nodes and the splitting attributes are selected based on the splitting criterion. Secondly, according to the values of the splitting attributes, the training dataset is divided into several subsets, treated as the first layer of the root nodes. Then, the nodes of the first layer are seen as the root nodes, repeat the above steps, and when the termination conditions sufficient, the construction process of decision tree can be terminated, and then the decision tree is constructed.

    The algorithm description of decision tree is as follows. SupposeDdenote the dataset andAdenote the candidate attribute set.

    Algorithm: Generate_decision_tree

    Input: the datasetDand the candidate attribute setA

    Output: decision treeT

    Step1: Create the nodeT;

    Step2: If the data inDbelongs to the same classC, thenTis the leaf node and its label is marked as the classC;

    Step3: IfA=Null or the size of the rest data is much smaller than the threshold given by the user in advance, thenTis the leaf node, which is seen as most popular class inD;

    Step4: Compute the information gain ratio of the attributes inA;

    Step5: The attribute with the maximized information gain ratio is selected as the test attributetest_A;

    Step6: The nodeTis marked astest_A;

    Step7: Iftest_Ais continuous, then the splitting threshold of the above attribute should be given;

    Step8: For each attributeAiintest_A, a branch is created by the nodeTwith the condition oftest_A=Ai;

    Step9: SupposeDiis the dataset with the condition oftest_A=Ai. IfDi=Null, then add a leaf node andDis seen as most popular class; else add the node returned by Generate_decision_tree(Di,D-test_A);

    Step10: Pruning for the decision tree.

    1.3 Pruning methods

    The purpose of pruning is to speed up the classification process and improve the classification accuracy. There are two research trends in pruning methods: One is pre-pruning, and the other is post-pruning. Pre-pruning tries to finish the construction of the decision tree as soon as possible by means of a threshold, which is difficult to determine in advance, and therefore, the reliability of the decision tree can’t be satisfied. Post-pruning starts to pruning after the construction of the decision tree. Generally, the mistake of each node on the subtree is firstly estimated, if the number of mistakes is quite large, then pruning such subtree. In practice, post-pruning is superior to pre-pruning, and therefore, post-pruning is applied for pruning in this paper.

    1.4 Cost-free decision tree based on mutual information

    The traditional classifiers can be divided into cost-sensitive and cost-free. The performance of cost-sensitive classifier relies on the cost information given by the user in advance. However, it is difficult to give the cost in practice, and even given, sometimes maybe wrong. In this situation, the classification efficiency of the cost-sensitive classifier can’t be satisfied. In order to solve the above problem, cost-gree classifier is proposed by researchers, which has no concern with the cost information. In this paper, the cost-free classifier used in the stellar spectral classification is discussed and we will propose a new decision tree with no cost information. Precisely, we take binary classification as an example: one class is positive, and the other is negative. It can be described as follows.

    (1) The classification results of a classifier are stored in the confusion matrix, shown in formula (5). The confusion matrix can be processed by normalization, and it can be transformed to a new confusion matrix with only one free variable.

    (5)

    whereCis the confusion matrix,TNdenotes the correctly classified number of the negative spectra,FPdenotes the misclassified number of the positive spectra,FNdenotes the misclassified number of the negative spectra,TPdenotes the correctly classified number of the positive spectra.

    (2) In the construction of the decision tree based on mutual information, the cost information is treated as an unknown variable and the information entropy produced by the node of the decision tree is weighted, shown in formula (6).

    (6)

    whereDdenotes the spectra,mdenotes the size of the classes, especially,m=2 in this section,λidenotes the percentage of theith class.

    (3) The value of the free variable can be obtained by maximizing the mutual information between the predicted label and the actual label, shown in formula (7).

    (7)

    whereαis the unknown variable,tdenotes the actual label,ydenotes the predicted label,g(x) denotes the inner information of the decision tree according to the spectrumx.

    (4) The way of pruning the decision tree based on mutual information is similar with the traditional decision tree. The purpose of pruning is to ensure the mutual information maximized. If the mutual information increases or invariant after pruning, then prune it; else hold it.

    1.3 Algorithm description

    SupposeXdenote the stellar spectral dataset including the training datasetX_trainand the test datasetX_test.

    Input: the stellar spectral datasetXincluding the rare spectra and the majority of the stellar spectra

    Output: the label of each spectrum inX_test

    Step1: The datasetXshould be divided into two parts, one for training, and the other for test.

    Step2: The datasetXshould be preprocessed, such as noise reduction and normalization.

    Step3: The decision tree based on mutual information is applied on the training datasetX_trainand we can obtain the classification criteria.

    Step4: The label of the spectrum inX_testcan be predicted by the classification criteria.

    Step5: The classification accuracies can be obtained by comparing the predicted label and the actual label of the spectrum inX_test.

    2 Experimental Analysis

    The performance of the proposed decision tree based on mutual information in distinguishing the rare spectra from the majority of the stellar spectra will be investigated in this section. The experimental dataset is from Sloan Digital Sky Survey (SDSS), Data Release 8[18]. The experimental dataset includes 4 subclasses of K-type spectra, K1-type, K3-type, K5-type and K7-type, whose signal-to-ratios (SNRs) with 60

    The rare spectra and the majority of the stellar spectra are listed in Table 2(a)—(d).

    2.1 Performance on distinguishing the rare spectra

    In our experiments, 30%, 40%, 50%, 60%, 70% of the above spectral datasets are respectively used for training, and the remainders are used for test. The proposed decision tree based on mutual information is applied to investigate its performance on distinguishing the rare spectra. The experimental results are shown in Table 3(a)—(d), the first two columns of which respectively includes three parts: the total number of the training spectra or the test spectra and its proportion, the number of the rare spectra.

    Table 1(a) The total number of K starts with 60

    Table 1(b) The total number of F starts with 30

    Table 1(c) The total number of G starts with 40

    Table 1(d) The total number of M starts with 30

    Table 2(a) The majority vs. the rareness of K starts with 60

    Table 2(b) The majority vs. the rareness of F starts with 30

    Table 2(c) The majority vs. the rareness of G starts with 40

    Table 2(d) The majority vs. the rareness of M starts with 40

    Table 3(a) The experimental results on the K-type dataset

    Table 3(b) The experimental results on the F-type dataset

    Table 3(c) The experimental results on the G-type dataset

    Table 3(d) The experimental results on the M-type dataset

    It can be seen from Table 3(a)—(d) that with the training size rise, the classification accuracies of the proposed method on distinguishing the rare spectra have an upward tendency. Concretely, with the training size rise from 30% to 70%, the classification accuracies on the K-type, F-type, G-type, M-type datasets are respectively from 0.545 0 to 0.852 6, from 0.550 6 to 0.787 4, from 0.505 3 to 0.832 5 and from 0.533 3 to 0.762 4. In the view of the average classification accuracy, the performance of the proposed method on the above datasets is quite well, and all the classification accuracies exceed 60%. In general, the proposed decision tree based on mutual information can complete the rare spectra distinguishing task on the SDSS spectral datasets.

    2.2 Comparative experiments with several traditional classifiers

    In this section, we will investigate the performance of the proposed method compared with several traditional classifiers such as support vector machine (SVM) and k nearest neighbor (kNN). 50% of the K-, F-, G-, M-type spectral datasets are respectively used for training, and the remainders are used for test. The comparative experimental results are shown in Table 4.

    Table 4 The comparative experimental results on the SDSS dataset

    It can be seen from Table 4 that the performance of the proposed method on distinguishing the rare spectra is much better than SVM andkNN. Specially, in the view of average performance, the average classification accuracies of the proposed method are more than 20% higher than SVM andkNN. It can be concluded that the advantage of the proposed decision tree based on mutual information is its effectiveness on distinguishing the rare spectra.

    3 Conclusions

    In order to overcome the unbalanced and cost-sensitive classification problem of traditional classifiers, the decision tree based on mutual information is proposed in this paper. Firstly, the confusion matrix, storing the classification results, can be normalization and transformed to a new confusion matrix with only one free variable; Secondly, the cost information is treated as an unknown variable and the information entropy produced by the node of the decision tree is weighted; Thirdly, the value of the free variable can be obtained by maximizing the mutual information between the predicted label and the actual label; At last, the way of pruning the decision tree based on mutual information is similar with the traditional decision tree. The comparative experiments with several traditional classifiers on the SDSS DR8 datasets verify the effectiveness of the proposed method in distinguishing the rare spectra. Whether the proposed method is also effective on the other types of spectra such as galaxies is our future work.

    Acknowledgement: We are very grateful to the anonymous referee for many useful comments and suggestions.

    [1] Stark P B, Herron M M, Matteson A. Applied Spectroscopy, 1993, 47(11): 1820.

    [2] Gulati R K, Gupta R, Gothoskar P. AJ, 1994, 426(1): 340.

    [3] Bailer-Jones C A L, Irwin M, Hippel T. MNRAS, 1998, 298: 361.

    [4] Hernandez R D, Barreto H P, Robles L A, et al. Experimental Astronomy, 2014, 38: 193.

    [5] Wei P, Luo A L, Li Y B, et al. MNRAS, 2013, 431: 1800.

    [6] Cai J H, Zhao X J, Sun S W, et al. RAA, 2013, 13(3): 334.

    [7] Gray R O, Corbally C J. AJ, 2014, 147(80): 1.

    [8] Bu Y D, Pan J C, Jiang B, et al. PASJ, 2013, 65: 81.

    [9] Bu Y D, Chen F Q, Pan J C. New Astronomy, 2014, 28: 35.

    [10] Bazarghan M. Astrophysics and Space Science, 2012, 337: 93.

    [11] Dan D M, Hu Z Y, Zhao Y H. Spectroscopy and Specctral Analysis, 2003, 23(1): 182.

    [12] Yang J F, Wu C F, Luo A L, et al. Pattern Recognition and Artificial Intelligence, 2006, 19(3): 368.

    [13] Sun S W, Luo A L, Zhang J F. Astronomical Research and Technology, 2007, 4(3): 276.

    [14] Liu R, Jin H M, Duan F Q. Spectroscopy and Specctral Analysis, 2010, 30(3): 838.

    [15] Liu Z B, Pan G Z, Zhao W J. Journal of Electronics & Information Technology, 2013, 35(9): 2047.

    [16] Liu Z B, Wang Z B, Zhao W J. Spectroscopy and Spectral Analysis, 2014, 34(1): 263.

    [17] Liu Z B, Gao Y Y, Wang J Z. Spectroscopy and Spectral Analysis, 2015, 35(1): 263.

    [18] Almeida J S, Prieto C A. AJ, 2013, 763: 1.

    *通訊聯(lián)系人

    TP29

    A

    利用基于互信息的不平衡分類方法識別稀有光譜

    劉忠寶1*,任娟娟2,孔 嘯3

    1. 中北大學軟件學院, 山西 太原 030051 2. 中國科學院國家天文臺光學天文重點實驗室, 北京 100012 3. 中國科學院國家天文臺, 北京 100012

    從海量恒星光譜中發(fā)現(xiàn)稀有光譜是天文學研究的重要課題之一。與一般光譜相比,稀有光譜數(shù)量較少,因此,傳統(tǒng)分類方法無法正常工作。究其原因是這些方法不僅在分類決策時并未對稀有光譜予以更多關注,而且只關注分類的準確率。鑒于此,在總結當前分類方法的基礎上,深入分析互信息與決策樹之間的關系,提出基于互信息的代價缺失決策樹。SDSS DR8中K型、F型、G型以及M型恒星光譜上的比較實驗表明,與傳統(tǒng)分類方法相比,所提方法能夠較好地完成稀有光譜識別的任務。

    不平衡分類;互信息;稀有光譜;決策樹

    2015-12-14,

    2016-04-15)

    Foundation item: Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2014142), Program for the outstanding Innovative Teams of Higher Learning Institutions of Shanxi

    10.3964/j.issn.1000-0593(2016)11-3746-06

    Received: 2015-12-14; accepted: 2016-04-10

    Biography: LIU Zhong-bao, (1981—), associate professor in North University of China *Corresponding author e-mail: liu_zhongbao@hotmail.com

    猜你喜歡
    互信息天文臺中國科學院
    《中國科學院院刊》新媒體
    中國科學院院士
    ——李振聲
    天文臺就該這么看
    祝賀戴永久編委當選中國科學院院
    海爾與望遠鏡和天文臺的故事
    軍事文摘(2020年24期)2020-02-06 05:57:02
    天文臺
    《中國科學院院刊》創(chuàng)刊30周年
    基于互信息的貝葉斯網絡結構學習
    歐米茄超霸系列月相至臻天文臺表
    空中之家(2016年5期)2016-02-04 01:28:35
    聯(lián)合互信息水下目標特征選擇算法
    亚洲精品中文字幕在线视频| 免费观看av网站的网址| 男女之事视频高清在线观看| 成年人午夜在线观看视频| 欧美激情久久久久久爽电影 | 欧美精品人与动牲交sv欧美| 亚洲精品在线美女| 老司机靠b影院| 免费看a级黄色片| 亚洲专区国产一区二区| 亚洲 欧美一区二区三区| 精品欧美一区二区三区在线| 成年人黄色毛片网站| 黄频高清免费视频| 深夜精品福利| 亚洲第一av免费看| 老汉色∧v一级毛片| 五月天丁香电影| 欧美久久黑人一区二区| 菩萨蛮人人尽说江南好唐韦庄| 一进一出好大好爽视频| 777久久人妻少妇嫩草av网站| 国产片内射在线| 操美女的视频在线观看| 免费人妻精品一区二区三区视频| 亚洲九九香蕉| 十八禁网站免费在线| 国产精品久久久av美女十八| 久久婷婷成人综合色麻豆| 五月天丁香电影| 久久国产亚洲av麻豆专区| 欧美国产精品一级二级三级| 日韩一卡2卡3卡4卡2021年| 在线观看免费日韩欧美大片| 一夜夜www| 女性生殖器流出的白浆| 国产欧美日韩一区二区三| 丁香六月天网| 免费在线观看影片大全网站| 手机成人av网站| 亚洲av片天天在线观看| 久久人妻av系列| 婷婷丁香在线五月| 18禁黄网站禁片午夜丰满| 一边摸一边抽搐一进一小说 | 精品国产乱码久久久久久男人| 男女床上黄色一级片免费看| 亚洲国产看品久久| www.自偷自拍.com| 建设人人有责人人尽责人人享有的| 欧美人与性动交α欧美软件| 亚洲中文日韩欧美视频| 国产精品一区二区免费欧美| 国产男女内射视频| 日本vs欧美在线观看视频| 亚洲熟女精品中文字幕| av超薄肉色丝袜交足视频| 黄频高清免费视频| 露出奶头的视频| 中文字幕人妻丝袜一区二区| 国产主播在线观看一区二区| videos熟女内射| 日韩免费av在线播放| 丰满饥渴人妻一区二区三| 美女国产高潮福利片在线看| 久久精品国产综合久久久| 一边摸一边抽搐一进一出视频| 下体分泌物呈黄色| 久久久精品区二区三区| 欧美成人午夜精品| 欧美乱码精品一区二区三区| 欧美久久黑人一区二区| 成人三级做爰电影| 99香蕉大伊视频| 日韩人妻精品一区2区三区| 人人妻人人澡人人爽人人夜夜| 中文字幕另类日韩欧美亚洲嫩草| 亚洲视频免费观看视频| 精品少妇黑人巨大在线播放| 伊人久久大香线蕉亚洲五| 女人爽到高潮嗷嗷叫在线视频| 日韩中文字幕视频在线看片| 黄片大片在线免费观看| av有码第一页| 99精国产麻豆久久婷婷| 久久久国产精品麻豆| 国产欧美日韩一区二区三| 国产日韩欧美在线精品| 人人妻,人人澡人人爽秒播| 自线自在国产av| 国产亚洲一区二区精品| 18在线观看网站| 免费在线观看完整版高清| 他把我摸到了高潮在线观看 | 国产成人免费观看mmmm| 国产成人一区二区三区免费视频网站| 别揉我奶头~嗯~啊~动态视频| 亚洲五月婷婷丁香| 麻豆av在线久日| 狠狠狠狠99中文字幕| 亚洲九九香蕉| 大陆偷拍与自拍| 免费高清在线观看日韩| 午夜福利免费观看在线| 在线天堂中文资源库| www.999成人在线观看| 国产欧美日韩一区二区三| 在线观看免费视频网站a站| 亚洲欧美色中文字幕在线| 丝袜喷水一区| 精品亚洲成a人片在线观看| 女人被躁到高潮嗷嗷叫费观| 久久婷婷成人综合色麻豆| 婷婷成人精品国产| 老熟妇仑乱视频hdxx| 老司机靠b影院| 悠悠久久av| 三上悠亚av全集在线观看| 老熟妇仑乱视频hdxx| 亚洲国产成人一精品久久久| 韩国精品一区二区三区| 天天影视国产精品| 久久久水蜜桃国产精品网| 久久人妻熟女aⅴ| 视频在线观看一区二区三区| 亚洲黑人精品在线| 18禁美女被吸乳视频| 女性生殖器流出的白浆| 考比视频在线观看| 十八禁高潮呻吟视频| 日韩中文字幕欧美一区二区| 午夜福利影视在线免费观看| 久久99热这里只频精品6学生| 一本色道久久久久久精品综合| 青草久久国产| 欧美精品人与动牲交sv欧美| 99国产综合亚洲精品| 中文字幕人妻丝袜一区二区| 精品一品国产午夜福利视频| 亚洲少妇的诱惑av| 欧美 日韩 精品 国产| 蜜桃国产av成人99| 国产精品久久久久久精品古装| 少妇粗大呻吟视频| 亚洲av成人不卡在线观看播放网| 亚洲伊人色综图| 国产日韩欧美在线精品| 成年动漫av网址| 少妇被粗大的猛进出69影院| 一本一本久久a久久精品综合妖精| 啪啪无遮挡十八禁网站| 欧美成狂野欧美在线观看| 可以免费在线观看a视频的电影网站| 黑人欧美特级aaaaaa片| 青青草视频在线视频观看| 最新美女视频免费是黄的| 午夜免费鲁丝| 亚洲精品久久午夜乱码| 国产成人免费无遮挡视频| 在线观看舔阴道视频| 五月天丁香电影| 国产视频一区二区在线看| 国产无遮挡羞羞视频在线观看| 老司机靠b影院| 女人高潮潮喷娇喘18禁视频| 欧美精品高潮呻吟av久久| 午夜福利一区二区在线看| 日韩欧美三级三区| 亚洲中文av在线| 国产精品av久久久久免费| 满18在线观看网站| 十八禁人妻一区二区| 国产欧美日韩综合在线一区二区| 成人国语在线视频| 老司机福利观看| 久久久久久久久免费视频了| 成人精品一区二区免费| 国产成+人综合+亚洲专区| 欧美精品亚洲一区二区| 欧美亚洲日本最大视频资源| 97在线人人人人妻| 欧美黑人精品巨大| 日韩欧美三级三区| 一个人免费在线观看的高清视频| 亚洲七黄色美女视频| 一边摸一边抽搐一进一小说 | 欧美成狂野欧美在线观看| 日本wwww免费看| 亚洲国产欧美在线一区| 久久久精品94久久精品| 窝窝影院91人妻| 一本综合久久免费| 动漫黄色视频在线观看| 久久久久久久大尺度免费视频| 十八禁高潮呻吟视频| 久久精品aⅴ一区二区三区四区| 99re6热这里在线精品视频| 91成年电影在线观看| 人成视频在线观看免费观看| 如日韩欧美国产精品一区二区三区| 久久久精品国产亚洲av高清涩受| 欧美一级毛片孕妇| 精品第一国产精品| 亚洲国产欧美网| 黄色成人免费大全| 午夜视频精品福利| 搡老岳熟女国产| 欧美黑人欧美精品刺激| 国产精品av久久久久免费| 视频在线观看一区二区三区| 一进一出抽搐动态| 国产亚洲欧美精品永久| 人人妻人人添人人爽欧美一区卜| 国产在视频线精品| 亚洲熟女毛片儿| 新久久久久国产一级毛片| 欧美午夜高清在线| av有码第一页| 啪啪无遮挡十八禁网站| 在线观看免费午夜福利视频| 欧美日韩亚洲国产一区二区在线观看 | 9热在线视频观看99| 久久婷婷成人综合色麻豆| 免费少妇av软件| 天堂动漫精品| 男女免费视频国产| 欧美人与性动交α欧美精品济南到| 18禁裸乳无遮挡动漫免费视频| 黄片播放在线免费| 亚洲专区字幕在线| 999精品在线视频| 国产xxxxx性猛交| 19禁男女啪啪无遮挡网站| 国产成人精品久久二区二区91| 69精品国产乱码久久久| 大码成人一级视频| 黄色a级毛片大全视频| 不卡av一区二区三区| 日韩中文字幕欧美一区二区| 免费黄频网站在线观看国产| 男女床上黄色一级片免费看| 51午夜福利影视在线观看| 制服诱惑二区| 成人三级做爰电影| 午夜福利视频精品| 亚洲欧美精品综合一区二区三区| av线在线观看网站| 一进一出好大好爽视频| 日韩欧美免费精品| 日本av免费视频播放| 2018国产大陆天天弄谢| 在线观看免费高清a一片| 五月天丁香电影| 成人国产一区最新在线观看| av视频免费观看在线观看| 黑丝袜美女国产一区| 成人手机av| 人妻久久中文字幕网| 国产精品电影一区二区三区 | av免费在线观看网站| 国产精品影院久久| 欧美激情 高清一区二区三区| 天堂中文最新版在线下载| 在线观看免费午夜福利视频| 久久ye,这里只有精品| 免费在线观看视频国产中文字幕亚洲| 中文字幕制服av| 国产av一区二区精品久久| 99精国产麻豆久久婷婷| 国产熟女午夜一区二区三区| www.熟女人妻精品国产| 一本大道久久a久久精品| 狠狠精品人妻久久久久久综合| 国产免费av片在线观看野外av| 欧美日韩亚洲综合一区二区三区_| 亚洲色图 男人天堂 中文字幕| 免费av中文字幕在线| 超碰成人久久| 日韩欧美国产一区二区入口| 一本一本久久a久久精品综合妖精| 69av精品久久久久久 | 大型黄色视频在线免费观看| 欧美午夜高清在线| 在线看a的网站| aaaaa片日本免费| 午夜免费鲁丝| 国产日韩欧美视频二区| 亚洲精品久久成人aⅴ小说| 极品教师在线免费播放| 久9热在线精品视频| 在线播放国产精品三级| 又黄又粗又硬又大视频| 老熟女久久久| 国产一区二区激情短视频| 欧美成狂野欧美在线观看| www.熟女人妻精品国产| 欧美激情久久久久久爽电影 | 亚洲成av片中文字幕在线观看| 最近最新免费中文字幕在线| 最新在线观看一区二区三区| 国产1区2区3区精品| 亚洲精品国产区一区二| 18禁国产床啪视频网站| 久久久久久久精品吃奶| 亚洲精品中文字幕一二三四区 | 纯流量卡能插随身wifi吗| 国产一卡二卡三卡精品| 精品福利永久在线观看| 大码成人一级视频| 中文字幕精品免费在线观看视频| 老熟女久久久| 久久久国产精品麻豆| 亚洲人成电影免费在线| 黄片播放在线免费| 亚洲三区欧美一区| 一区二区日韩欧美中文字幕| 满18在线观看网站| 少妇的丰满在线观看| 成人永久免费在线观看视频 | 国产欧美日韩综合在线一区二区| 50天的宝宝边吃奶边哭怎么回事| 少妇 在线观看| 欧美激情 高清一区二区三区| 国产精品秋霞免费鲁丝片| 不卡av一区二区三区| 亚洲av美国av| 成人手机av| 久久精品国产综合久久久| 久久久久久久国产电影| 欧美日本中文国产一区发布| 成人手机av| 天堂8中文在线网| 一区二区三区激情视频| 一进一出好大好爽视频| 视频在线观看一区二区三区| 多毛熟女@视频| 水蜜桃什么品种好| 精品人妻在线不人妻| 色精品久久人妻99蜜桃| 高清在线国产一区| 国产精品99久久99久久久不卡| 国产主播在线观看一区二区| 亚洲黑人精品在线| 欧美中文综合在线视频| 欧美精品亚洲一区二区| 国产免费av片在线观看野外av| 久久天躁狠狠躁夜夜2o2o| 法律面前人人平等表现在哪些方面| 女性被躁到高潮视频| 日韩精品免费视频一区二区三区| 亚洲av欧美aⅴ国产| 多毛熟女@视频| 在线 av 中文字幕| 成人国产一区最新在线观看| 国产精品九九99| 亚洲天堂av无毛| 中文字幕最新亚洲高清| 国产精品免费视频内射| 午夜福利乱码中文字幕| 亚洲七黄色美女视频| 久久精品国产99精品国产亚洲性色 | 中文字幕制服av| 亚洲成人国产一区在线观看| 最近最新中文字幕大全免费视频| 国产麻豆69| 国产精品电影一区二区三区 | 美女国产高潮福利片在线看| 一进一出好大好爽视频| 久久精品91无色码中文字幕| 久久国产精品人妻蜜桃| 丁香六月天网| 香蕉丝袜av| 国产片内射在线| 一区二区三区激情视频| 亚洲精品美女久久久久99蜜臀| 后天国语完整版免费观看| 国产精品电影一区二区三区 | 国产不卡av网站在线观看| 国产欧美日韩综合在线一区二区| 国产99久久九九免费精品| 悠悠久久av| 19禁男女啪啪无遮挡网站| 别揉我奶头~嗯~啊~动态视频| 精品国产乱子伦一区二区三区| 国产精品久久久久久精品古装| 亚洲av美国av| 欧美精品一区二区免费开放| 国产在线精品亚洲第一网站| 激情视频va一区二区三区| 一本一本久久a久久精品综合妖精| 国产黄频视频在线观看| 久久人妻av系列| 999精品在线视频| 亚洲熟妇熟女久久| 日韩有码中文字幕| 亚洲成人手机| 极品少妇高潮喷水抽搐| 中文字幕人妻丝袜制服| 大码成人一级视频| 97人妻天天添夜夜摸| 18禁国产床啪视频网站| 久久性视频一级片| 免费在线观看日本一区| 狠狠精品人妻久久久久久综合| 国产免费现黄频在线看| 国产一区二区在线观看av| 女人爽到高潮嗷嗷叫在线视频| tube8黄色片| 男女下面插进去视频免费观看| 国产亚洲午夜精品一区二区久久| 变态另类成人亚洲欧美熟女 | 一进一出好大好爽视频| 国产黄频视频在线观看| 久久99热这里只频精品6学生| 大型黄色视频在线免费观看| 黑丝袜美女国产一区| 久久精品国产99精品国产亚洲性色 | 欧美另类亚洲清纯唯美| 国产精品一区二区精品视频观看| 亚洲视频免费观看视频| 欧美精品一区二区免费开放| 国产精品电影一区二区三区 | 999精品在线视频| 久久精品人人爽人人爽视色| 久久久久久亚洲精品国产蜜桃av| 欧美精品啪啪一区二区三区| 大码成人一级视频| 岛国在线观看网站| 国产精品久久久人人做人人爽| 亚洲五月婷婷丁香| 中文字幕av电影在线播放| 极品少妇高潮喷水抽搐| 69av精品久久久久久 | 巨乳人妻的诱惑在线观看| 日韩人妻精品一区2区三区| 久久人人爽av亚洲精品天堂| 午夜精品国产一区二区电影| 丝袜美腿诱惑在线| 色尼玛亚洲综合影院| 精品国产亚洲在线| 欧美激情极品国产一区二区三区| aaaaa片日本免费| 美女国产高潮福利片在线看| 日韩欧美三级三区| 狂野欧美激情性xxxx| 欧美激情久久久久久爽电影 | 久久久欧美国产精品| 两性夫妻黄色片| 9191精品国产免费久久| 国产又色又爽无遮挡免费看| 一区二区三区精品91| 国产成人精品久久二区二区免费| 搡老岳熟女国产| 一区二区三区精品91| 精品高清国产在线一区| 国产xxxxx性猛交| 国产色视频综合| 在线观看舔阴道视频| 精品人妻在线不人妻| 69精品国产乱码久久久| 我要看黄色一级片免费的| 91麻豆精品激情在线观看国产 | 另类精品久久| 99国产综合亚洲精品| 伦理电影免费视频| 好男人电影高清在线观看| 亚洲国产精品一区二区三区在线| 久久国产精品人妻蜜桃| 乱人伦中国视频| 欧美精品人与动牲交sv欧美| 日日夜夜操网爽| 亚洲国产看品久久| 国产熟女午夜一区二区三区| 国产精品久久久久成人av| 午夜福利,免费看| 日本撒尿小便嘘嘘汇集6| 水蜜桃什么品种好| 国产三级黄色录像| 高清av免费在线| 国产欧美日韩一区二区三区在线| 亚洲av第一区精品v没综合| 国产在线精品亚洲第一网站| 精品亚洲成国产av| 桃红色精品国产亚洲av| 天天躁日日躁夜夜躁夜夜| av欧美777| 黄色片一级片一级黄色片| 成年版毛片免费区| av有码第一页| 一级毛片电影观看| 乱人伦中国视频| 汤姆久久久久久久影院中文字幕| 亚洲国产欧美网| 亚洲精品一二三| 日韩大片免费观看网站| 久久久精品区二区三区| 黄频高清免费视频| 免费在线观看日本一区| 午夜福利欧美成人| 18禁黄网站禁片午夜丰满| 国产精品一区二区精品视频观看| 女性生殖器流出的白浆| av一本久久久久| 国产亚洲精品第一综合不卡| 中文欧美无线码| 欧美性长视频在线观看| 啦啦啦 在线观看视频| 午夜成年电影在线免费观看| 老熟女久久久| 久久性视频一级片| 女性被躁到高潮视频| 性高湖久久久久久久久免费观看| 男女高潮啪啪啪动态图| 丁香六月天网| 亚洲一卡2卡3卡4卡5卡精品中文| 9热在线视频观看99| 国产成人精品在线电影| 成人18禁高潮啪啪吃奶动态图| 天天躁狠狠躁夜夜躁狠狠躁| 别揉我奶头~嗯~啊~动态视频| 欧美日韩精品网址| 丝袜美腿诱惑在线| 如日韩欧美国产精品一区二区三区| 日韩精品免费视频一区二区三区| 亚洲久久久国产精品| 两人在一起打扑克的视频| 国产精品秋霞免费鲁丝片| 青青草视频在线视频观看| 免费在线观看影片大全网站| 人人妻人人澡人人爽人人夜夜| 最近最新中文字幕大全电影3 | 极品少妇高潮喷水抽搐| 波多野结衣一区麻豆| 久热爱精品视频在线9| 国产亚洲欧美在线一区二区| 欧美成人免费av一区二区三区 | 国产1区2区3区精品| 蜜桃在线观看..| 熟女少妇亚洲综合色aaa.| 精品人妻1区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 女同久久另类99精品国产91| 久久久国产精品麻豆| 久久久久久久久免费视频了| av在线播放免费不卡| 亚洲伊人久久精品综合| 在线观看www视频免费| 亚洲av欧美aⅴ国产| av电影中文网址| 性高湖久久久久久久久免费观看| 91麻豆av在线| 午夜福利视频在线观看免费| 69精品国产乱码久久久| 成年版毛片免费区| 日本a在线网址| 女人爽到高潮嗷嗷叫在线视频| 啦啦啦 在线观看视频| 最近最新中文字幕大全电影3 | 视频在线观看一区二区三区| 亚洲自偷自拍图片 自拍| 久久久水蜜桃国产精品网| 最新美女视频免费是黄的| 两个人免费观看高清视频| 久久久国产一区二区| 人人妻,人人澡人人爽秒播| bbb黄色大片| 每晚都被弄得嗷嗷叫到高潮| 这个男人来自地球电影免费观看| 下体分泌物呈黄色| 性色av乱码一区二区三区2| 丰满少妇做爰视频| 91成年电影在线观看| 国产av国产精品国产| 亚洲男人天堂网一区| 国产人伦9x9x在线观看| 精品人妻在线不人妻| 国产精品久久电影中文字幕 | 我要看黄色一级片免费的| 亚洲熟女精品中文字幕| 久久久久久免费高清国产稀缺| 视频在线观看一区二区三区| 亚洲专区国产一区二区| 欧美精品一区二区大全| 夜夜骑夜夜射夜夜干| 成在线人永久免费视频| 国产免费视频播放在线视频| 国产一区二区激情短视频| 亚洲色图综合在线观看| 久久久水蜜桃国产精品网| 久久 成人 亚洲| 亚洲中文av在线| 美女福利国产在线| 国产一区二区激情短视频| 成人精品一区二区免费| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人精品在线电影| 国产成人免费无遮挡视频| 国产欧美亚洲国产| 国精品久久久久久国模美| 国产一区二区三区综合在线观看| 精品国产乱子伦一区二区三区| 日韩三级视频一区二区三区| 怎么达到女性高潮| 中文字幕人妻丝袜一区二区| 久久久久久久久免费视频了| 十八禁网站免费在线| 91精品国产国语对白视频| 国产在线免费精品| 在线观看免费高清a一片| 露出奶头的视频| 成人精品一区二区免费| 俄罗斯特黄特色一大片| 老司机深夜福利视频在线观看| 91av网站免费观看| 国产成+人综合+亚洲专区|