• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Empirical Mode Decomposition and Independent Component Analysis for the Interpretation of Rock-Mineral Spectrum

    2016-07-12 12:45:32WUFangJIANGXipingYUHanwenXIULiancun
    光譜學(xué)與光譜分析 2016年5期
    關(guān)鍵詞:巖礦數(shù)目南京

    WU Fang, JIANG Xi-ping*, YU Han-wen, XIU Lian-cun

    1.College of Science,Nanjing Agricultural University,Nanjing 210095,China 2.Nanjing Artillery College,Nanjing 211132,China 3.Nanjing Institute of Geology and Mineral Resource,Nanjing 210016,China

    Application of Empirical Mode Decomposition and Independent Component Analysis for the Interpretation of Rock-Mineral Spectrum

    WU Fang1, JIANG Xi-ping1*, YU Han-wen2, XIU Lian-cun3

    1.College of Science,Nanjing Agricultural University,Nanjing 210095,China 2.Nanjing Artillery College,Nanjing 211132,China 3.Nanjing Institute of Geology and Mineral Resource,Nanjing 210016,China

    Rock-mineral spectrum is a mixture of varied mineral spectra, through which we can obtain information about its components quickly and conveniently without any damage to the sample.Empirical mode decomposition (EMD) cannot directly decompose source signals from information of the mixture, and independent component analysis (ICA) requires the number of mixed signals to be no less than the number of source signals.Combining these two methods, mixed signals can be decomposed using EMD method to obtain intrinsic mode function (IMF), while certain IMFs together with mixed signals can be used as input data matrix of ICA to obtain the source signals.This method overcomes the shortcomings of IMF and ICA.Studies have shown that, the higher content of source signals contained in the mixed signal, the better estimation can be obtained through EMD and ICA.The number of IMFs that participate in ICA decomposition determines the number of approximation of source signals.The accuracy of source signal estimation increases with the correlation coefficient between IMF and mixed signals.By applying this method to quantitative analysis of rock-mineral spectrum, information of the component minerals in rock-mineral can be obtained, which improves the efficiency of component analysis in detecting rock-minerals outside.

    Empirical mode decomposition; Independent component analysis; Rock-mineral spectrum

    Introduction

    Rock-mineral spectra obtained from spectrum scanner features high spectral resolution and abundant information.Since rock-mineral has a variety of components, its rock-mineral spectrum is a mixture of various mineral spectra.The rock-mineral spectrum is known as “mixed pixel”, while the mineral spectra are called end-members.Mixed pixels are very common in all types of remote sensing hyper-spectral images[1]and synthetic aperture radar images[2].Decomposition of mixed pixels is fundamental to the interpretation of mixed pixel information.It is of great importance in resource investigations and geological prospecting to find fast and accurate decomposition methods to obtain the types and contents of the minerals according to the features of rock-mineral spectrum[3].

    In practice, most of measurement signals are mixed signals from various source signals, which are non-stationary and nonlinear.Empirical Mode Decomposition (EMD) and Independent Component Analysis (ICA) are two analytical techniques for non-stationary and nonlinear signals proposed in recent years.Some researchers already applied the two methods to extract information of source signals from measurement signals.Chen Jin-yang applied ICA method in array signal processing[4].He et al.[5]applied ICA method to classify spectral remote sensing images.Badaoui et al.[6]applied cyclic Wiener filtering and ICA methods, which separated the mechanical noise and combustion noise of an internal-combustion engine.Zhang et al.[7]proposed a noise source identification method based on EMD and ICA techniques, which can identify the sources of combustion noises and mechanical noises of a diesel engine.

    However, EMD cannot directly decompose the measurement signals.And ICA method requires that the number of measurement signals should be no less than the number of source signals.Thus, merely one of the two methods cannot interpret the measurement signals.To remedy this, EMD method can be applied in adaptive decomposition of measurement signals, which obtains the Intrinsic Mode Functions (IMFs).The IMFs can be combined with the measurement signals as the input data matrix of ICA, which gives enough input signals and overcomes the limitation of ICA’s requirement.This helps to obtain information of source signals by separating measurement signals when the type and number of the source signals remain unknown.The rock-mineral spectrum in this research is a measurement signal, and hereby we use EMD and ICA techniques in decomposing rock-mineral spectrum to find out the types and contents of the minerals that compose the rock-mineral.

    1 Interpretation model of mixed signal

    The components in rock-mineral belong to compact mixture, and the nonlinear mixing characteristics of rock-mineral spectrum are distinct.Through the Hapke radiation transformation model, the spectral reflectivity can be transformed to single scattering albedo.Similarly, we can transfer the nonlinear mixed model to linear mixed model[8].In practice, rock-mineral spectra separation adopts the spectral linear mixed model.

    Suppose thatx=[x1,x2,…,xM] is the 1×Mspectral matrix of rock-mineral mixed pixels.The number of bands is Mand the number of end-members in the rock-mineral mixed pixel isN.si=[si1,si2,…,siM],i=1,2,…,N, thenS=[s1,s2,…,sN]Tis the end-member spectral matrix with dimensionN×M.The linear mixing model of spectra is

    x=aS

    (1)

    2.1 The basic idea of EMD

    EMD is first introduced by Huang in 1998[9].Based on the local time scale of signals, EMD can separate one time series signal into several IMFs and the residue.The IMFs range from low frequency to high frequency with the mean of zero.The steps of EMD method are listed as follows,

    (1) Calculate all the maxima and minima of signalx(t).

    (2) Use cubic spline interpolation method to calculate the upper envelopexmax(t) and lower envelopexmin(t) of the signalx(t).Calculate the mean of upper and lower envelopesm(t)=[xmax(t)-xmin(t)]/2.

    (3) Calculateh(t)=x(t)-m(t).Confirm thath(t) satisfies the two conditions of IMF listed above.Otherwise, considerh(t) as the signal and repeat step (1) to (3).

    (4) Ifh(t) satisfies the two conditions of IMF, we leth(t)=h1(t)=IMF1.

    (5) Letd(t)=x(t)-h1(t), taked(t) as the new signal and repeat from step (1).Then we will have IMF2, IMF3, …, IMFn.

    (6) When IMFnsatisfies the stop condition, such as IMFnbeing monotonic, we have IMFn=rn(t).Then IMF1, IMF2,…,IMFn-1is the IMFs separated from the signal andrn(t) is the residue.

    Due to its prominent second order filter network feature, EMD may compromise for the intermittent components of the measurement signals[10].In this case, the result of EMD will produce model mixing.When this happens, an intrinsic mode function may contain multiple frequency components, even a false component, which lowers the accuracy of EMD.In practice, we can choose the helpful IMFs for the subsequent ICA decomposition through correlation analysis.

    1.2 The basic idea of ICA

    ICA is a signal processing method developed along with blind source separation method, the concept of which was first proposed by French scholars Juneii and Herault in 1983[11].When the source signals contained in a measurement signal are mutually independent and there is at most one Gaussian signal, we can perform blind source separation on measurement signals acquired by more than one sensor.The source signals hidden in the measurement signals can be obtained.

    The linear mixing model isx=aS.xis the signal detected whileSis the source signal andais the mixing matrix.ICA process is listed as follows,

    (1) Choose the objective function.

    (2) Maximize or minimize the objective function by numerical calculation.

    (3) Find the linear transformation matrixW(also known as separation matrix).Lety=Wx, whereW maximizes the non-Gaussian of each component ofy.Thenywould be an estimate ofS.

    It has to be noted that the order and amplitude ofy’s components is uncertain.Besides, ICA requires that the number of detected signals is no less than the number of source signals.

    1.3 EMD-ICA information interpretation model

    EMD can break down measurement signals into the sum of a series of IMFs from high to low frequency and a residue.As the frequency component of source signals in measurement signals is not single, we cannot identify source signals through EMD alone.On the other hand, although ICA can decompose measurement signals into a series of independent components, the number of independent components obtained is limited by the number of measurement signals.The combination of EMD and ICA leads to source signals from one measurement.The EMD-ICA information interpretation model includes the following steps:

    (1) decompose the mixed pixels using EMD method for multiple IMFs.

    (2) select useful IMFs to make a data matrix together with mixed pixels.

    (3) perform ICA on the data matrix to obtain independent components.

    (4) analyze independent components.

    2 Information interpretation of rock-mineral spectrum

    ing matrix represents the contents of the spectra of Malachite, Microcline and Pyrophyllite in the mixed pixel.For example, in MMP205030, the content of Malachite is 20%, Microcline is 50%, and Pyrophyllite is 30%.

    Fig.1 Spectra of malachite, microcline and pyrophyllite

    Fig.2 Spectra of mixed pixels

    In this study, we apply EMD-ICA information interpretation model to process the three mixed pixels respectively, compare and analyze the results of decomposing different mixed pixels.When the number of end-members in a mixed pixel is unknown, we find a method to choose appropriate number of IMFs in order to obtain the end-member information accurately.

    2.1 Information Interpretation through EMD-ICA

    First apply EMD method to the mixed pixels MMP205030, MMP302050 and MMP503020.Decomposition of each mixed pixel produces 8 IMFs.The correlation coefficients between these IMFs and corresponding mixed pixel spectra are shown in Table 1.

    Table 1 IMFs’correlation coefficients with corresponding mixed pixel spectrum

    MMP205030, MMP302050 and MMP503020 are all mixtures of the spectra of Malachite, Microcline and!Pyrophyllite.To separate the three independent components from one mixed pixel, we need to select 2 IMFs from each line of data in table 1 respectively and combine them with the corresponding mixed pixel spectra as the input data matrix of ICA decomposition.Studies have shown that, the larger the correlation coefficient between the IMF and mixed pixel spectrum, the better quality of independent components can be obtained through ICA decomposition (the absolute value of the correlation coefficient with end-member spectrum is higher).Therefore, when decomposing mixed pixel MMP205030, corresponding IMF4 and IMF8 should be chosen.On the other hand, both IMF5 and IMF8 were chosen to decompose MMP302050 and MMP503020 respectively.Through EMD-ICA information interpretation, MMP205030 obtains independent components IC1,IC2 and IC3, MMP302050 obtains independent components IC4,IC5 and IC6, and MMP503020 obtains independent components IC7,IC8 and IC9.Table 2 presents the correlation coefficients between the independent components and end-member spectra.

    Table 2 Correlation coefficients between the independent components and end-member spectra

    While analyzing the three independent components IC1, IC2 and IC3 of MMP205030, it is found that IC1 has the largest correlation with Microcline spectrum, thus IC1 is the estimated value of Microcline spectrum.Similarly, IC2 and IC3 are the estimated values of Malachite and Pyrophyllite respectively.Besides, in mixed pixel MMP205030, the contents of Malachite, Microcline and Pyrophyllite are 20%, 50% and 30% respectively.Through EMD-ICA information interpretation, it can be found that the higher spectral content of an end-member, the better estimated value of corresponding end-member spectrum can be obtained.In this case, as the content of Microcline is the largest, the absolute value of the correlation coefficient between IC1 and Microcline is the largest (0.844 0); as the content of Malachite is the smallest, the absolute value of the correlation coefficient between IC2 and Malachite is small (0.708 3); as the content of Pyrophyllite is between other two minerals, the correlation coefficient between IC3 and Pyrophyllite is in the middle (0.8120).

    In table 2, experimental data of MMP302050,MMP503020 also indicates that EMD-ICA information interpretation model can effectively obtain information of end-members in mixed pixel spectrum.Similarly, the higher spectral content of an end-member, the better estimated value of the corresponding end-member spectrum can be obtained.

    Take mixed pixels MMP205030, MMP302050 and MMP503020 as input data matrix, ICA can be applied directly to the decomposition and obtain 3 independent components, which are the estimated values of spectra of Malachite, Microcline and Pyrophyllite respectively.The correlation coefficients between them and end-member spectra are 0.839 8,0.889 5 and 0.934 6.As we can see, the quality of independent components obtained from direct ICA decomposition is higher than that of independent components obtained from single mixed pixels processed by EMD-ICA information interpretation model.This is because mixed pixel groups contain more end-member information, which lead to better estimated value of end-member spectra.However, if there are not enough mixed pixels, only EMD-ICA information interpretation model can be adopted.The independent components obtained through this method still contain plenty of information on end-member spectra.

    2.2 Information Interpretation with an unknown number of end-members

    In practice, the number of end-member is hard to predict.After mixed pixels are processed by EMD, most IMFs are obtained.Some of these IMFs need to be selected to compose the input data matrix of ICA decomposition together with mixed pixel spectra.

    Table 3 Correlation coefficients between independent components and end-member spectra (two independent components separated from each mixed pixel)

    MMP205030MMP302050MMP503020IC10IC11IC12IC13IC14IC15Malachite0.38480.01760.7224-0.3419-0.09030.8824Microcline-0.02750.87700.03460.5658-0.75360.4937Pyrophyllite0.72330.35830.51500.85300.31530.1681

    The IMF, which has relatively higher correlation coefficient to the mixed pixel spectrum, contains more end-member information.Since IMF8 has the largest correlation coefficient in each row of data, it is selected and combined with corresponding mixed pixel spectrum as input spectra of ICA.The correlation coefficients between the two independent components obtained and end-member spectra are shown in table 3.

    Through the analysis of experimental data in Table 3, we found that when only 2 independent components were decomposed from a mixed pixel, the 2 independent components obtained correspond to the end-members with relatively higher contents in the mixed pixel respectively.It can be found that the higher spectral content of end-member, the better quality can be achieved for corresponding independent components.For example, in mixed pixel MMP205030, the content of Microcline spectrum is the highest (50%), while the content of Pyrophyllite spectrum comes the second (30%).IC11 is the approximation of Microcline spectrum while IC10 is the approximation of Pyrophyllite spectrum.The absolute value of correlation coefficient of IC11 is 0.877 0, while the absolute value of correlation coefficient of IC10 is 0.723 3.IC11 is of higher quality than IC10.The conclusion is similar for other mixed pixels.

    Therefore, when applying EMD-ICA to interpret rock-mineral spectra, IMF can be selected according to the value of correlation coefficient (from large to small), and thus obtain information of end-members with higher contents in the mixed pixel.If the number of decomposed independent components is less than the number of end-members, the independent components correspond to end-members with higher spectral contents.It can be concluded that the quality of corresponding independent component improves with the amount of content.If the number of decomposed independent components equals the number of end-members, the independent components are of the highest quality.If the number of decomposed independent components exceeds the number of end-members, the amount of data to be calculated in EMD-ICA increases.In this case, the quality of independent components is not ideal enough.

    3 Interpretation of rock-mineral spectrum with real measurement data

    The core sample was collected at 31.95 N, 118.83 E.The scanned core spectrum has a wavelength ranging from 1 300 to 2 500 nm with the interval of 2 nm.After pre-procession of the core spectrum with Principal Component Analysis (PCA), only the 3 major components were kept.The spectrum of the core is shown in figure 3.

    The refined core spectrum was treated with EMD, which obtained 10 IMFs with correlation coefficients of 0.003 1, 0.000 4, 0.071 1, 0.145 7, 0.152 2, 0.361 5, 0.546 8, 0.546 8, 0.543 8 and 0.964 7 respectively to the core spectrum.Then, the two IMFs with highest correlation coefficients were used in the data matrix together with the original core spectrum.Followed by ICA treatment, 3 independent components were obtained, namely IC16, IC17 and IC18.The correlation coefficient of each component can be calculated independently with respect to the standard mineral spectra in USGS library.The results showed that IC16 has the highest correlation to Spessartine, with the coefficient value 0.726.Similarly, IC17 has the highest correlation to Smectite with the coefficient value 0.938, while IC18 has the highest correlation to Chrysocolla with the coefficient value 0.962.The core spectrum can also be analyzed with the portable near-infrared mineral analyzer (model BJKF-Ⅱ).The results from BJKF-Ⅱ were not exactly the same as that from EMD-ICA, but with good correlation.

    Fig.3 Spectrum of core

    4 Conclusions

    Through integrated application of EMD and ICA methods, we can overcome the limitation of ICA’s requirement that the number of mixed pixels should be no less than that of end-members.The end-member information can be extracted from single mixed pixel, and mixed pixel decomposition can be conducted even when there is no prior knowledge about the number of end-members.From simulation data, we find that the contents of end-member spectra in mixed pixels exert significant influence on decomposition results.The higher content of end-member spectrum, the larger correlation between independent component and the end-member spectrum can be obtained.When the number of decomposed independent components is less than the number of end-members in the mixed pixel, the independent components separated through EMD-ICA will correspond to end-members with higher spectral contents in the mixed pixel.This research is of practical importance to quantitative analysis of rock-mineral spectrum, which reveals the types and contents of its mineral composition.

    Acknowledgement: Many thanks to Huang Jun-jie from Nanjing Institute of Geology and Mineral Resource for their great help in the research.

    [1] M D M, A L D.IEEE Transactions on Geoscience and Remote Sensing,2004, 42(1): 271.

    [2] Cao Hengzhi, Yu Xianchuan, Zhang Libao.Journal of Remote Sensing, 2009, 13(2): 217.

    [3] Manrice D Craig.IEEE Transactions on Geoscience and Remote Sensing, 1994, 32: 542.

    [4] Chen Jinyang.Research on Independent Component Analysis and Its Application in Array Signal Processing.PLA Information Engineering University, Master Thesis, 2011.

    [5] He H, Yu X C, Peng W L.Geoscience and Remote Sensing Symposium, 2007, 3: 1658.

    [6] Badaoui M EI, Daniere J, Guillet F, et al.Mechanical Systems and Signal Processing, 2005, 19(6): 1209.

    [7] Zhang Junhong, Li Linjie, Liu Hai, et al.Transactions of CSICE, 2012, 30(6): 544.

    [8] Wang Runsheng, Gan Fuping, Yan Bokun, et al.Remotesensing Forland & Resources, 2010, 83: 1.

    [9] Huang N E, Shen Z, Long S R.Proc.R Soc., 1998, 454(1971): 903.

    [10] Flandrin P, Rilling G, Goncalves P.IEEE Signal Process, Letters, 2004, 11(2): 112.

    [11] Hyv?rinen A, Oja E.Neural Networks,2000, 13(4-5): 411.

    *通訊聯(lián)系人

    O657.3

    A

    應(yīng)用經(jīng)驗(yàn)?zāi)B(tài)分解和獨(dú)立成分分析解譯巖礦光譜

    吳 芳1,蔣夕平1*,于瀚文2,修連存3

    1.南京農(nóng)業(yè)大學(xué)理學(xué)院,江蘇 南京 210095 2.南京炮兵學(xué)院,江蘇 南京 211132 3.南京地質(zhì)礦產(chǎn)研究所,江蘇 南京 210016

    巖礦光譜由多種礦物光譜混合而成,解譯巖礦光譜能夠得到巖礦的組分信息,且該方法具有快速、方便、不損壞樣品的特點(diǎn)。經(jīng)驗(yàn)?zāi)B(tài)分解(empirical mode decomposition, EMD)不能直接分離出混合信號(hào)中的源信號(hào),獨(dú)立成分分析(independent component analysis, ICA)要求混合信號(hào)數(shù)目不小于其所包括的源信號(hào)數(shù)目。將EMD和ICA兩種方法相融合,首先用EMD分解混合信號(hào)得到本征模態(tài)函數(shù)(intrinsic mode function, IMF),再選擇一定數(shù)目的IMF與混合信號(hào)一起組成ICA的輸入數(shù)據(jù)矩陣,經(jīng)過ICA運(yùn)算可以獲取單一混合信號(hào)中的源信號(hào)信息,克服了EMD和ICA兩種方法各自的缺陷。研究表明,綜合應(yīng)用EMD和ICA方法可以獲取單一混合信號(hào)中的源信號(hào)信息,混合信號(hào)中源信號(hào)含量越大,得到的源信號(hào)近似值越理想。參與ICA分離的IMF數(shù)目決定了分離得到的源信號(hào)近似值的數(shù)目,并且選擇的IMF與混合信號(hào)相關(guān)系數(shù)越大,得到的源信號(hào)近似值越理想。運(yùn)用該方法定量分析巖礦光譜,可以獲取組成巖礦的礦物信息,比較適用于野外作業(yè)巖礦的快速分析鑒定及成分初步分析。

    經(jīng)驗(yàn)?zāi)B(tài)分解; 獨(dú)立成分分析; 巖礦光譜

    2015-01-02,

    2015-04-18)

    Foundation item:National Key Scientific Instrument and Equipment Development Project (China) (2012YQ050250),F(xiàn)undamental Research Funds of Nanjing Agricultural University (KYZ201425)

    10.3964/j.issn.1000-0593(2016)05-1592-06

    Received:2015-01-02; accepted:2015-04-18

    Biography:WU Fang, (1974—), female, a lecturer in College of Science, Nanjing Agricultural University e-mail: wufang318@njau.edu.cn *Corresponding author e-mail: jiangxp@njau.edu.cn

    猜你喜歡
    巖礦數(shù)目南京
    有機(jī)物“同分異構(gòu)體”數(shù)目的判斷方法
    南京比鄰
    “南京不會(huì)忘記”
    《巖礦測(cè)試》第八屆編輯委員會(huì)
    《巖礦測(cè)試》 第八屆編輯委員會(huì)
    《巖礦測(cè)試》第八屆編輯委員會(huì)
    《巖礦測(cè)試》第八屆編輯委員會(huì)
    南京·九間堂
    金色年華(2017年8期)2017-06-21 09:35:27
    又是磷復(fù)會(huì) 又在大南京
    《哲對(duì)寧諾爾》方劑數(shù)目統(tǒng)計(jì)研究
    精品熟女少妇八av免费久了| 小蜜桃在线观看免费完整版高清| 色综合欧美亚洲国产小说| 老司机午夜十八禁免费视频| 久久精品国产99精品国产亚洲性色| 久久久久性生活片| 亚洲av不卡在线观看| 黄色丝袜av网址大全| 人妻丰满熟妇av一区二区三区| a级一级毛片免费在线观看| 欧美日本视频| 亚洲国产精品合色在线| 九九在线视频观看精品| av在线蜜桃| 国产爱豆传媒在线观看| 在线免费观看的www视频| 日韩欧美免费精品| 蜜桃亚洲精品一区二区三区| 757午夜福利合集在线观看| 国产高清videossex| 亚洲精品日韩av片在线观看 | 色老头精品视频在线观看| 一本综合久久免费| 免费av不卡在线播放| 又紧又爽又黄一区二区| 一区二区三区高清视频在线| 久久国产乱子伦精品免费另类| 国产蜜桃级精品一区二区三区| 亚洲熟妇中文字幕五十中出| 黄色视频,在线免费观看| 成人午夜高清在线视频| 精品久久久久久久末码| av女优亚洲男人天堂| 首页视频小说图片口味搜索| 亚洲avbb在线观看| 老司机在亚洲福利影院| 啦啦啦免费观看视频1| 我要搜黄色片| 午夜精品久久久久久毛片777| 日本撒尿小便嘘嘘汇集6| 国产成人av教育| 婷婷丁香在线五月| 亚洲av电影不卡..在线观看| 窝窝影院91人妻| 成年版毛片免费区| 国产爱豆传媒在线观看| 美女大奶头视频| 国产主播在线观看一区二区| 少妇的逼好多水| 97超视频在线观看视频| 欧美日韩乱码在线| 亚洲欧美日韩高清专用| 女人被狂操c到高潮| 99久久成人亚洲精品观看| 99精品在免费线老司机午夜| 韩国av一区二区三区四区| 成人欧美大片| 两性午夜刺激爽爽歪歪视频在线观看| av福利片在线观看| 我的老师免费观看完整版| 18禁黄网站禁片免费观看直播| 在线免费观看的www视频| 乱人视频在线观看| 母亲3免费完整高清在线观看| 真人一进一出gif抽搐免费| 国产单亲对白刺激| 人妻丰满熟妇av一区二区三区| 久久久久国产精品人妻aⅴ院| 伊人久久精品亚洲午夜| 亚洲专区国产一区二区| 国产极品精品免费视频能看的| 国产一级毛片七仙女欲春2| 精品人妻1区二区| 黄色女人牲交| 国产精品一区二区三区四区久久| 国产精品一区二区三区四区久久| 亚洲七黄色美女视频| 色精品久久人妻99蜜桃| 99在线视频只有这里精品首页| 久久人妻av系列| 欧美最新免费一区二区三区 | 99国产极品粉嫩在线观看| 婷婷精品国产亚洲av在线| 不卡一级毛片| 国语自产精品视频在线第100页| 又紧又爽又黄一区二区| 国产精品1区2区在线观看.| 日本黄色视频三级网站网址| 亚洲自拍偷在线| 美女高潮喷水抽搐中文字幕| 欧美日韩乱码在线| 麻豆成人午夜福利视频| 色综合欧美亚洲国产小说| 精品久久久久久久人妻蜜臀av| 亚洲色图av天堂| 在线观看av片永久免费下载| 热99在线观看视频| 听说在线观看完整版免费高清| 久久九九热精品免费| 国产v大片淫在线免费观看| 免费人成在线观看视频色| 国产高清视频在线播放一区| 在线观看美女被高潮喷水网站 | 欧美成人a在线观看| 成人性生交大片免费视频hd| 亚洲精品456在线播放app | 欧美成人性av电影在线观看| 亚洲性夜色夜夜综合| 一区二区三区免费毛片| 99久久精品国产亚洲精品| 最近最新中文字幕大全电影3| 韩国av一区二区三区四区| 身体一侧抽搐| avwww免费| 精品久久久久久久毛片微露脸| 欧美乱妇无乱码| svipshipincom国产片| 日韩欧美在线乱码| 不卡一级毛片| 亚洲片人在线观看| 亚洲性夜色夜夜综合| 色视频www国产| 两性午夜刺激爽爽歪歪视频在线观看| 一进一出抽搐gif免费好疼| 女同久久另类99精品国产91| 午夜老司机福利剧场| 香蕉丝袜av| 亚洲最大成人手机在线| 人妻久久中文字幕网| 看片在线看免费视频| 日本成人三级电影网站| 午夜福利欧美成人| 亚洲熟妇中文字幕五十中出| 偷拍熟女少妇极品色| 久久久国产成人免费| 精品人妻一区二区三区麻豆 | 国产熟女xx| 五月伊人婷婷丁香| 久久九九热精品免费| 久久久久久久久中文| 日韩成人在线观看一区二区三区| 国产成人影院久久av| 日日摸夜夜添夜夜添小说| 色在线成人网| 最近在线观看免费完整版| 亚洲中文日韩欧美视频| 午夜免费观看网址| x7x7x7水蜜桃| 国产视频一区二区在线看| 天堂√8在线中文| 国产日本99.免费观看| 欧美日韩瑟瑟在线播放| 五月玫瑰六月丁香| 国产中年淑女户外野战色| 国产精品国产高清国产av| 亚洲av美国av| 亚洲第一欧美日韩一区二区三区| 亚洲国产高清在线一区二区三| 国产三级黄色录像| 内地一区二区视频在线| 亚洲精品在线观看二区| 一区二区三区免费毛片| 国产伦在线观看视频一区| 午夜a级毛片| 男人的好看免费观看在线视频| 天堂av国产一区二区熟女人妻| 亚洲欧美日韩无卡精品| 欧美乱妇无乱码| 亚洲无线观看免费| 亚洲国产欧洲综合997久久,| 午夜老司机福利剧场| 日本在线视频免费播放| 真人做人爱边吃奶动态| 三级国产精品欧美在线观看| 男女做爰动态图高潮gif福利片| 亚洲国产精品成人综合色| 女警被强在线播放| xxx96com| 婷婷精品国产亚洲av| 亚洲成人中文字幕在线播放| 精品久久久久久久毛片微露脸| 久99久视频精品免费| 中文字幕人妻熟人妻熟丝袜美 | 一夜夜www| 很黄的视频免费| 一级毛片女人18水好多| 一级黄色大片毛片| 在线观看一区二区三区| 18禁在线播放成人免费| 亚洲成av人片免费观看| 国产亚洲欧美98| 日韩欧美国产在线观看| 白带黄色成豆腐渣| 日韩欧美精品v在线| 露出奶头的视频| 日韩有码中文字幕| 欧美中文综合在线视频| 国产av在哪里看| 一区福利在线观看| 天美传媒精品一区二区| 欧美乱妇无乱码| 亚洲精品乱码久久久v下载方式 | 伊人久久大香线蕉亚洲五| 欧美性猛交黑人性爽| 麻豆成人午夜福利视频| 国产成+人综合+亚洲专区| 欧美+亚洲+日韩+国产| 亚洲熟妇中文字幕五十中出| 性色av乱码一区二区三区2| 久9热在线精品视频| 久久精品国产99精品国产亚洲性色| 亚洲最大成人中文| 国产爱豆传媒在线观看| 亚洲真实伦在线观看| 国产精品三级大全| 精品久久久久久久末码| 日本在线视频免费播放| 国产精品98久久久久久宅男小说| 午夜影院日韩av| 欧美性猛交黑人性爽| 精品欧美国产一区二区三| 国产在视频线在精品| a级一级毛片免费在线观看| 午夜福利高清视频| 国产一区二区激情短视频| 国产精品嫩草影院av在线观看 | 五月伊人婷婷丁香| 狠狠狠狠99中文字幕| 蜜桃久久精品国产亚洲av| 欧美日韩精品网址| 97人妻精品一区二区三区麻豆| 他把我摸到了高潮在线观看| 嫩草影院精品99| 免费人成视频x8x8入口观看| 成人鲁丝片一二三区免费| 亚洲中文日韩欧美视频| 99久久久亚洲精品蜜臀av| 中文字幕人成人乱码亚洲影| 日本免费a在线| 午夜福利视频1000在线观看| 中文字幕人妻熟人妻熟丝袜美 | www.www免费av| 亚洲天堂国产精品一区在线| 黄色日韩在线| 在线播放无遮挡| 国产一区二区三区视频了| 国产私拍福利视频在线观看| 国产精品久久久久久人妻精品电影| 日韩亚洲欧美综合| 午夜福利欧美成人| 日本免费a在线| 热99re8久久精品国产| 久久草成人影院| 日日摸夜夜添夜夜添小说| 欧美日韩黄片免| 五月玫瑰六月丁香| 欧美xxxx黑人xx丫x性爽| 国产成人欧美在线观看| 日韩国内少妇激情av| 五月伊人婷婷丁香| 欧美zozozo另类| 色综合欧美亚洲国产小说| 欧美最新免费一区二区三区 | 国产精品亚洲一级av第二区| 一个人免费在线观看的高清视频| 欧美一级a爱片免费观看看| 3wmmmm亚洲av在线观看| e午夜精品久久久久久久| 麻豆久久精品国产亚洲av| 69av精品久久久久久| 小蜜桃在线观看免费完整版高清| 亚洲内射少妇av| 在线播放国产精品三级| 久久这里只有精品中国| 99久久综合精品五月天人人| 午夜福利18| 青草久久国产| 成人特级黄色片久久久久久久| 18禁美女被吸乳视频| 国产伦精品一区二区三区四那| 久久久成人免费电影| 国产精品久久久久久久久免 | 中文字幕人成人乱码亚洲影| www国产在线视频色| 两个人的视频大全免费| 男人和女人高潮做爰伦理| 亚洲最大成人中文| 日本免费a在线| 波多野结衣巨乳人妻| 美女黄网站色视频| 最近最新中文字幕大全电影3| 少妇丰满av| 在线看三级毛片| av在线蜜桃| a在线观看视频网站| 成人国产综合亚洲| 69av精品久久久久久| 国产伦一二天堂av在线观看| 噜噜噜噜噜久久久久久91| 中文字幕久久专区| 欧美黑人欧美精品刺激| 国产综合懂色| 久久久久久久久大av| 欧美另类亚洲清纯唯美| av国产免费在线观看| av片东京热男人的天堂| 国产av在哪里看| 国产精品美女特级片免费视频播放器| 夜夜看夜夜爽夜夜摸| 亚洲精品影视一区二区三区av| 国产伦在线观看视频一区| 久久香蕉国产精品| 脱女人内裤的视频| 男人舔女人下体高潮全视频| 精品久久久久久成人av| 国产不卡一卡二| 夜夜夜夜夜久久久久| 91字幕亚洲| 午夜精品在线福利| 小说图片视频综合网站| 亚洲国产精品成人综合色| 老司机深夜福利视频在线观看| 嫩草影院精品99| 波多野结衣巨乳人妻| 九色成人免费人妻av| 观看免费一级毛片| 88av欧美| 免费观看精品视频网站| 99热只有精品国产| 国产久久久一区二区三区| 免费看a级黄色片| 禁无遮挡网站| 麻豆久久精品国产亚洲av| 青草久久国产| 人妻夜夜爽99麻豆av| 俺也久久电影网| av福利片在线观看| 国产成人影院久久av| 一级黄色大片毛片| 嫁个100分男人电影在线观看| 久久国产精品影院| 高清毛片免费观看视频网站| 精品一区二区三区视频在线观看免费| 精品久久久久久久末码| 欧美区成人在线视频| 久久精品91无色码中文字幕| 亚洲专区国产一区二区| 久久精品91无色码中文字幕| 又紧又爽又黄一区二区| 午夜福利视频1000在线观看| av在线蜜桃| 亚洲av免费高清在线观看| 又黄又爽又免费观看的视频| 欧美激情在线99| 又黄又爽又免费观看的视频| 母亲3免费完整高清在线观看| 欧美精品啪啪一区二区三区| 女人十人毛片免费观看3o分钟| www日本在线高清视频| 91在线精品国自产拍蜜月 | 99riav亚洲国产免费| 国产精品99久久99久久久不卡| 国产精品久久久久久人妻精品电影| 国产精品一区二区三区四区免费观看 | 国产麻豆成人av免费视频| 十八禁人妻一区二区| 精品久久久久久久久久免费视频| 在线天堂最新版资源| 亚洲精品国产精品久久久不卡| 亚洲最大成人手机在线| 九色国产91popny在线| 男女下面进入的视频免费午夜| 成人鲁丝片一二三区免费| 亚洲成人久久性| 欧美成人a在线观看| 欧美zozozo另类| 91久久精品国产一区二区成人 | 成人鲁丝片一二三区免费| 在线十欧美十亚洲十日本专区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av中文字字幕乱码综合| or卡值多少钱| 亚洲va日本ⅴa欧美va伊人久久| 一个人免费在线观看电影| 99久久99久久久精品蜜桃| 久久中文看片网| 欧美丝袜亚洲另类 | 99精品欧美一区二区三区四区| 精品欧美国产一区二区三| 啦啦啦观看免费观看视频高清| 成人国产一区最新在线观看| 精品无人区乱码1区二区| 亚洲真实伦在线观看| 欧美黄色淫秽网站| 一区福利在线观看| 久久人妻av系列| 亚洲18禁久久av| 99热精品在线国产| 舔av片在线| 欧美乱色亚洲激情| 欧美成人a在线观看| 成人午夜高清在线视频| 啦啦啦观看免费观看视频高清| 一个人看的www免费观看视频| 欧美+日韩+精品| 日本 av在线| 亚洲欧美日韩高清专用| 特级一级黄色大片| 人人妻,人人澡人人爽秒播| 国产成人影院久久av| 久久精品国产综合久久久| 日本 av在线| 在线看三级毛片| 久久欧美精品欧美久久欧美| 国产97色在线日韩免费| 久久精品夜夜夜夜夜久久蜜豆| 日本三级黄在线观看| 久久99热这里只有精品18| 观看免费一级毛片| 国产一区二区激情短视频| 9191精品国产免费久久| 超碰av人人做人人爽久久 | 国产成人系列免费观看| 色尼玛亚洲综合影院| 美女黄网站色视频| 国产精品野战在线观看| 国产精品精品国产色婷婷| 天天一区二区日本电影三级| 一边摸一边抽搐一进一小说| 日韩欧美 国产精品| 亚洲人与动物交配视频| 久久人人精品亚洲av| 校园春色视频在线观看| 亚洲av免费在线观看| 日韩大尺度精品在线看网址| 午夜福利免费观看在线| 757午夜福利合集在线观看| 一区二区三区免费毛片| 12—13女人毛片做爰片一| 一进一出抽搐动态| av国产免费在线观看| 99久久成人亚洲精品观看| 亚洲国产欧洲综合997久久,| 欧美日本视频| 母亲3免费完整高清在线观看| 欧美区成人在线视频| 毛片女人毛片| 日本五十路高清| 成年女人毛片免费观看观看9| 欧美在线黄色| 尤物成人国产欧美一区二区三区| 有码 亚洲区| 国产成+人综合+亚洲专区| 母亲3免费完整高清在线观看| 亚洲精品在线美女| 97超级碰碰碰精品色视频在线观看| 亚洲国产精品sss在线观看| 精华霜和精华液先用哪个| 99在线人妻在线中文字幕| 国产av一区在线观看免费| 亚洲欧美日韩无卡精品| 一级黄片播放器| 国内精品美女久久久久久| 国产成人影院久久av| 一个人看的www免费观看视频| 亚洲欧美一区二区三区黑人| 一区二区三区国产精品乱码| 国产三级黄色录像| 窝窝影院91人妻| 国内毛片毛片毛片毛片毛片| 精品福利观看| 男插女下体视频免费在线播放| 国产乱人视频| 色综合欧美亚洲国产小说| 美女黄网站色视频| 在线播放无遮挡| 啪啪无遮挡十八禁网站| 欧美日韩黄片免| 国产日本99.免费观看| av欧美777| 国产色婷婷99| av在线天堂中文字幕| 国语自产精品视频在线第100页| 日韩亚洲欧美综合| 在线视频色国产色| 男女那种视频在线观看| 国产精品爽爽va在线观看网站| 日韩精品中文字幕看吧| 国产精华一区二区三区| 人人妻,人人澡人人爽秒播| 亚洲av不卡在线观看| 99精品欧美一区二区三区四区| 久久精品国产综合久久久| 天天躁日日操中文字幕| 两个人的视频大全免费| 99久久综合精品五月天人人| 天堂动漫精品| 国产精品亚洲美女久久久| 久久久久国内视频| 日本免费一区二区三区高清不卡| 亚洲第一欧美日韩一区二区三区| 日本精品一区二区三区蜜桃| 特级一级黄色大片| 美女cb高潮喷水在线观看| 日本免费一区二区三区高清不卡| 熟女少妇亚洲综合色aaa.| 97超视频在线观看视频| 成人永久免费在线观看视频| 亚洲五月婷婷丁香| 午夜福利18| 久久人妻av系列| 欧美性猛交╳xxx乱大交人| 在线a可以看的网站| 久99久视频精品免费| 日韩 欧美 亚洲 中文字幕| av黄色大香蕉| 亚洲无线在线观看| www日本在线高清视频| 男人和女人高潮做爰伦理| 亚洲自拍偷在线| 精品人妻一区二区三区麻豆 | 日韩欧美在线二视频| 国产亚洲欧美在线一区二区| 熟妇人妻久久中文字幕3abv| 日本一二三区视频观看| 国产av在哪里看| 黄色丝袜av网址大全| 国产精品爽爽va在线观看网站| h日本视频在线播放| 成人av在线播放网站| 亚洲精品日韩av片在线观看 | 国产一区在线观看成人免费| 看免费av毛片| 亚洲欧美一区二区三区黑人| 99久久久亚洲精品蜜臀av| 亚洲av电影不卡..在线观看| 亚洲国产欧美人成| 黄色成人免费大全| 美女 人体艺术 gogo| 国产主播在线观看一区二区| 午夜久久久久精精品| 久久久久久国产a免费观看| h日本视频在线播放| 午夜激情欧美在线| 男女下面进入的视频免费午夜| 可以在线观看毛片的网站| 两个人视频免费观看高清| 91久久精品电影网| 亚洲不卡免费看| 19禁男女啪啪无遮挡网站| 搡老熟女国产l中国老女人| 99久久无色码亚洲精品果冻| 日韩免费av在线播放| 亚洲人成网站在线播| 欧美日韩中文字幕国产精品一区二区三区| 欧美最新免费一区二区三区 | 国内久久婷婷六月综合欲色啪| 国产一区二区亚洲精品在线观看| 又黄又爽又免费观看的视频| bbb黄色大片| 国产精品av视频在线免费观看| 脱女人内裤的视频| 69av精品久久久久久| 大型黄色视频在线免费观看| 级片在线观看| 国产伦人伦偷精品视频| 99久久久亚洲精品蜜臀av| 人妻久久中文字幕网| 国产一区二区在线av高清观看| 婷婷亚洲欧美| 免费搜索国产男女视频| 欧美日韩黄片免| aaaaa片日本免费| 久久人妻av系列| 国内揄拍国产精品人妻在线| 高清在线国产一区| 亚洲精品色激情综合| 一级毛片女人18水好多| 黄片小视频在线播放| 欧美一级a爱片免费观看看| 十八禁网站免费在线| 中文字幕久久专区| 中文字幕熟女人妻在线| 一个人看视频在线观看www免费 | 成年免费大片在线观看| 国内揄拍国产精品人妻在线| 男女那种视频在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲午夜理论影院| 在线观看午夜福利视频| 国产野战对白在线观看| 国产探花在线观看一区二区| 日本 欧美在线| 色在线成人网| 日日摸夜夜添夜夜添小说| 最后的刺客免费高清国语| 村上凉子中文字幕在线| 可以在线观看毛片的网站| 免费看十八禁软件| 国产午夜精品久久久久久一区二区三区 | 国产精品国产高清国产av| 非洲黑人性xxxx精品又粗又长| 欧美黄色片欧美黄色片| 99久久九九国产精品国产免费| 亚洲欧美激情综合另类| 在线免费观看的www视频| 国产精品一区二区三区四区免费观看 | 在线天堂最新版资源| 精品日产1卡2卡| 乱人视频在线观看| 99久久久亚洲精品蜜臀av| 国产高清videossex| 日日干狠狠操夜夜爽| 99国产极品粉嫩在线观看| 脱女人内裤的视频|