• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Intramolecular Spin-Spin Interactions in Ruthenium Complexes of Pyrazole Derivatives

    2016-07-12 12:49:14PeterAjibade
    光譜學(xué)與光譜分析 2016年11期

    Peter A. Ajibade

    Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa

    The Intramolecular Spin-Spin Interactions in Ruthenium Complexes of Pyrazole Derivatives

    Peter A. Ajibade

    Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa

    The spin-spin coupling can provide useful information for analysing the structure of a system and the extent of non-covalent bonds interactions. In this study, we present the isotropic NMR properties and spin-spin coupling involving ruthenium-ligand (Ru-L) bonds and other spin-spin interactions obtained from DFT calculations. The proton shift which in close proximity with the Ru and Cl (or O) atoms are characterised with lower and higher chemical shift respectively. Though Ru-Cl bond has longer bond length than all other Ru-L bonds, yet its spin-spin coupling is higher than others because of a very high contribution of PSO which is far higher than the contribution from FC terms. In all other Ru-L bonds, FC is the most significant Ramsey terms that define their spin-spin coupling. Both the isotropic and anisotropic shielding of the Hz of the pyrazole is lower than Hc of the cymene and the spin-spin coupling3J(Hz…Hz) of the pyrazole are less than half of the3J(Hc…Hc) of the cymene unit in the complexes. There is a little increase in both the3J(Hc…Hc) and3J(Hz…Hz) spin-spin coupling in the hydrolysed complexes compare to the non-hydrolysed complexes. The isotropic and anisotropic shielding tensor of Ru atoms increases in magnitude as the complexes get hydrolysed that could be ascribed to a more deshielding chemical environments.

    NMR; DFT method; Spin-spin coupling; Interatomic distance; Shielding tensors

    Introduction

    The coupling constant between a pair of atoms is an important molecular property because it can provide useful information for analysing the structure of a system and the onset of intramolecular bonding interactions[1-2]. Spin-spin coupling is an interaction between the magnetic moments of the coupling nuclei and has been determined experimentally for large number of molecules using classical NMR experiments[3]of the molecules dissolved in liquid crystals[4-5]. The interpretation of experimental spin-spin data is often challenging[3]. J-coupling is sensitive to bonding interactions and is mediated by the polarization of the spins of the intervening bonding electrons unlike direct dipolar coupling, which is a through-space interaction. It has been used to probe the nature of hydrogen bonds, CH—π interactions, as well as van der Waals’ interactions[6]. It is expected that as the number of bonds between the two nuclei increases, their coupling should diminish[1-2].

    It is computationally easier to partition the spin-spin property into contributing terms which is experimentally difficult[7]. The nuclear spin-spin coupling (J) of interaction are determined by the four Ramsey terms: Fermi contact (FC), spin dipole (SD), diamagnetic spin orbit (DSO), paramagnetic spin orbit (PSO))[8]. The FC and SD are known to represent the spin polarization densities and describe the interactions of the electronic spin with the nuclear magnetic field (namely the extended dipole field outside the nucleus and a strongly localized field inside the nucleus). The SD coupling mechanism requires occupied and unoccupied non-s-orbitals while FC operator probes the s-electrons at the sites of coupling nuclei[9]. FC operator probes the s-electrons at the sites of coupling nuclei[10]. A decrease of the SD contribution of the multiple bonds, indicating a decrease of the π-character leads to weakening of the bonds[10]. DSO and PSO represents orbital current densities[8]where DSO term is a direct indicator of the anisotropy of the charge distribution centred at the coupling nuclei, bond polarity and the electronegativity difference between two atoms X and Y. The PSO requires occupied and unoccupied non-s-orbitals of the coupling nuclei and can be related to the bond order, π-strength, electronegativity, and the magnetizability of a bond[9].

    Our interest in the current study is the magnetic properties of ruthenium complexes starting from the precursor to mono-, bi- and tri-dentate complexes. It is of interest to determine the level of changes in the spin-spin interactions of the Ru-L bonds and their shielding tensors from the precursor to the mono-, bi- and tridentate derivatives of the pyrazole based ligands. It is also necessary to get insights from the theoretical model in relation to the experimental data obtained from their1H-NMR due to the presence of the Cl and Ru atoms and establish the effects of hydration of the complexes on the spin-spin coupling of the Ru-L and the selected C-H and H…H interatomic interactions.

    1 Computational methods

    Ten ruthenium complexes were optimized using PBEPBE which makes use of the functional of Perdew, Burke and Ernzerhof and their correlation[11-12]. The Ru atom was treated with basis set SBKJC VDZ[13]with effective core potential while all other atoms in the complexes were treated with basis set 6-31+G(d,p)[14-16]. The basis set SBKJC VDZ was obtained from EMSL Basis Set Library[17-18]. The functional PBEPBE which was used for the optimization has been found to give similar results with hybrid functional PBE0 and mPW1PW91 in the optimization of Ru(Ⅱ) complexes and in computing their stationary phase properties[19]. It has also been used to study weak-interacting systems[20]. The only possible limitation is the long-range deficiency of the DFT functional methods especially when studying noncovalent intermolecular interactions which makes hybrid DFT preferable[21-23]. Since we are not considering any long range interactions but purely intramolecular interaction, PBEPBE is thus a good choice. Also, all our geometries optimized with PBEPBE gives zero frequency which is a clear indication that local minimum was obtained through our choice functional method. Also, the basis set SBKJC VDZ ECP with PBE correlation has been shown to be effective in treating complexes with large number of electrons and has been applied in computing properties of many metal clusters[24-25]. The computation of the NMR and NMR spin-spin coupling constants J(A,B)[26-27]were done using B3LYP which is Becke’s three-parameter exchange[28]and Lee-Yang-Parr’s correlation nonlocal functional. During this time, the Ru atom was treated with all electron DGDZVP[29-30]basis set and the GIAO method was used for the computation of the NMR and spin-spin coupling. Both the optimization and computation of the properties were done using Gaussian 09 (G09)[31]. The theoretical proton chemical shift is termed direct method by subtracting each of the proton isotropic shielding directly from that of the reference tetramethylsilane (TMS) and fitting method by using reported equation σ1H=31.0-0.97σ1H as reported in the literature[32].

    2 Result and discussion

    2.1 The bonds geometries

    The geometrical variation especially of the Ru-L bonds and their related angles from the precursor [6h-(Cym)RuCl2]2to monodentate (pzCym, pzWCym), to bidentate (bpzmCym, bpzmWCym, bpzaCym, bpzaWCym) and to tridentate (bpzpyCym, bpzpyWCym) derivatives (Figure 1) are shown in Tables 1 and 2. The complexes Cym2, pzCym,bpzmCym, bpzaCym, bpzpyCym were synthesised but their hydrated forms are only studied computationally.

    Fig.1 The molecular representation of precursor dimmer6η-Cymene (Cym2) and6η-Cymene ruthenium(Ⅱ) complexes of pyrazole (pzCym), bis(pyrazol-1-yl)methane (bpzmCym), bis(pyrazol-1-yl)acetic (bpzaCym), bis(pyrazol-1-yl)pyridine (bpzpyCym) and bis(pyrazol-1-yl)pyridinic (bpzpyaCym) derivatives with their hydrated forms. The explicit hydrogen atoms are those whose spin-spin are of interest

    Table 1 Selected interatomic distances in Angstroms that define the spin-spin coupling of interesting

    The nitrogen atom in Ru-N and Ru-Np represent the coordinating nitrogen atom of the pyrazole and pyridine units of the ligands. The Hc and Hz represent the selected hydrogen atoms from the cymene and pyrazole units respectively.

    Table 2 Selected bond angles of interest in the complexes

    The computed geometrical bond distance of all the Ru-C ranges from 2.18 (in Cym2) to 2.34 (in bpzpyaCyme and bpzpyCym). The Ru-Cl are found within the range of 2.40 (bpzmCym and bpzaCym) to 2.51 (in precursor WCym2) which fall within many of the experimentally reported range of 2.30 to 2.48 in the literatures for ruthenium crystal structures[33-42]. The bond lengths of the bridged Ru-Cl in the precursor are longer than their normal Ru-Cl bonds. The Ru-Cl bond distances are lower in the complexes bpzmCym and bpzaCym with bidentate compare to other complexes. Uhe presence of the monodentate and bidentate resulted in a longer Ru-O bond distances of the hydrated complexes pzWCym and bpzmWCym (2.24) compare to the precursor WCym2 where the Ru-O bond is lowest (2.20). Among all the Ru-ligand (Ru-L) bonds considered (Ru-C, Ru-Cl, Ru-O and Ru-N), Ru-N has the lowest bond distances which ranges from 2.08 for the Ru-Np (Np is the coordinating nitrogen atom of the pyridine of tridentate ligands) to 2.17 for Ru-N in the complex bpzpyCym. All the Hc…Hc bond distances are within a close range of 2.48 to 2.51. The Hz…Hz have its lowest values in complex bpzpyaCym with tridentates (2.75) and highest values in complex with monodentate (2.78) while reverse is the case of N-N bond distance ranging from 1.35 in complex pzCym with monodentate binding mode to 1.40 in complex bpzpyaCym with tridentate binding modes. There is no change in the C4-H bond distances (1.09) of the pyrazole unit in the complexes and also in the N-Np bond interatomic distance of tridentate.

    As expected, the largest bond angle is the Nz-Ru-Nz of the tridentate complexes bpzpyaCym and bpzpyCym but the values is lower than the sum of the two Nz-Ru-Np which are found within the Nz-Ru-Nz of the tridentate complexes. The Nz-Ru-Np bond angle is lower than the Nz-Ru-Np. The Nz-Ru-Nz bond angle is higher in hydrated complexes bpzmWCym and bpzaWCym (Table 2) which is responsible for the observed increase in the N…N bond distances (Table 1) compare to their unhydrated complexes. On the contrary, the Cl-Ru-O bond angle of the hydrated complexes WCym2 and pzWCym are lower than the Cl-Ru-Cl bond angle in their unhydrated complexes.

    2.2 NMR chemical shift and spin-spin coupling

    The interest is to study the level of changes in the coupling spin-spin interactions of the Ru-L from the precursor to the derivatives and also consider the change in the isotropic shielding tensors of coordinating atoms which are C atoms of cymene, N atoms from the pyrazole derivatives and selected H atoms from the cymene (4H) and pyrazole ligands derivative.

    Table 3 The experimental and the theoretical (direct and fitting) of the1H-NMR of the complexes

    DirectFittingExperimentCym2CH30.62to3.321.127to3.750.185to3.21C-Hc2.92,4.063.36,4.462.68Cothers-H4.12to5.674.52to6.035.39to5.79pzCymCH30.88to3.281.37to3.710.91to2.80C-Hc3.503.912.84Cothers-H4.59to7.524.98to7.825.47to8.04C4-H6.346.676.52NH12.6012.748.29bpzmCymCH31.17to2.831.66to3.271.10to2.80C-Hc3.714.122.92Cothers-H5.038to8.045.41to8.325.88to8.27CH25.46,6.165.82,6.506.28C4-H6.67,6.696.99,7.016.42bpzaCymCH31.18to2.881.67to3.321.25~1.89C-Hc3.764.173.25Cothers-H5.04to8.085.41to8.314.5to8.47C4-H6.62,6.646.95,6.976.75CHOO7.017.327.45COOH7.567.857.75bpzpyCymCH3-0.52to2.810.014to3.250.351to2.35C-Hc2.442.892.64Cothers-H5.21to8.685.57to8.944.59to8.91C4-H7.32,7.397.63,7.697.05

    C-Hc is the CH(CH3)2of the cymene unit

    The experimental and theoretical1H-NMR properties of the synthesised complexes are presented in Table 3. As shown in Figure 2, an up-field shift was observed for the four C-H proton of the benzene ring of cymene from the precursor (35.3730) to bpzmCym (35.8779) and to bpzpyCym (35.836) which indicate deshielding effect of the bidentate and tridentate ligands on the cymene proton shift. The assignment of the experimental1H-NMR shift with the values obtained from the theoretical direct and fitting methods are presented in Table 3. There is a strong relationship between the experimental and theoretical chemical shifts especially for the methyl groups, the C4-H of the pyrazole unit and the CH(CH3)2of the cymene protons. The chemical shifts of some methyl groups are very low from negative to values less than one. Through the theoretical analysis of the NMR chemical shifts, it clearly shows that the methyl groups which are characterised with very low chemical shift are directed towards the Ru atom while those with higher chemical shifts are directed towards the chlorido atom in the complexes.

    Fig.2 The experimental NMR of the precursor Cem2 and complexes bpzmCym and bpzpyCym derivatives

    The values of all the selected spin-spin coupling1J(Ru-L),1J(C-H),1J(N-N*),nJ(N…N) andnJ(H…H) are presented in Table 4 and the feature of their changes in each of the complexes are shown in Figure 3. All the1J(Ru-C),1J(Ru-N) and1J(Ru-Cl) spin-spin interactions have negative values while the1J(Ru-O) andnJ(H…H) have positive values (Table 4 and Figure 2). There is appreciable decrease in the magnitude of the1J(Ru-C) from the precursor (Cym2 and WCym2) to the complexes (Figure 2). The lowest magnitude of the1J(Ru-C) is found in pzWCym (-4.087) while the highest is found in bpzmWCym (-13.317) (Figure 2 and Table 4). In the precursor WCym2 and complex pzWCym where there is another Cl atom after the hydrolysis, the spin-spin interactions of the remaining1J(Ru-Cl) and the1J(Ru-N) decrease significantly in magnitude. The feature of all the1J(Ru-N) of the bpzpyCym and bpzpyaCym are nearly the same with very little or no difference at all. The1J(Ru-Np) of the pyridine unit of bpzpyCym and bpzpyaCym have the lowest magnitude compare to all their1J(Ru-N) of their pyrazole unit. The spin-spin1J(Ru-Cl) have the lowest value in Cym2 and highest value in bpzmCym. The highest value of the spin-spin coupling1J(Ru-O) is found in pzWCym while the lowest is in bpzmWCym. There is no direct relationship between the changes in the bond distances of the complexes and the change in the observed spin-spin coupling values.

    Table 4 Selected spin-spin coupling of the complexes

    Fig.3 Features of changes in the selected spin-spin coupling of ruthenium(Ⅱ)6η-cymene complexes of pyrazole derivatives and their hydrated forms

    The values of all the3J(Hz…Hz) in the pyrazole unit is less than half of the3J(Hc…Hc) spin-spin coupling observed for the cymene unit of the complexes (Table 4). The values of the3J(Hc…Hc) are within the range of 5.947 Hz in pzCyme to 7.230 Hz in complex bpzpyaCym which are within the experimental ranges of 6~8 Hz[43-44], 6[45-46], 5.7~6.2 Hz[47], 6.4 Hz[48], 6.02~6.56 Hz[49]reported in the literatures. The spin-spin range of 7.0~9.2 Hz is more typical of substituted benzenes[50]. The two Ru atoms in Cym2 are very similar in their J-coupling with ligand atoms but there is a relatively higher difference in the two Ru atoms coupling with ligands in WCym2 as a result of the hydrolysis. The J-coupling of the two Ru atoms with their individual Cl atom is higher in negative value than the bridged Cl atoms which is reverse to their observed bond distances (Table 1). There is a little increase in the spin-spin3J(H…H) coupling in the hydrolysed complexes compare to the non-hydrolysed complexes. It is only in the hydrated complex pzWCym that there is a highest1J(Ru-N) spin-spin coupling to its unhydrated complex while no significant change was observed for other hydrated complexes. The4J(N…N) of the spin-spin coupling of the two donor nitrogen atoms of the two pyrazole units is higher than3J(N…Np) between the nitrogen donor centre of the pyrazole unit and the pyridine unit. The lowest spin-spin coupling is the6J(N…N) between the donor nitrogen centre of the pyrazole units of the complexes bpzpzCym and bpzpyaCym. The spin-spin coupling of the C4-H spans a wider range of values ranges from 65.700 Hz of pzWCym to 216.206 of the complex bpzpyCym which is contrary to their observed bond distances which are relatively the same in values (Table 1).

    The isotropic and anisotropic shielding tensors of Ru and the C, N, Cl, and O which directly coordinated with it and selected H atoms of interest are shown in Table 5. The isotropic and anisotropic shielding tensor of Ru atoms increases in magnitude as the complexes get hydrolysed which is an indication of more deshielding effect due to hydrolysis. The N atom of the pyridine unit of the tridentate (Np) is much more shielded than the N atoms of its pyrazole units. Among all the coordinating N atoms in the complexes, the N atoms of the pyrazole unit of complexes bpzpyaCym and bpzpyCym have the lowest magnitude of isotropic shielding. Among all the hydrogen atoms of interest (C-H of the cymene unit, C4-H and N-H of the pyrazole unit), the hydrogen atom of N-H have the lowest isotropic shielding but highest anisotropic shielding. Both the isotropic anisotropic shielding of the H atoms of the pyrazole C4-H is lower than that of the cymene C-H. The anisotropic values of the Ru, C, C4, and N atoms are higher than their isotropic shielding especially that of N atom. An opposite is observed for the Hc, Hz and Cl atoms.

    Table 5 The Isotropic and Anisotropic shielding of selected atoms of interest in the complexes

    2.3 Ramsey terms and their correlation with J-coupling and other computed properties

    The values of the Ramsey terms FC, SD, PSO and DSO which determines the J-coupling interactions[8]of selected bonds of interest are presented in supplementary Table S1. In all of the Ru-C, Ru-N, Ru-O, N-N, N…N, Hc…Hc, Hz…Hz, C-H and N-H, the most significant Ramsey term which contribute mostly to their spin-spin interactions is the FC follow by a light contribution from PSO except in all the H…H and C-H where their DSO contribution is higher than PSO. It is possible to relate PSO coupling mechanism to bond order, π-strength, electronegativity, and the magnetizability of a bond[9]. The FC term of the hydrogen atom from pyrazole unit (Hz) is lower than that of the cymene unit (Hc) which resulted to the lower spin-spin coupling of the Hz…Hz of the pyrazole ligands. Unlike other Ru-ligand (Ru-L) bonds, the FC and the PSO contribution to the spin-spin coupling of the hydrated bonds Ru-O are very close in values. The highest values of spin-spin interaction among all the Ru-L bonds are observed in Ru-Cl because of a very high contribution of PSO which is far higher than the contribution from FC term. Generally, the contribution of the Ramsey terms to the values of the spin-spin coupling interaction in the complexes followed the order FC>PSO>SD>DSO. However, there are many exceptions to the order as indicated before. In all the interatomic spin-spin of atoms without a direct bonds like Hc…Hc, Hz…Hz, N…N and two with direct bond (C-H, N-N), the values of SD are significantly lower than DSO indicating the absent of π-character[10]. The reason for higher DSO term than SD term is because DSO is a direct indicator of the anisotropy of the charge distribution centred at the coupling nuclei, bond polarity and the electronegativity difference between two atoms X and Y.

    Table 6 The correlations of the Ramsey Terms, Spin-Spin, Isotropic and Anisotropic shielding and their corresponding interatomic distance

    FCSDPSODSOJ-CoupFC1.000.330.160.481.00SD0.331.000.920.290.40PSO0.160.921.000.120.24DSO0.480.290.121.000.49J-Coup1.000.400.240.491.00Dist-0.66-0.30-0.13-0.31-0.66Iso10.430.330.340.400.45Aniso1-0.36-0.25-0.25-0.35-0.37Iso2-0.12-0.81-0.87-0.12-0.18Aniso2-0.27-0.45-0.43-0.27-0.30Ave(Iso)0.430.220.220.400.44Ave(Aniso)-0.36-0.27-0.26-0.35-0.38

    Fig.4 The correlation (R2) and linear equation of the Ramsey terms, Isotropic, Anisotropic, average Isotropic and Anisotropic shielding tensor with the J-Coupling of selected atoms in the complexes. The J-coupling and FC were scaled with 0.1; Iso1, Aniso1, Ave(Iso) and Ave(Aniso) were scaled by 0.001 while Iso2 and Aniso2 were scaled by 0.01 in the plot. The suffix 1 and 2 of the Iso and Aniso indicate first and second atom that are involved in the coupling

    The correlation of the J-coupling interaction with the Ramsey terms, interatomic distance, atomic isotropic and anisotropic shielding are shown in Table 6. The most correlating Ramsey terms with spin-spin coupling is FC (R2=0.99 as shown in Figure 4) just has its values are found to be significant. Even though the values of PSO are significant in many of the computed spin-spin coupling than SD and DSO but its correlation with the spin-spin coupling is lower than that of SD and DSO. There is significant high correlation of the interatomic distances with both the FC and spin-spin coupling. There is significant correlation between the FC and PSO just as the two of them are found to be the most significant in values among the computed Ramsey terms for the bonds. Even though the values of interatomic distances do not directly determine the interatomic spin-spin coupling but its correlation with spin-spin coupling is higher (R2=0.43 as shown in Figure 4) than PSO, SD and DSO which directly determine the values. The correlation of the isotropic and anisotropic shielding tensor of the first set of atom which is dominated with Ru atom and that of the second sets and their averages with the spin-spin coupling is lower than many of the Ramsey terms like FC and DSO.

    3 Conclusions

    The chemical shift and the spin-spin coupling interaction of ten ruthenium complexes made up of six non-hydrated and four hydrated forms were computed using DFT calculations. Four of the non-hydrated complexes were synthesised and a high similarity between the experimental and theoretical prom NMR chemical shifts were observed especially for their methyl groups, the C4-H of the pyrazole unit and the CH(CH3)2of the cymene protons. The methyl groups which are characterised with very low chemical shift are directed towards the Ru atoms while those with higher chemical shift are directed towards the chlorido atom in the complexes. The bond length of the bridged Ru-Cl in the precursors are longer than their normal Ru-Cl bonds while J-coupling bridged is lower than the normal. The Ru-Cl bond distances are lower in the complexes bpzmCym and bpzaCym with bidentate compare to other complexes. The highest values of spin-spin interaction among all the Ru-L bonds are observed in Ru-Cl because of a very high contribution of PSO which is far higher than the contribution from FC term. Among all the Ru-ligand (Ru-L) bonds considered, Ru-N has the lowest bond distances but the spin-spin of Ru-N falls in between that of Ru-C and Ru-Cl. The interatomic distance Hc…Hc of the cymene unit are within a close range in all the complexes but less than Hz…Hz of the pyrazole unit. Both the isotropic and anisotropic shielding of the Hz of the pyrazole is lower than Hc of the cymene. All these can contribute to lower spin-spin coupling of3J(Hz…Hz) which is less than half of the3J(Hc…Hc) of the cymene unit of the complexes. The FC term of the hydrogen atom from pyrazole unit (Hz) is lower than that of the cymene unit (Hc) which resulted to the lower spin-spin coupling of the Hz…Hz of the pyrazole ligands. There is a little increase in both the3J(Hc…Hc) and3J(Hz…Hz) spin-spin coupling in the hydrolysed complexes compare to the non-hydrolysed complexes. The Nz-Ru-Nz bond angle is higher in hydrated complexes bpzmWCym and bpzaWCym which is responsible for their observed increase in the N…N bond distances (Table 1) compare to their unhydrated complexes. The4J(N…N) of the spin-spin coupling of the two donor nitrogen atoms of the two pyrazole units is higher than3J(N…Np) between the nitrogen donor centre of the pyrazole unit and the pyridine unit. All the1J(Ru-C),1J(Ru-N) and1J(Ru-Cl) spin-spin interactions have negative values while the1J(Ru-O) andnJ(H…H) have positive values. There is appreciable decrease in the magnitude of the1J(Ru-C) from the precursor (Cym2 and WCym2) to the complexes. The isotropic and anisotropic shielding tensor of Ru atoms increases in magnitude as the complexes get hydrolysed which an indication of more deshielding effect due to hydrolysis. In all of the Ru-C, Ru-N, Ru-O, N-N, N…N, Hc…Hc, Hz…Hz, C-H and N-H, the most significant Ramsey term which contribute mostly to their spin-spin interaction is the FC follow by a light contribution from PSO except in all the H…H and C-H where their DSO contribution is higher than PSO. The most correlating Ramsey terms with spin-spin coupling is FC while the correlation of inteatomic distances with spin-spin coupling is higher than other Ramsey terms.

    Acknowledgements: Authors gratefully acknowledged the financial support of Govan Mbeki Research and Development Centre, University of Fort Hare, South Africa. The CHPC in Republic of South Africa is acknowledged for providing the computing facilities and some of the software’s that were used for the computation.

    [1] Stanford M W, Knight F R, Arachchige K S A, et al. Dalton Trans.,2014,43: 6548.

    [2] Ernst L, Sakhaii P. Magn. Reson. Chem., 2000,38: 559.

    [3] Del Bene J E, Elguero J, Alkorta I. J. Phys. Chem., 2004, A108: 3662.

    [4] Del Bene J E, Alkorta I, Elguero J. J. Phys. Chem., 2009,A113: 12411.

    [5] Autschbach J, Kantola A M, Jokisaari J. J. Phys. Chem., 2007,A111: 5343.

    [6] Perras F A, Bryce D L. J. Magnetic Resonance, 2014, 242: 23.

    [7] Del Bene J E D, Alkorta I, Elguero J. J. Phys. Chem., 2010,A114: 2637.

    [8] Cremer D, Grafenstein J. Phys. Chem. Chem. Phys., 2007,9: 2791.

    [9] Gaur R, Mishra L. Inorg. Chem., 2012,51: 3059.

    [10] Pratuangdejkul J, Jaudon P, Ducrocq O C, et al. J. Chem. Theory Comput.,2006,2: 746.

    [11] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996,77: 3865.

    [12] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1997,78: 1396.

    [13] Stevens W J, Krauss M, Basch H, et al. Can. J. Chem., 1992,70: 612.

    [14] Ditchfield R, Hehre W J, Pople J A. J. Chem. Phys., 1971,54: 724.

    [15] Hehre W J, Ditchfield R, Pople J A. J. Chem. Phys., 1972,56: 2257.

    [16] Gordon M S. Chem. Phys. Lett., 1980,76: 163.

    [17] Feller D J. Comp. Chem.,1996, 17(13): 1571.

    [18] Schuchardt K L, Didier B T, Elsethagen T, et al. J. Chem. Inf. Model.,2007,47: 1045.

    [19] Kusama H, Funaki T, Sayama K. J. Photochem. and Photobio. A: Chem.,2013,272: 80.

    [20] Li Z Y, Wang H L, He T J, et al. Theochem., 2006,778: 69.

    [21] Adamo C, Barone V. J. Chem. Phys., 1998,108: 664.

    [22] Pejov L, Solimannejad M, Stefov V. Chem. Phys., 2006,323: 259.

    [23] Kusama H, Sayama K. J. Phys. Chem., 2012,C116: 23906.

    [24] Marchal B, Carbonniére P, Begue D, et al. Chem. Phys. Letters, 2008,453: 49.

    [25] Marchal R, Carbonnière P, Pouchan C. Comput. Theoret. Chem.,2012,990: 100.

    [26] Helgaker T, Watson M, Handy N C. J. Chem. Phys., 2000,113: 9402.

    [27] Sychrovsky V, Grafenstein J, Cremer D. J. Chem. Phys., 2000,113: 3530.

    [28] Becke A D. J. Chem. Phys., 1993,98: 5648.

    [29] Godbout N, Salahub D R, Andzelm J, et al. Can. J. Chem., 1992,70: 560.

    [30] Sosa C, Andzelm J, Elkin B C, et al. J. Phys. Chem.,1992,96: 6630.

    [31] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian Inc, Wallingford CT, 2009.

    [32] Sanz D, Claramunt R M, Alkorta I, et al. Magn. Reson. Chem.,2012,50: 246.

    [33] Cebrian-Losantos B, Reisner E, Kowol C R, et al. Inorg. Chem., 2008,47: 6513.

    [34] David S, Perkins R S, Fronczek F R, et al. J. Inorg. Biochem., 2012,111: 33.

    [35] Al-Noaimi M, AlDamen M A. Inorganica Chimica Acta, 2012,387: 45.

    [36] Türkoglu G, Tampier S, Strinitz F, et al. Organometallics,2012,31: 2166.

    [37] Gaur R, Mishra L. Inorg. Chem.,2012,51: 3059.

    [38] Nakajima K, Ando Y, Mano H, et al. Inorganica Chimica Acta, 1998,274: 184.

    [39] Renfrew A K, Phillips A D, Tapavicza E, et al. Organometal, 2009, 28: 5061.

    [40] Lua Z L, Eichelea K, Warada I, et al. Allg. Chem., 2003, 629: 1308.

    [41] Dutta B, Solari E, Gauthier S, et al. Organometallics,2007,26: 4791.

    [42] Dutta B, Scopelliti R, Severin K. Organometal, 2008, 27: 423.

    [43] Shang X, Silva T F S, Martins L M D R S, et al. J. Organomet. Chem., 2013,730: 137.

    [44] Dell’Amico D B, Calderazzo F, Labella L, et al. J. Organomet. Chem., 2002,651: 52.

    [45] Melchart M, Habtemariam A, Parsons S, et al. Inorganica Chimica Acta, 2006, 359: 3020.

    [46] Caruso F, Rossi M, Benson A, et al. J. Med. Chem., 2012,55: 1072.

    [47] Vock C A, Scolaro C, Phillips A D, et al. J. Med. Chem.,2006,49: 5552.

    [48] Canivet J, Karmazin-Brelot L, Suss-Fink G. J. Organomet. Chem., 2005,690: 3202.

    [49] Betanzos-Lara S, Salassa L, Habtemariam A, et al. Organometallics,2012,31: 3466.

    [50] Katritzky A R, Akhmedov N G, Guven A, et al. J. Mol. Struc., 2006,783: 191.

    O433

    A

    10.3964/j.issn.1000-0593(2016)11-3737-09

    Received: 2015-11-02; accepted: 2016-02-08

    e-mail: pajibade@ufh.ac.za; ajibadepeters@gmail.com

    国产精品av久久久久免费| 久久婷婷成人综合色麻豆| 午夜精品国产一区二区电影| 国产在线免费精品| 如日韩欧美国产精品一区二区三区| √禁漫天堂资源中文www| 99九九在线精品视频| 12—13女人毛片做爰片一| 日韩欧美一区视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 人人妻人人澡人人看| 高潮久久久久久久久久久不卡| 久久国产精品影院| 欧美在线黄色| av网站免费在线观看视频| 国产单亲对白刺激| 亚洲国产欧美网| 国产高清视频在线播放一区| 在线天堂中文资源库| 欧美精品一区二区大全| 十分钟在线观看高清视频www| 免费在线观看日本一区| 亚洲精品在线美女| 搡老岳熟女国产| 国产欧美日韩一区二区三| 日本vs欧美在线观看视频| 女性生殖器流出的白浆| 国产精品九九99| 91麻豆精品激情在线观看国产 | 欧美日韩成人在线一区二区| 啪啪无遮挡十八禁网站| 高清黄色对白视频在线免费看| 叶爱在线成人免费视频播放| 黄频高清免费视频| 99国产综合亚洲精品| 欧美日韩亚洲综合一区二区三区_| 国产免费福利视频在线观看| 嫁个100分男人电影在线观看| 成人三级做爰电影| 99九九在线精品视频| 亚洲五月色婷婷综合| 精品卡一卡二卡四卡免费| 国产精品香港三级国产av潘金莲| 婷婷成人精品国产| 亚洲中文字幕日韩| 亚洲精品在线美女| 精品一区二区三区视频在线观看免费 | 精品久久蜜臀av无| 少妇的丰满在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲综合色网址| 成人18禁高潮啪啪吃奶动态图| 亚洲精品久久成人aⅴ小说| 岛国毛片在线播放| 国产成人影院久久av| 亚洲精品国产一区二区精华液| 一边摸一边抽搐一进一出视频| 在线观看一区二区三区激情| a级毛片在线看网站| 国产激情久久老熟女| 亚洲一区中文字幕在线| 午夜福利乱码中文字幕| a级毛片在线看网站| 色尼玛亚洲综合影院| 亚洲精品一卡2卡三卡4卡5卡| avwww免费| 欧美精品一区二区大全| 免费av中文字幕在线| 一二三四在线观看免费中文在| 在线观看免费视频网站a站| 男女下面插进去视频免费观看| 日韩大片免费观看网站| 色婷婷久久久亚洲欧美| 在线观看免费视频网站a站| 一级片免费观看大全| 国产成人啪精品午夜网站| 国产精品一区二区精品视频观看| 亚洲精品一二三| 高清毛片免费观看视频网站 | 亚洲精品自拍成人| 国产aⅴ精品一区二区三区波| 在线观看免费视频日本深夜| 欧美黑人欧美精品刺激| 久久久国产成人免费| 亚洲精品av麻豆狂野| 国产高清视频在线播放一区| 亚洲性夜色夜夜综合| 一本—道久久a久久精品蜜桃钙片| 夜夜骑夜夜射夜夜干| 日韩成人在线观看一区二区三区| 51午夜福利影视在线观看| 午夜激情久久久久久久| 欧美成人午夜精品| 99国产精品免费福利视频| 久久午夜亚洲精品久久| 91精品国产国语对白视频| 99国产极品粉嫩在线观看| 久久人妻福利社区极品人妻图片| 亚洲国产欧美在线一区| 欧美日韩精品网址| 国产伦理片在线播放av一区| 亚洲伊人久久精品综合| 久久精品亚洲熟妇少妇任你| 国产伦理片在线播放av一区| 免费在线观看黄色视频的| netflix在线观看网站| 国产成人系列免费观看| 日韩人妻精品一区2区三区| 高清在线国产一区| 国产高清视频在线播放一区| 国产免费福利视频在线观看| 人人澡人人妻人| 少妇粗大呻吟视频| 老司机影院毛片| 国产国语露脸激情在线看| 精品午夜福利视频在线观看一区 | 亚洲欧美一区二区三区久久| 黑人欧美特级aaaaaa片| 午夜福利视频精品| 久久青草综合色| 国产成人精品久久二区二区免费| 国产精品1区2区在线观看. | 黑人巨大精品欧美一区二区mp4| 国产日韩欧美亚洲二区| 亚洲精品美女久久久久99蜜臀| a级毛片在线看网站| 777米奇影视久久| 啦啦啦中文免费视频观看日本| 侵犯人妻中文字幕一二三四区| 涩涩av久久男人的天堂| 日本黄色日本黄色录像| 国产黄色免费在线视频| 国产亚洲欧美精品永久| 欧美乱码精品一区二区三区| 99国产极品粉嫩在线观看| h视频一区二区三区| 欧美乱码精品一区二区三区| 久久久久网色| 日韩免费av在线播放| 亚洲精品久久成人aⅴ小说| 最新的欧美精品一区二区| 国产精品电影一区二区三区 | 丝袜美腿诱惑在线| 夫妻午夜视频| 欧美+亚洲+日韩+国产| 狠狠婷婷综合久久久久久88av| 美女扒开内裤让男人捅视频| 亚洲专区中文字幕在线| 男女下面插进去视频免费观看| 91大片在线观看| 国产高清视频在线播放一区| 18禁美女被吸乳视频| 亚洲成a人片在线一区二区| 免费少妇av软件| 亚洲精品成人av观看孕妇| 999精品在线视频| 老司机影院毛片| 高清av免费在线| 黄网站色视频无遮挡免费观看| 黄色视频不卡| 欧美中文综合在线视频| 成人av一区二区三区在线看| cao死你这个sao货| 91大片在线观看| 亚洲欧美精品综合一区二区三区| 久久久久久免费高清国产稀缺| 精品午夜福利视频在线观看一区 | 日韩有码中文字幕| 在线av久久热| 中文字幕最新亚洲高清| 国产老妇伦熟女老妇高清| 在线观看一区二区三区激情| 丝袜人妻中文字幕| 久久影院123| 激情视频va一区二区三区| 亚洲av美国av| 黄色视频不卡| 午夜老司机福利片| 亚洲欧美一区二区三区久久| 免费少妇av软件| 母亲3免费完整高清在线观看| 法律面前人人平等表现在哪些方面| 女性被躁到高潮视频| 精品亚洲乱码少妇综合久久| 欧美激情高清一区二区三区| 亚洲伊人久久精品综合| 香蕉久久夜色| 天天躁狠狠躁夜夜躁狠狠躁| 国产伦人伦偷精品视频| 亚洲精品乱久久久久久| 日日夜夜操网爽| 亚洲国产欧美日韩在线播放| 高清视频免费观看一区二区| 亚洲色图 男人天堂 中文字幕| 亚洲 欧美一区二区三区| 日本黄色视频三级网站网址 | 岛国毛片在线播放| 无人区码免费观看不卡 | 好男人电影高清在线观看| 亚洲国产看品久久| 久久久国产精品麻豆| 久久九九热精品免费| 丰满人妻熟妇乱又伦精品不卡| 亚洲专区国产一区二区| 1024香蕉在线观看| 亚洲av欧美aⅴ国产| 大码成人一级视频| 精品卡一卡二卡四卡免费| 久久人人97超碰香蕉20202| 国产一区二区三区在线臀色熟女 | 少妇 在线观看| 久热这里只有精品99| 亚洲av国产av综合av卡| 亚洲国产中文字幕在线视频| 中文字幕高清在线视频| 婷婷成人精品国产| 满18在线观看网站| 国产成人精品久久二区二区免费| 免费在线观看完整版高清| 成人国产av品久久久| 亚洲黑人精品在线| 美女福利国产在线| 18禁国产床啪视频网站| 亚洲精品乱久久久久久| 在线亚洲精品国产二区图片欧美| 一边摸一边抽搐一进一小说 | 免费黄频网站在线观看国产| 精品熟女少妇八av免费久了| 成人特级黄色片久久久久久久 | 亚洲色图综合在线观看| 国产av一区二区精品久久| 亚洲伊人久久精品综合| 亚洲精品在线美女| 欧美精品人与动牲交sv欧美| av不卡在线播放| 天堂动漫精品| 亚洲欧洲精品一区二区精品久久久| 日韩欧美国产一区二区入口| 久久香蕉激情| 一区二区三区激情视频| 男女下面插进去视频免费观看| 日日摸夜夜添夜夜添小说| 国产淫语在线视频| 免费不卡黄色视频| 妹子高潮喷水视频| 久久天躁狠狠躁夜夜2o2o| 亚洲av成人一区二区三| 国产欧美日韩精品亚洲av| 午夜激情久久久久久久| 男女午夜视频在线观看| 欧美日韩视频精品一区| 九色亚洲精品在线播放| 亚洲熟妇熟女久久| 日本wwww免费看| 一区二区三区国产精品乱码| 丝袜在线中文字幕| 欧美激情 高清一区二区三区| 中亚洲国语对白在线视频| 久久久久精品国产欧美久久久| 亚洲精品一卡2卡三卡4卡5卡| 精品国产一区二区三区四区第35| 免费一级毛片在线播放高清视频 | 97人妻天天添夜夜摸| 久久久国产精品麻豆| 最近最新中文字幕大全电影3 | 80岁老熟妇乱子伦牲交| av片东京热男人的天堂| 999久久久精品免费观看国产| 亚洲国产精品一区二区三区在线| 午夜福利影视在线免费观看| 五月开心婷婷网| 国产高清videossex| 亚洲伊人色综图| 香蕉国产在线看| 香蕉久久夜色| 丝瓜视频免费看黄片| 一级毛片精品| 建设人人有责人人尽责人人享有的| 国产精品久久久人人做人人爽| 一区二区av电影网| 欧美亚洲日本最大视频资源| 亚洲五月婷婷丁香| 9热在线视频观看99| 叶爱在线成人免费视频播放| 亚洲欧美一区二区三区久久| 国产精品九九99| 久久国产精品人妻蜜桃| 两个人免费观看高清视频| 久久精品国产99精品国产亚洲性色 | 久久人人97超碰香蕉20202| 久久精品亚洲av国产电影网| 午夜激情av网站| 久久人妻熟女aⅴ| 国产成人免费无遮挡视频| 日韩欧美三级三区| www.熟女人妻精品国产| 在线观看一区二区三区激情| 久久精品国产99精品国产亚洲性色 | 成人亚洲精品一区在线观看| 久久久久久久久免费视频了| 久久天堂一区二区三区四区| 成人影院久久| 色综合婷婷激情| 在线永久观看黄色视频| 久久久久视频综合| 亚洲成人免费av在线播放| 国产国语露脸激情在线看| 久久久久久免费高清国产稀缺| 亚洲精品自拍成人| 免费在线观看视频国产中文字幕亚洲| 亚洲av电影在线进入| 高潮久久久久久久久久久不卡| 蜜桃在线观看..| 免费久久久久久久精品成人欧美视频| 久久国产精品男人的天堂亚洲| 亚洲国产av新网站| 国产高清视频在线播放一区| av福利片在线| 另类精品久久| 亚洲人成电影观看| 麻豆乱淫一区二区| 1024视频免费在线观看| 又黄又粗又硬又大视频| 99精国产麻豆久久婷婷| netflix在线观看网站| 亚洲精品国产精品久久久不卡| 黑人欧美特级aaaaaa片| 欧美黑人欧美精品刺激| 天堂8中文在线网| 久久中文看片网| 丰满人妻熟妇乱又伦精品不卡| av在线播放免费不卡| 成人国语在线视频| 精品亚洲乱码少妇综合久久| 最新在线观看一区二区三区| 91成人精品电影| 国产一区二区在线观看av| 久久久久久人人人人人| 18禁黄网站禁片午夜丰满| 国产一区二区三区视频了| 免费人妻精品一区二区三区视频| 亚洲三区欧美一区| 久久九九热精品免费| 一边摸一边做爽爽视频免费| 欧美亚洲 丝袜 人妻 在线| 亚洲精品一卡2卡三卡4卡5卡| 交换朋友夫妻互换小说| 曰老女人黄片| 久久久久久久久久久久大奶| 欧美精品亚洲一区二区| 久久天躁狠狠躁夜夜2o2o| 精品福利观看| 国产黄色免费在线视频| 丰满饥渴人妻一区二区三| 国产成人影院久久av| 精品少妇一区二区三区视频日本电影| 黄片大片在线免费观看| 精品国产亚洲在线| 久久久国产成人免费| 久久婷婷成人综合色麻豆| 国产av又大| 婷婷成人精品国产| 别揉我奶头~嗯~啊~动态视频| 亚洲国产欧美日韩在线播放| 人人妻人人澡人人看| 91字幕亚洲| 操出白浆在线播放| 亚洲伊人色综图| 菩萨蛮人人尽说江南好唐韦庄| 丝瓜视频免费看黄片| 久久久精品国产亚洲av高清涩受| av线在线观看网站| 亚洲成国产人片在线观看| 久久久国产欧美日韩av| 久久久国产一区二区| av在线播放免费不卡| 国产精品免费大片| 日韩欧美一区二区三区在线观看 | 亚洲中文日韩欧美视频| 久久中文字幕人妻熟女| 在线十欧美十亚洲十日本专区| 免费女性裸体啪啪无遮挡网站| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩亚洲综合一区二区三区_| 一区二区三区乱码不卡18| 欧美激情高清一区二区三区| 亚洲一区中文字幕在线| 久久精品成人免费网站| 不卡一级毛片| 人人妻人人澡人人看| 国产在线一区二区三区精| 三级毛片av免费| 成人国产一区最新在线观看| 久久久久久亚洲精品国产蜜桃av| 日韩视频在线欧美| 高清在线国产一区| 日本精品一区二区三区蜜桃| 一区二区三区国产精品乱码| 免费观看av网站的网址| 一边摸一边抽搐一进一出视频| 久久久久久久精品吃奶| 少妇 在线观看| 桃红色精品国产亚洲av| 亚洲国产成人一精品久久久| 两人在一起打扑克的视频| 少妇精品久久久久久久| 国产男女内射视频| 在线永久观看黄色视频| 亚洲欧美日韩高清在线视频 | 黑人操中国人逼视频| 精品国产乱码久久久久久男人| 免费在线观看视频国产中文字幕亚洲| 久久久久久久久久久久大奶| 激情视频va一区二区三区| 欧美成狂野欧美在线观看| 12—13女人毛片做爰片一| 国产成人av教育| 久久精品国产a三级三级三级| 操美女的视频在线观看| 亚洲第一av免费看| 高清在线国产一区| 精品人妻熟女毛片av久久网站| 丁香六月欧美| 在线天堂中文资源库| 国产一区二区 视频在线| 80岁老熟妇乱子伦牲交| 99国产极品粉嫩在线观看| 国产亚洲精品久久久久5区| av天堂久久9| 精品国产一区二区三区四区第35| 久9热在线精品视频| 欧美精品亚洲一区二区| 黄频高清免费视频| 美女福利国产在线| 99re6热这里在线精品视频| 亚洲精品国产一区二区精华液| 夜夜骑夜夜射夜夜干| 19禁男女啪啪无遮挡网站| 国产日韩一区二区三区精品不卡| 精品一品国产午夜福利视频| 精品午夜福利视频在线观看一区 | 99re6热这里在线精品视频| 国产片内射在线| 99re6热这里在线精品视频| 国产精品一区二区免费欧美| 两个人免费观看高清视频| 青草久久国产| 久久久久久亚洲精品国产蜜桃av| 在线观看66精品国产| 男女之事视频高清在线观看| 91九色精品人成在线观看| 在线看a的网站| 国产视频一区二区在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜福利视频在线观看免费| 多毛熟女@视频| 亚洲成av片中文字幕在线观看| 精品高清国产在线一区| 欧美在线一区亚洲| 亚洲精品中文字幕在线视频| aaaaa片日本免费| 日本欧美视频一区| 久久国产精品人妻蜜桃| 免费高清在线观看日韩| 美女国产高潮福利片在线看| 亚洲色图 男人天堂 中文字幕| 老熟女久久久| 法律面前人人平等表现在哪些方面| 亚洲男人天堂网一区| 国产成人精品久久二区二区免费| 99国产精品一区二区蜜桃av | 丝袜喷水一区| 国产高清videossex| 19禁男女啪啪无遮挡网站| 国产在视频线精品| 最新的欧美精品一区二区| 三上悠亚av全集在线观看| 久久精品国产99精品国产亚洲性色 | 天天操日日干夜夜撸| 建设人人有责人人尽责人人享有的| 一进一出抽搐动态| 亚洲国产看品久久| 国产成人av激情在线播放| 高清欧美精品videossex| 亚洲成av片中文字幕在线观看| 两个人看的免费小视频| 1024香蕉在线观看| 高清av免费在线| 天天影视国产精品| av片东京热男人的天堂| 99久久人妻综合| 久久香蕉激情| 欧美亚洲日本最大视频资源| 嫁个100分男人电影在线观看| 国产高清视频在线播放一区| 自拍欧美九色日韩亚洲蝌蚪91| 国产免费av片在线观看野外av| 亚洲 欧美一区二区三区| 国产亚洲精品久久久久5区| 国产精品亚洲一级av第二区| 精品国产一区二区久久| 久久亚洲精品不卡| 国产精品电影一区二区三区 | 777米奇影视久久| 欧美老熟妇乱子伦牲交| 中文字幕高清在线视频| 亚洲av欧美aⅴ国产| 12—13女人毛片做爰片一| 一本—道久久a久久精品蜜桃钙片| 亚洲视频免费观看视频| 大片免费播放器 马上看| 老鸭窝网址在线观看| 女人被躁到高潮嗷嗷叫费观| 日韩中文字幕视频在线看片| 久久av网站| 欧美乱码精品一区二区三区| 国产成人影院久久av| av天堂在线播放| 伦理电影免费视频| 天天添夜夜摸| 变态另类成人亚洲欧美熟女 | 日韩欧美一区视频在线观看| 免费一级毛片在线播放高清视频 | 国产欧美日韩一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看 | 日韩 欧美 亚洲 中文字幕| 高潮久久久久久久久久久不卡| 免费女性裸体啪啪无遮挡网站| 天堂俺去俺来也www色官网| 国产一区二区在线观看av| 在线永久观看黄色视频| 久久精品国产综合久久久| 国产黄色免费在线视频| 国产日韩欧美亚洲二区| 国产精品一区二区免费欧美| 黄频高清免费视频| 国产成人欧美| 免费久久久久久久精品成人欧美视频| 国产亚洲欧美在线一区二区| 国产精品1区2区在线观看. | 欧美国产精品一级二级三级| 色94色欧美一区二区| 九色亚洲精品在线播放| 精品一区二区三区四区五区乱码| 91麻豆精品激情在线观看国产 | 一区二区三区国产精品乱码| 麻豆av在线久日| 亚洲伊人色综图| 制服人妻中文乱码| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久久精品古装| 777米奇影视久久| 黄色视频不卡| av免费在线观看网站| 国产一区二区在线观看av| kizo精华| 老司机深夜福利视频在线观看| 后天国语完整版免费观看| 国产精品久久久av美女十八| 高潮久久久久久久久久久不卡| 久久99一区二区三区| 美女视频免费永久观看网站| 亚洲avbb在线观看| 女人久久www免费人成看片| 亚洲精品一卡2卡三卡4卡5卡| 日本vs欧美在线观看视频| 午夜福利,免费看| 在线十欧美十亚洲十日本专区| 欧美日韩一级在线毛片| 国产av一区二区精品久久| 亚洲欧美一区二区三区久久| 久久九九热精品免费| 99re在线观看精品视频| 一区二区三区国产精品乱码| a在线观看视频网站| 日韩成人在线观看一区二区三区| 脱女人内裤的视频| av超薄肉色丝袜交足视频| 亚洲少妇的诱惑av| 50天的宝宝边吃奶边哭怎么回事| 欧美精品一区二区大全| 久久精品国产a三级三级三级| 国产日韩一区二区三区精品不卡| 亚洲av第一区精品v没综合| 三上悠亚av全集在线观看| 黄色丝袜av网址大全| 少妇裸体淫交视频免费看高清 | 咕卡用的链子| 欧美精品一区二区免费开放| 国产淫语在线视频| 亚洲国产欧美网| 久久性视频一级片| 巨乳人妻的诱惑在线观看| 99国产精品99久久久久| 免费人妻精品一区二区三区视频| 啦啦啦免费观看视频1| 亚洲中文日韩欧美视频| 91国产中文字幕| 啦啦啦免费观看视频1| 一区二区三区国产精品乱码| 桃红色精品国产亚洲av| 国产不卡一卡二| 精品卡一卡二卡四卡免费| 欧美成狂野欧美在线观看| 久久精品aⅴ一区二区三区四区| 天天躁日日躁夜夜躁夜夜| 欧美人与性动交α欧美精品济南到| 日韩欧美一区视频在线观看| 一本综合久久免费| 精品熟女少妇八av免费久了| 国产91精品成人一区二区三区 | 国产欧美日韩一区二区精品| 午夜福利一区二区在线看| 一本大道久久a久久精品| 女警被强在线播放|